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Abstract: Community detection has been a research topic in the complex network area. The global information
of the whole networl, which is required by the traditional community detection algorithms, is hard to get when
the scale of the network grows. The study presents a novel algorithm for detecting local community structure
based on hybrid centrality. After identifying the network nodes with hybrid centrality, our algorithin can detect
local community structure starting from some important nedes. In addition, to better understand the algorithm,
a subsequent processing is continued. The present algorithm is applied to some simple examples, including
computer-generated and real-world networks. And the experimental results are analyzed by comparing with

other traditional algorithms.

Key words: Community, community structure, hybrid centrality, novel algorithm

INTRODUCTION

In last few years, the networks have found use n
many fields as a powerful tool for representing the
structure of complex systems. Data from many network
datasets, mcluding the Internet and the World Wide Web
i computer and information sciences, 1s a graph where
nodes represent individuals and edges represent the
relationship and interactions among individuals. Tn the
graphs, it 1s important to be able to group the nodes mto
what 18 commonly known as communities. The problem of
community detecting in these networks represents one of
the most challenging and promising perspectives to
approach, characterize and understand the general
structures.

The last years have seen an increase in the number of
techniques proposed to detect communities. However,
each of these techniques requires knowledge of the entire
structure of the graph, as we will discuss in related work.
This constraint is problematic for complex networks,
which for all practical purposes is too large and too
dynamic to ever be known fully, or the networks which are
larger than can be accommodated by the fastest
algorithms. Here, a general measure of local community
structure based on hybrid centrality was proposed, for
networks i which we lack global knowledge. The
proposed hybrid methed, which leverages degree
centrality and cohesion centrality, can detect important
nodes in the network. The proposed algorithm requires

only the local network information related to the target
node and 1s faster compared to the traditional commumty
detecting algorithm. Moreover, the proposed algorithm is
also applicable for global community structure detecting.

A community could be loosely described as a
collection of nodes within a graph that are densely
connected among them while being loosely connected to
the rest of the graph (Wasserman and Faust, 1994a;
Flake ez al., 2002, Radicchi et al., 2004). Many networks
exhibit such a community structure and this motivates the
present study. Traditional techniques for commumty
detection tend to consider the global topology of
networks, which aim to group nodes of networks mnto a
number of disjoint sets. Typically, the techniques aim to
optimize a criterion defined over networks partition rather
than over one group. The recent and highly successful
algorithms, such as spectral clustering (Von Luxburg,
2007) and Modularity clustering (Newman, 2006a), perform
well within a variety of networks.

However, a common weakness in these studies is
that the computation of measurements may be expensive.
More importantly, while these algorithms have shown to
be a useful quantity for detecting commumty structure,
the global information of the whole network, which is
required, is hard to get when the scale of the network
grows. For large-scale networks, efficient algorithms of
commumty detection are critical and require further
research. This explains the increasing interest in detecting
local community structure rather than global community
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structure. Costa (2004) presents a hub-based approach to
community finding in complex networks. After identifying
the network nodes with highest degree (the so-called
hubs), the network is grouped from the hubs, accounting
for the identification of the mvolved communities. It 1s
worthy noting that the number of communities detected
is arbitrarily pre-assigned. Clauset (2005) proposed a fast
agglomerative algorithm (the so-called local modularity)
that maximizes the local modularity in a greedy fashion.
This algorithm is costly to compute O(k’d) for general
graphs when d 1s the mean degree and k 1s the number of
nodes to be explored. Bagrow and Bollt (2005) put forward
the algorithm works by l-shell spreading outward from a
starting vertex and computing the change in total
emerging degree to some threshold. The algorithm tends
to join an overall l-shell to the community, or excludes the
overall 1-shell outside the commumty, which shows not
perfect.

In spite of these limitations, we would like to make
quantitative statements about local commumty structure.
For instance we might like to quantify the role of nodes in
networks and the relations of important nodes are also
analyzed in detail.

ALGORITHM

As emphasized by the several investigations
targeting complex networks, some important nodes play
determimantal role in defining the connectivity patterns.
Therefore, the consideration of important nodes as
starting points for community detection represents a
particular promising perspective from which to approach
the community detection. Centrality analysis provides
answers with measures that define the importance of
nodes. There are many classical and commonly used
methods: Degree  centrality,  closeness centrality,
between  centrality and eigenvector centrality
(Wasserman and Faust, 1994b). These centrality measures
capture the importance of nodes in different perspectives.
However, with large-scale networks, the computation of
centrality measures would be expensive except for degree
centrality.

We propose a simple and powerful local community
detection algorithm. Some important nodes are first found
according to their degree centrality and cohesion
centrality and then started from important nodes an
alternative breadth-first search i1s conducted to get the
local community structure of the nodes.

The proposed algorithm is described roughly as
follows:

¢ Select some important nodes
*  Detect local commurmty structure starting from some
important nodes

In addition, to better understand the algorithm, a
subsequent processing 1s continued.

Notations: The study focus on a simplest form of
networks, i.e., undirected networks with boolean edge
weights. The notations that will be used frequently
throughout the study are summarized in Table 1.

Selecting important nodes: For degree centrality, the
importance of a node 1s determined by the number of
nodes adjacent to it. The larger the degree of one node,
the more umportant the node 1s. Node degrees in most
networks follow a power law distribution, i.e., a very small
number of nodes have an extremely large number of
connections. Those high-degree nodes naturally have
more impact to reach a large population than the
remaining nodes within the same network. Moreover,
degree centrality, as one of the most simple centrality
measurement, requires not much computation, which
shows more suitable to large-scaled networks. However,
degree centrality is inefficient under such scenarios, i.e.,
some 1mportant nodes don’t have high degree centrality.

In Fig. 1, the network represents the extreme
fulfillment of the idea of a community. Each commumty
has the maximum number of internal links possible
while having close to the minimum number of external
links. Tn addition, the network contains single node (i.e.,
node 6) situated between the communities. If we use
degree centrality as the measurement, node 6 has

Table 1: Natations

Symbol Meaning

v Set of nodes in the network

E Set of edges in the network

n No. of nodes (n =[V])

m No. of edges (m = |E)

v A node v

e(v, t) An edge between nodes v and t

N, Neighborhood (i.e., neighboring nodes) of node v
d, Degree of node v (d, =[N,

e, No. of edges between v and its neighbors

ND 0
a0
'e."e"g"

Fig. 1: A simple network of 10 nodes and 14 edges. The
network can be grouped into three commumties:
{1,2,3, 4,5}, {7,8,9,10} and {6}. Node 61s a
single node, which joints the two communities
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the same degree with node 9 and their degree is 2.
However, node 6 plays a more important role actually,
because 1t 15 on the boundary of two different
commurties.

The non-homogenous topology of complex networks
determines that the importance of nodes is different. The
mnportance of the nodes primarily depends on their
position in the networks. For example, “Peripheral nodes”
and “Non-peripheral nodes” have different importance
obviously, which can be seen from Fig. 1, i.e., node 1 as
the peripheral node would not have the same important
role as other non-peripheral nodes. Similarly, “Central
nodes” and “Non-central-nodes™ are clearly different from
the degree of importance. Secondly, the importance of the
nodes depends on their role in the network. As we can
see from Fig. 1, although node 6 and 9 have the equal
degree, node 6 joints the two communities which means
that the deletion of node 6 will make more affect than the
deletion of node 9. In other words, we can see that node
6 1s more important than node 9 from the 1dea of role. Thus
when we select important nodes, the role of nodes should
be considered. But how should we measure the role of the
nods? Here, we use the defimition of cohesion centrality
to measure the role of the nodes.

Let us first define the following normalized degree
centrality:

Cp(v) = dfn-1) (1)

Then, the definition of cohesion centrality was given
to describe the role of the nodes. From Fig. 1, it 1s
observed that the role of the nodes 1s determined by the
number of neighbors, i.e., if the node has more neighbors,
then the deletion of the node will make less affect to the
network. Therefore, we consider that cohesion centrality
should tend to reflect the local connection property of the
node. It follows from the following equation:

¢, = 280 (2)

i

Obviously, the span of e, 1s between 0 and d.(d,-1)/2.
Therefore, the value of C_(v) satisfies the conditions:

Cv)=1 3

We find that the larger cohesion centrality of one
node, the more important the node is. This is because the
deletion of the node with larger values will make more
affection on the network. Therefore, the cohesion
centrality 13 the positive evaluation measurement for the
node.

As we have described, the importance of the nodes
depends on their position as well as their role in the
network. We define a new hybrid centrality, which uses
degree centrality as the measurement of the former and
cohesion centrality as the measurement of the latter. Let

us define a parameter ¢ to integrate the two
measurements:
TImportance(v) = ¢.Cp(v)H1-¢).C(¥) (4

where, « satisfies O<ge<].

The algorithm of selecting inportant nodes 1s based
on a single parameter ¢z, which controls the tendency of
computation. When ¢ = 0, the role of node v is only
considered. As ¢ increases in size, the algorithm will tend
to consider the position of node v until @ = 1. How to
determine the parameter ¢ is beyond the scope of this
srudy. To simply the experiments, we set ¢ as 0.5 in the
following example.

Detecting local community structure: If we consider
some nodes to constitute a local community, the simplest
measure of the quality of such a grouping of the network
15 simply the fraction of known adjacencies that are
neighbors of the node. For selected node v, the relation of
it and its neighbor t can be defined to satisfy following
three conditions:

s TIfthe degree of t is smaller than the degree of v and
the degrees of other t's neighbors are smaller than
the degree of v, then v 1s considered as the most
mmportant node tot, 1.e., t 1s merged to the commumty
of v

»  If the degree of t 1s larger than the degree of v and
the degrees of other v’s neighbors are smaller than
the degree of t, then t i1s considered as the most
important node to v, ie, v is merged to the
community of t

+ Ifabove two conditions are not satisfied, then v and
tare not in the same community

Suppose that in the network, we have  perfect
knowledge of the connectivity of some set of nodes, 1.e.,
the most important node v has been selected according to
Eq. 4, which we denote as community c. This necessarily
implies the existence of a set of nodes u about which we
know only their adjacent to ¢. Further, let us assume that
the only way we may gain additional knowledge about the
network is visiting some neighboring node v;eu, which
yields a list of its adjacencies. We place the neighboring
nodes in the commumnities, v, = ¢,. Then, we can define
whether node v, belongs to community ¢, through
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comparing the degree of node v and node v, according
to above conditions. At each step, the algorithm updates
the starting node when some conditions are satisfied. The
process continues until the whole community 1s
discovered.

The algorithm is agglomerative indeed, which
maximizes the degree of nodes in a greed fashion. The
algorithm only takes time polynomial in n and that infers
local community structure by using the node-at-a-time
discovery process which is directly analogous to the
manner m which spider program harvests the hyperlink
structure of the Internet.

Algonithm 1 is presented for more exact pseudocode.

Algorithm 1: Local algorithm to detenmine a starting node’s community
Add v to ¢//v is the starting node
Add all neighbors of v to u
Addvieuto ¢
while u=d do
for each vicu do
if d,<d, and dy,<d,
add vito ¢
update v/iv-v;
if ds<d, and dyw,<d;
add v to ¢//c; is the community of v,
update v/fv-v;
end for
end while

Some improvement: In Fig. 1, node 5 18 one of the most
umportant nodes according to Eq. 4, which can be seen as
the starting node of Algorithm 1. Tnitially, we place node
5 in the community, {5} = ¢ and place its neighbors in u,
{2, 3, 4, 6} = u. At each step, the algorithm adds to ¢ the
neighboring node that results in the largest increase m c.
After node 2, node 3 and 4 are merged into ¢, node 6 is
analyzed as follows: The degree of node 6 is smaller than
the degree of node 5 and the degrees of other node 6’s
neighbors are smaller than the degree of node 5, thus
node 6 should be merged into ¢. The analogous steps
continue, which results in the network only has one
commumity, 1.e., §1,2, 3,4, 5,6, 7, 8, 9, 10}. However, this
1s not our desirable result because the network should
be grouped into three communities, i.e., {1, 2, 3, 4, 5},
{7,8,9,10% and {6}.

What results m such undesirable result? Since
Algorithm 1 tends to merge the important nodes from
different communities into one community. Algorithm 1
works in a greed fashion, which seems lack of reason. In
case 1t 13 desired to merge important nodes, which is
an application-dependent decision, the followmng
post-processing can be performed. Before merging the
neighboring node v; into ¢, we should add one new step,
1e., judging whether node v, shares most mutual
neighbors with node v. In case the number of mutual
neighbors is larger than a pre-specified threshold value B,

node v; is merged into ¢. The problem of how to
automatically find the best p when there is no ground
truth 18 beyond the scope of this study. To simply the
experiments, we will set B as 0.5 in the following example
applications.

EXPERIMENTAL STUDIES

Several different networks to study the performance
of our generalized novel algorithm for detecting local
community structure were used.

An idealized network: We started with the first synthetic
dataset, which is shown as Fig. 1, to illustrate the process
of the algorithm in detail. The network contains 10 nodes
which roughly form 3 commumties: ¢, = {1, 2, 3, 4, 5},
c,={6tandc,={7,8, 9 10}

In the previous section, we have shown that
generalized local commumity detection algorithm starting
from some important nodes. Therefore, we first select the
most important node according to hybrid centrality, which
is put forward in Eq. 4. Hybrid centrality value of each
node 1s shown in Table 2.

The second column illustrates normalized degree
centrality of each node. The third column shows cohesion
centrality of each node. And the last column is hybrid
centrality value of each node.

Once we have the important value of each node, we
can select the most important nodes and hence to
find node 2 and 5 as the starting nodes, which have
the largest value 0.5824. Rankly, we selected node 2 as
the starting important node. Imtially, we placeed node 2
in the community, {2} = ¢, and placed its neighbors in
u, {1, 3, 4, 5} = u. At each step, the algorithm adds to ¢,
the neighboring node that results in the largest increase
1n ¢,. After node 1, node 3, node 4 and node 5 are merged
into ¢, node 6 is analyzed as follows. The degree of node
6 is smaller than the degree of node 5 and the degrees of
other node 6’s neighbors are smaller than the degree of
node 5. However, node 5 and node 6 don’t share any
mutual neighbors. Therefore, node 6 isn’t the member of
community ¢, and we denote node 6’s community as ¢,.

Table 2: Hybrid centrality value of each node

Node Cniv) C.(v) Tmpartance (v)
1 0.0769 0 0.0386
2 0.3077 0.8570 0.5824
3 0.2308 0.5000 0.3654
4 0.2308 0.5000 0.3654
5 0.3077 0.8571 0.5824
6 0.1538 0.5000 0.3269
7 0.2308 0.7500 0.4904
8 0.2308 0.7500 0.4904
9 0.1538 0.3333 0.2436
10 0.2308 0.6000 0.4154
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The analogous steps continue on until we get three
commumnities (1e., {1,2 3,4, 5%, {7.8,9,10% and {6%). The
result is desirable, which corresponds perfectly to the
division observed mreal life. In particular, if we start from
another important node (i.e., node 5) and we will get the
same result, which shows that our generalized algorithm
will lead to identical results when the starting nodes are
varied.

Through the experiment, we can better understand
how to mterpret the performance of our algorithm. In
addition, it is useful to note that the algorithm dose not
require any global information.

Real-world networls: The proposed algorithm performs
extremely well on idealized networks, but how does it
perform onreal-world networks? Here we first analyze the
Zachary Karate Club, which is perhaps the most famous
network in terms of community structure (Zachary, 1977).
The club suffered from infighting and eventually split in
half, providing actual evidence of the commumty
structure.

Figure 2 shows the division of this network into two
groups found using our new algorithm. All of the nodes
which are on the boundary of the commumties are
grouped correctly. All in all, we get identical results which
correspond perfectly to the division observed in real life.

But the algorithm reveals much more about the
network than this. Now we draw attention to the runtime
of the algorithm and we find some good performance
characteristics. We compare our algorithm with some
baseline algorithms (i.e., betweenness partitioning
(Newman and Girvan, 2004) and eigenvector partitioning
(Newman, 2006b). Under the same computing
environment, the time of our algorithm need only 0.01 sec,

L {7
Ol(g)\ |:| 11 9 17

97 ‘——. »A\ - -
\ \
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Fig. 2: Zachary Karate Club. The different shapes indicate
the membership of the two clusters

which is similar with baseline algorithms. However, how
does our algorithm perform on large-scaled networles?
Here we analyze the
Danon, 2003), which 1s another famous network in
community detection. The Jazz network is more complex
than the Zachary Karate Club, which contains 198 nodes
and 2742 edges. The nmtime of our algorithm 1s much less
than any other baseline algorithms. Our algorithm needs
only 0.03 second, while two baseline algorithms need
35.6]1 and 0.45 sec, respectively. This is because our
algorithm works n a greedy fashion and the algorithm
only takes time polynomial inn.

Tazz network (Gleiser and

CONCLUSION

Commumty detection 15 a challenging research
problem with broad applications. In this study we have
described a general measure of local community structure
based on hybrid centrality. We first select some important
nodes according to hybrid centrality, which leverages
degree centrality and cohesion centrality. Then we detect
local community structure starting from the important
nodes by using some strategies. The strategies can detect
local commumnity structure by determimng the relations of
some node and its neighbors. Tn addition, to better the
algorithm, a subsequent processing is continued We
have demonstrated the method with applications to some
simple examples,
real-world networks.

mcluding  computer-generated and
The method’s strength is its
efficiency which leads to nearly identical results and less
runtime compared to some baseline algorithms.
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