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Abstract: Assigning threshold value plays an important role in the temporal coding Spiking Neural Network
(SNN) as it determines when the neuron should fire, the time window parameter plays a significant role in the
SNN performance. This study does two things: First it proposes a mathematical method to find out the
threshold boundary in the temporal coding SNN models and second it outlines the input time window boundary
which leads to specify the spike time boundary. The latter was used at the former. The threshold boundary
method was applied to two learning algorithms i.e., Spiking-Learning Vector Quantization (3 _1.VQ) and Self-
Organizing Weight Adaption for SNN (SOWA _SNN), for both classification and clustering pattern recognition
applications, respectively. This method finds the threshold boundary mathematically in both learning models
above and observes that the mmimum and maximum value of the threshold does not depend on the tume input
window, time coding or delay parameters in SNN. With regard to the input time window, it finds that
specification beyond the parameter boundary affects the computational networlk cost and performance; also
it finds that the delay and the time coding parameters play a sigmficant role in assigning the time window

boundary.
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INTRODUCTION

A special class of Artificial Neural Networls (ANN)
is the third generation called Spiking Neural Networks
(SNN), where neuron models communicate by sending
and receiving action potentials (“spike tramns™). During
the last couple of years, investigational proof has
accumulated. This concept proves that most biological
neural systems encode data with the use of spikes
(Hoptield, 1995). These experimental results from
newrobiology have led to the study of spiking neural
networks in more detail, which employ spiking neurons as
computational units (Maass, 1997). Due to this property
whenever a fast and efficient computation 1s required a
SNN is principally a suitable to do so (e.g., speech
recognition) where the timing of the input signals and the
firing signal carries important information. In terms of
computation, spiking neural networks have more power
than both sigmoidal gates and perceptrons (Maass, 1997).
The main objective of comprehending the capabilities and
restrictions of this new type of spiking neural network
provides additonal information for theoretical
investigation of the third generation of neural network

models (Maass, 1997). The spiking neuron’s mathematical
models do not provide a full explanation of the
enormously complex computational function of a
biological neuron. The computational units of the
previous two generations of neural network models are
simplified models and focus on only a few concepts of
biological neurons. However, in comparison with the
previous two models, they are substantially more realistic.
Specifically, the mathematical models express much better
the actual output of a biological neuron and so they allow
for an investigation on a theoretical level the potential of
using time as a resource for a computation and
commumnication (Maass, 1997). The importance of
threshold value for learning m SNN: In the siumplest
(deterministic) model of a spiking neuron one assumes
that a newron, (v) fires whenever its potential (p) reaches
a certain threshold (6). This potential (p) 1s the sum of the
so-called EPSP (excitatory postsynaptic potentials) and
IPSP (inhibitory postsynaptic potentials), which result
from the firing of other neurons (u) that are connected
through a synapse to neuron (v) (Maass, 1997).
Furthermore, it has been assumed that fast changes of the
value of w(t) are also necessary for computations in

Corresponding Author:

Abdullah H. Almasri, Center for Artificial Intelligence,

Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Darul Ehsan,

43600, Selangor Malaysia



J. Applied Sci., 14 (4): 317-324, 2014

biological neural systems (Maass, 1997). The existing
literature on spiking neural network computations is
related results of neuwrobiology (Maass, 1997). The
theoretical investigation of spiking neural networks 1s not
a new research field Tn fact, it has a long tradition in
theoretical neurobiology, biophysics and theoretical
physics. On the other hand, a mathematically extensive
analysis of the computational power of spikang neural
networks has not been fully investigated (Maass, 1997).
Maass (1997) claims that such an analysis will be useful
in understanding the computational power in complex
biological neural systems. SNNs have tumed out to be
very powerful (Maass, 1997) but there is still not much
known about possible learning and higher computational
mechanisms (Natschlager and Ruf, 1998).

Pham et al. (2008) claimed that in order to keep
relevant neurons active, a low threshold value was
assigned mmtially and increased after each training epoch
in small equal steps to a preset value. Initial threshold
values were set to 60%0.5*0.7 and mcreased up to
60%0.5*%0.83. Here 60 is the number of input neurons and
0.5 15 the average connection weight. Pham et al. (2007)
set the threshold value to 60%0.5*0.5, here 60 is the
mumber of mput newons and 0.5 15 the average
connection weight for (SOWA SNN). Pham and Sahran
(2006) the threshold 6 is a constant and is equal for all
neurons in the network (Shahnorbanun et al., 2010). The
threshold € 1s a constant and 1s equal for all neurons in
the network.

Many SNN learming algorithms have been proposed
for supervised learning (Bohte et «l., 2002a; Xin and
Embrechts, 2001, Pham and Sahran, 2006, Ruf and
Schmitt, 1997; Sporea and Gruning, 2012) and clustering
(Bohte et al, 2002b;, Natschlager and Ruf, 1998;
Pham et ai., 2007), however as the author concern, none
of them has mentioned clearly the guidelines for selecting
threshold value. They used to select it empirically to give
the best result. Threshold plays an important role in SNN
learning as it determines when the neuron should fire and
the input time window parameter plays a significant role
in the SNN performance. Here the question raised is; can
one set the right and suitable threshold parameter
mathematically depending on other parameters in SNN.
This study addresses this question and findings showed
that indeed one can find mathematically the threshold
boundary where the threshold cannot go beyond the
boundary. The suitable threshold must be found within
this range and based on thus study the average value 1s
recommended as it’s almost the same as proposed by
Pham et al. (2007) and Pham and Sahran (2006).

This study presents two main concepts. The first
concept 18 to find out the threshold boundary and select
a suitable threshold value within this range, using a
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mathematical model. The threshold depends on the
relation between the spike time and its boundary. The
second concept is to outline the input time window
boundary. The range of the input time window 1s required
to specify the spike time boundary. The spike time
boundary 1s, in turmm, required to find the threshold
boundary. The different resulted issues are discussed
when selecting the input time window range, with regard
to the computational cost. The latter was used at the
former. Two SNN learming algorithm S LVQ (for
classification application) and SOWA SNN  (for
clustering application) have been selected to apply the
method to find out the threshoeld boundary.

How may the correct threshold value for the SNN be
assigned? What may the threshold value actually be?
From the threshold boundary the suitable threshold value
may be assigned from that range. Further studies on
selection of the correct threshold needs to be done in the
future.

This work studies two models for learning in
temporal coding SNNs to find out the threshold
boundary. The first one has been applied for classification
application and the second one for clustering application.
The main purpose 1s to find the threshold boundary as in
Eq. 1:

Bel6,,.. 6,.] (N

MATERIALS AND METHODS

Time window parameter boundary: The time window (tw)
plays a significant role m the SNN performance
(Pham et al., 2007). Usually the time window boundary is
assigned experimentally tw, e[tw_, .. tw__ ]to get the
best result with no guidelines on how to select it and what
the effects by selecting it on the computation cost of SNN
learning,.

The 1ssue here 1s to assign the right value for the (tw)
parameter depending on the other parameters at the
pre-processing stage. It 1s suggested to observe the value
for (tw) from the Spike Time parameter (st) which passed
to the spike response function £(st). The Spike Response
Function (SRF) is basically a generalized lealky-integrate-
and-fire model. This describes the biophysical
mechanisms of the neuwron mainly by means of its
membrane potential. In addition, this model gives much
importance to the time lap talken from the last firing event.
The model describes the state of a neuron j at time t by
the sate variable u(t) (Maass and Bishop, 2001). So the
spike time 1s assigned as appear in Eq. 2:

st = tw-(mput+delay); (st=0)=

tw-(inputtdelay ) > 0=tw > (input-+delay) (2)
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The following Hq. 3 and 4 depend on Eq. 2 to specify
the boundary for twe[tw,, tw,..| where, inpute[te,,, te.]
and Delaye[d,.. d..]. where, tw_, and tw_, refereed to
the minimum and maximum value of time window
respectively which specified here, d,;, and d__, refereed to
the mimmum and maximum value of delay, tc, and tc,,,
refereed to the minimum and maximum value of temporal
coding, respectively:

twrmn = tcrmn+dmm (3)

W, = to o td . (4
Assigmung the value for tw plays a sigmificant role in
the SNN performance, experimental assigning will cause
the SNN to face different problems:
If W, oy <tW,,, then any neuron at the hidden or
output layer will not allow to be activated at the
range (tW;, o, tWoi,) as (st<0) for all neurons within
this range and that will affect the SNN performance.
This increases the network computational cost
without any benefit
If tw

min exp

>tw,,, then some of the neurons at the
hidden or output layers will not get the chance to be
activated within the range (tw,,,.. tW,,, .,) as (st) could
be greater than zero within this range for some
neurons and that will affect the SNN performance
AW,
output layers will always be activated within the
range (tW., W) as (st>0) for all the neurons
within this range and that will increase the
computational cost of SNN learming

If tw,,.,<tw,. then some of the neurons at the
hidden or output layers will not get the chance to be
activated within the range (tw, W) as (st)
could be greater than zero within this range and that

will affect the SNN performance

>tw, . then all the neurons at the hidden or

ax exp>

By outlining the mput time window boundary, the
number of free parameters which used to be assigned
experimentally decreased by one, as the time window
would be assigned depends on the delay and the time
coding parameters which assigned by the experimenter at
the preprocessing stage.

Spike time boundary: QOutlining the time window shows
that the (tw) parameter should be in the range (tw ., tW,..)
as outlined in Eq. 3 and 4. The (tw) boundary depends on
the temporal coding and delay parameters and from those
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functions the spike time ste[st,,, st..] 18 defined on a
closed interval and could be specified depending on
Eq. 2 as follows:

Stmin = twnnn_twmin =0 (5)

Stx'nax - twmax_twnnn (6)

The Eq. 5 and 6 define the st_;, and st, ., respectively;
this will help to find out the threshold boundary as (st) 1s
defined on closed mterval; as will come in the rest of this
study.

Threshold boundary for classification application
(S_LVQ): The network architecture for spiking learning
vector quantization (S _LVQ) (Pham and Sahran, 2006)
consists of three layers (Input, Hidden and Output), is a
feed-forward networlk, is fully connected between input
layer and hidden layer, has multiple delayed synaptic
terminals and 1s partially connected between hidden and
output layer as shown mn Fig. 1. The comnnection is
characterized by weight and delay value. The details of
thus network, which have been used by (Pham and Sahran,
2006) for control chart datasets, are as follows: Ny, = 60,
MNiiggen = 24, Ny = 6 and N, = 16 where N, refers to the
number of input neurons, Ny, refers to the number of
hidden neurons, N, refers to the number of the output
neurons and N_, refers to the number of the sub
connection.

At the hidden layer each neuron receives (N,,,) input
from the mput layer and consists of (N,) as each
synapse between mput layer and hidden layer consists of
(N,,,) connections. This means each neuron at the hidden
layer receives (N, N} input at a time. The synapse
potential for each sub-connection could be calculated by
Eq 7:

st = tw — (Input + Delay ); (st = 0)

Py = E(st, ) *wght ; . . (7)
Po: Synapse Potential For Each SubConnection

At the hidden layer the minimum or maximum value
any neuron could have is the minimum or maximum
threshold value that could be assigned to the S L.VQ,
respectively; the Eq. 8 and 9 define the 6, and 0,
respectively:

Moag Nagra / Nag
B = N * 11\,11}(111 [21: s(stl)J *weht (8)
Hagee W igra, (M
— * * 9
0, = N Mg [; e(st, )} wght_ 9
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Fig. 1: Spiking learmng vector quantization (S_LV(Q) architecture. Redrawn from Pham and Sahran, (2006)

éSet N,,; Spike Response Function e(st)
E?Spi keTimeMax=stm; DelayInterval=di
fori=1toi<N,,
for j=1to(Ng,-i)
If ((stm+ i) >0)
calculate sum of e(st;)
end if
end for
for k=1to(i-1)
if ((stm+k.di ) <twindow)
calculate sum of e(st;)
end if
end for
end for
Find Min & Max e(st;)

Fig. 2: Pseudo code for calculating the maximum and
mimmum £(st) for a hidden neuron received from
one input in spiking learning vector quantization
(S LVQ)

The value of:

Moz ’_Nrm
Min
=L k=1

£

i=1

and:

Hosgaz - M igu
Max

=1 k=L pry

[szi g(st,)

)

1s calculated by applying the following pseudo code as
shown in Fig. 2.

The value of N, N,, and the weight boundary
[wght ;.. wght,..] are known. The boundary of e(st) needs
to be found. The absolute mmimum and maximum value
for the e(st) function could always be found
mathematically; as the Spike Time (st) parameter is defined
on a closed interval as showed in Eq. 5 and 6. The (st) 1s

defined by Eq. 10
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Inpute(0,100) as taken in S_LVQ
Delay=(10,160) as taken in S_LVQ
twe(10,260) as ontlined (Eq.3&4)
ste(0,250) as specified(Eq.5&6)

(10)

st = tw — (Input + Delay);

The spike response function &(st) function which has
been proposed by Pham and Sahran (2006) is described
by Eq. 11 where a 1s time constant membrane and b 1s time
constant for synapse and 1s graphically described as in

Fig. 3a.

In this model ste(0, 250), 1.e., the function 1s defined
on a closed interval and the absolute minimum and
maximum value could be derived within this interval as in
the following steps:

1+t

_e = c=—1 ,a=b (11)
L2
b

1 Lt
g(st)=| — [e b
)

b

Step 1: Compute e(st)":

lrst

b

et
+—e ?

s(st)' = c.{—%e_ (12)

)

Step 2: Find the critical points of e(st) in (0, 250) as
follows:

g(st) =0 ast:(a.b).[WJ—l (13)

The value of (st} will be the same whether a>b or
a<b.The abselute mimmum and maximum of £(st) does not
depend on the value of time input window(tw), time
coding (Tnput) or delay; thus 8, and 6, doesn’t depend
on them too. Its mimmum and maximum value depends
only on the value of a time constant for membrane (a) and
time constant for synapse (b).
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Fig. 3(a-b). Spike response function (a) For spiking
learning vector quantization (5 TVQ). As
proposed in Pham and Sahran (2006) and (b)
For self-organizing weight adaptation spiking
neural network (SOWA SNN). As taken in
Pham et al. (2007)

Step 3: Calculate the value of e(st) at the critical point;

where (a = 120, b = 20) as 1t has been taken by

Pham and Sahran (2006)

Atst=42-¢(42) = 0.116.

Step 4: The absolute minimum and maximum value is
(0.008) and (0.116), respectively on (0, 250) and
the boundary for e(st) 15 as in Eq. 14:

e€[e,,, 8] = [0.008, 0.116] (14)

Step 5: By applymg the Pseudo Code mn Fig. 2 using
MATLAB to calculate the mimmum and
maximum &(st) for a hidden neuron received from
one input in S T.VQ and then find out the 6,

and 6, as in BEq. 15 and 16, respectively:

%7

A

Threshpld boundary at st

704

Threshold Avg2

T Threshold
30 Avgl

Threshold boundary
S~
(=}

0 50 100 150 200 250

Threshold
boundary at st

Threshold Avg2

Threshold
Avgl *

Threshold
o

0 5 10 15 20 25 30
Spike time

Fig. 4(a-b): The relation between threshold boundary and
the spike time (a) In spike learning vector
quantization (S LVQ) and (by In
self-organizing weight adaptation spiking
neural network (SOWA_SNN)

Howp

Max, s [Z s(st])] =1.3876 >0, =60*1.3876%1=83.2583

(15)

Mo
Minji‘;j‘;‘:;”m[ e(st, )J =04297 >0 __ =60*04297*0 =0
(16)

Here the threshold boundary in S LVQ is 6¢€[0,
83.2583]. Figure 4a shows the relation between the
threshold boundary and the spike time.

Hence, the initial and suitable threshold value will be
within this range. Eq. 17 and 19 are the equations
suggested to calculate the suitable threshold:

Mg, Mg,

Max > s(st )+ Min > e(st )

e =N s i=1 ! i=1 !
awgl input 2

*wght =272595

(17)
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Where:
welt,_, = weht,  +weht (18)
2
Or:
0. +0
g —omntCas 4162015 (19)
avg? 2

Compared the 6 value which has been used by Pham
and Sahran (2006) firstly with the 0, both are very
closed and that supports that equation is the suitable
formula to get the suitable threshold in this case and
secondly with the 6,,, which its value is far away from
the one the (Pham and Sahran, 2006) used.

Threshold boundary for
(SOWA_SNN): The
self-~orgamzing weight adaptation spiking neural network
(SOWA_SNN) (Pham et al., 2007) consists of two layers
(Tnput and Output) and is fully connected between input
layer and output layer as shown in Fig. 5. The details of
thus network, which have been used by Pham et af. (2007),
are as follows: N, = 60 and N, = 64, where N, refers
to the number of input neurons and N, refers to the
number of the output neurons.

At the output layer each neuron receives (N, from
the mput layer. This means each neuron at the output
layer receives (N,,) input at a time. The synapse
potential for each connection could be calculated by
Eq 20

clustering application

network architecture  for

st = tw — (Input + Delay); (st = 0)

P, = &(st,) *wght;; , ;
p,: Synapse Potential For Each Connection

(20)

At the output layer the minimum and maximum value
any neuron could have 1s the mmimum and maximum
threshold the SNN could be assigned respectively. The
Eq. 21 and 22 define the 8_;, and 6, consequently:

Mlygpn Noges
Ora =N = M (o(68)) *vightye @b
. el
O = Nog * My (s(st))*vwight, (22

The value of N, and the weight boundary [wght,,..
wght,..] are known. The boundary of £(st) needs to be
found, the abselute minimum and maximum value for the
£(st) function could always be found mathematically; as
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Fig. 5: Self-orgamizing weight adaptation spiking neural
network (SOWA SNN) architecture. Redrawn
from Pham et al. (2007)

the Spike Time (st) parameter is defined on a closed
interval as shown in Eq. 5 and 6. The (st) is equal to the
time constant for excitatory spike response function as
defined m Eq. 23:

Inpute(0,30) as taken in SOWA_ SNN
Delay=0 as taken in SOWA SNN
twe(0,30) as outlined (Eq.3 &4)
st(0,30) as specified (Eq.5&6)
(23)

st =tw — (Input + Delay);

The spike response function e(st) which has been
used by Pham ef al. (2007) 15 given by Eq. 24 for
clustering application and is graphically described as in
Fig. 3b:

(24)

st 1—
gst)=—e °
a

Inthis model ste(0, 30), 1.e., the function is defined on
a closed interval and the absolute minimum and maximum

value could be derived within this interval as the
following steps:
Step 1: Derivation of (st)

s:(st)'=l (25)

st

sty 1=

.[1——}.& s
a a

Step 2: Find out the critical points of €(st) in (0, 30) as
follows:

e(st) =0—st=a (26)

The absclute mimmum and maximum of e(st) does
not depend on the value of time (tw), time coding (Input)
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or delay (Delay). Tt depends only on the value of the time
constant for excitatory spike response function (a). This
finding shows that the 6., and 6, value is not affected
by them too.

Step 3: Calculate the value of e(st) at the critical point
where (a =35) as it has been taken by
Pham et al. (2007)

Atst=35-e(35) = 1.

Step 4: The absolute minimum and maximum value of
e(st) is (0) and (0.98877), respectively on (0, 30),
then the range for £(st) 1s as in Eq. 27:
e€[€, €] = [0, 0.98877] 27
Step 5: By applying Eq. 21 and 22 to calculate the sum
of e(st) for one output neuron:
0.5, = 60*0*¥0.3 =0 (28)
B0, = 60%0.9887%0.5 = 29.6631 (29

Then, the threshold boundary in SOWA SNN is
B¢e[0, 29.6631]. Figure 4b shows the relation between the
threshold boundary and a spike time.

Hence, the initial and suitable threshold value will be
within this range. Equation 30 and 32 are the equations
suggested to calculate the suitable threshold:

M Mg e Minp
Min (e(st)+ Max (e(st))

0, = Ny " > = *wght,, =11.86524
(30)

Where:
weht = weht, , +wght, (€]D)]

e
2
0, = 2wt Ouin 1 53155 (32)
2

Compared the 8 value which has been used by
Pham et al. (2007) firstly with the 6,,,,, both are very
closed and that supports that Eq. 32 is the suitable
equation to get the suitable threshold in this case and
secondly with the 8, which its value is far away from
the one (Pham et al., 2007) used.

RESULTS AND DESCUSSION

This study outlines the input time window boundary
which leads to specify the spike time boundary. With
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regard to the input time window, it is found that
specification beyond the parameter boundary affects on
the computational network cost and performance and
found that the delay and the time coding parameters play
a significant role in assigning the time window boundary.
By outlining the input time window boundary, the number
of free parameters which used to hbe assigned
experimentally decreased by one, as the tine window
would be assigned depends only on the delay and the
time coding parameters which assigned by the
experimenter. Many SNN learning algorithms have been
proposed for supervised and unsupervised learning
(Bohte et al, 2002a, b; Xin and Embrechts, 2001,
Pham and Sahran, 2006, Ruf and Schmitt, 1997,
Sporea and Gruning, 2012; Natschlager and Ruf, 1998;
Pham et al., 2007). However, to the best of the author
knowledge, this is the first time where a clear discussion
on outlining input time window parameter has given.

Specifying the spike time range help to determine the
threshold boundary. The results show that the threshold
parameter boundary could be found for learning in
temporal coding SNN for classification (3 _LVQ)
(Pham and Sahran, 2006) and clustering (SOWA_SNN)
(Pham et al., 2007) applications and suggest two formulas
for assigning the suitable threshold for each one and
compare the threshold value in the original learning
algorithm with the suggested one. Results prove that the
suitable threshold for §_LVQ 15 0, as the experimental
threshold value assigned by Pham and Sahran (2006)
is closed to the 8, value suggested in the Eq. 17 and
the suitable threshold value for SOWA SNNis 6,
as the experimental threshold value assigned by
Pham ef al. (2007) 1s closed to the 0,,,, value suggested in
the Eq. 32. In this study, one part of the question have
been solved, the threshold boundary can be find
mathematically where the threshold cannot go beyond it
and then select the suitable threshold within this range.
How to select suitable threshold within this range remain
an open question and needs to be analyzed more on this
1ssue 1 the future, to see if the suitable threshold could
be determined depends on some other parameters.

CONCLUSION

Tt was concluded and proved that the 6, and 6,
value does not depend on the value of the time mnput
window (tw), time coding (Input) or delay (delay). It rather
depends on the value of time constant for membrane (tce),
the value of time constant for synapse (tot), Nope Nuggen
Now and N in S_LVQ learning algorithm which has
been proposed by Pham and Sahran (2006) and on the
value of the time constant for excitatory spike response
function (a), N, and N, in SOWA_SNN learning
algorithm which has been proposed by Pham et al. (2007).
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