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Abstract: Scattering sensitivity of guided wave in composite laminate with multiple delaminations by

considering viscoelasticity as material damping 1s studied in the study. A semi-analytical finite element method

15 utilized to model guided wave propagation in composite laminates and the viscoelasticity 1s modeled by using
complex stiffness matrix. Expression of S-parameter is introduced to describe the sensitivity of guided wave

interaction with multiple delaminations by considering attenuation of amplitude along the propagation direction

and sensitivities of first several mode are illustrated. The results could provide useful information for the

selecting of more effective guided wave modes for damage detection in composite laminates.

Key words: Guided wave, composite, multiple delaminations, semi-analytical finite element method, scattering

sensitivity

INTRODUCTION

Laminated composite plate-like structure has been
mncreasing used m aircraft and aerospace industries due
to their light weight and high strength. The failure of
laminated composites under static or dynamic loadings
could be mamly due to matrix cracking or delamination.
Delamination may causes stiffness reduction and lead to
the catastrophic failure of the structure which bemng the
more severe of the two. The inspection of delamination is
unportant to evaluate the reliability of the laminated
composites. Even invisible delaminations could severely
degrade the mechanical properties and loading capability
of the laminas.

Lamb guided wave based method 1s very promising
for structural health momtoring of composite materials
which provide larger monitoring ranges, complete
coverage of the waveguide cross-section, highly efficient
and mcreased sensitivity to small defects. The problems
of using Lamb waves are the infinite number of different
modes that can propagation and all of the modes are
dispersive. The basic factors for the selecting of Lamb
wave mode and frequency may be enumerated as
follows: (1) Dispersion; (2) Attenuation; (3) Sensitivity;
(4) Excitability; (5) Detectability, (6) Selectivity
(Wilcox et al., 2001).

Dispersion properties are important for mode
identification and the knowledge of the mode attenuation
helps maximizing the inspection range by exploiting
modes associates to mimmurm attenuation. In the context

of Lamb wave testing, attenuation may be defined as the
reduction in signal amplitude with propagation distance.
In most long range detection, the area of a structure which
can be detected will be determined by the coefficients of
attenuation of the chosen mode. Hence, the choosing of
one effectively Lamb mode with lowest attenuation is
considerable importance.

A Semi-analytical Finite Element (SAFE) method is
utilized mn the study to describe the Lamb wave
propagation displacement field by coupling a finite
element discretization of the waveguide cross-section
with harmonic exponential functions along the wave
propagation direction. Compared to other approaches, the
SAFE method features: (1) Allows reducing of one order
the numerical dimension of the problem; (2) Presents a
wider spectrum of applicability; (3) Convement for
modeling waveguide with a large number of layers, e.g.,
composite laminates. Bartoli e al. (2006) applied SAFE
method for modeling wave propagation in waveguides of
arbitrary cross-section by accounting for material
damping, including isotropic plates, anisotropic
viscoelastic composite laminates, composite-to-composite
adhesive joints and railroad tracks. Hayashi et al
(2005) discussed guided wave dispersion curves for a
bar with arbitrary cross-section through theoretical
analysis and experimental testing of rail Hayashi and
Kawashima (2002) calculated the wave propagation in
laminated plates with delaminations using the SAFE
method and found that the reflections at delaminations
occur not at the “Entrance” of delamination but at the
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“Exit”. Matt et al. (2005) investigated composite-to-
composite joints representative of the wing skin-to-spar
bonds of unmarmed aerial vehicles by ultrasomic guided
waves. Marzani et «al (2008) analyzed the wave
propagation in viscoelastic axisymmetric waveguides by
SAFE method. Shorter (2004) developed spectral finite
element method and calculated the dispersion properties
of wave propagation in linear viscoelastic laminates. Galan
and Abascal (2005) studied bidimensional scattering
problems of guided waves in laminated plates through the
boundary element method in the frequency domain. Riccio
and Tessitore (2005) analyzed the impact induced
delamination n stiffened composite panels using an
approach based on a threshold critical impact force.
Yan and Yam (2004) studied damage detection of local and
tiny delamination in a laminated composite plate using
plezoelectric patches embedded in composite plate.
Castaings and Hosten (2003) studied Lamb waves
propagation m sandwich plates made of amsotropic and
viscoelastic material layer by a semi-analytical model.
Guo and Cawley (1993) discussed the interaction of the
3, Lamb mode with delamiantions in composite laminates
by finite element analysis and experiment.

The present study vestigated the sensitivity of
different Lamb mode waves interaction with multiple
delaminations in composite laminates by considering of
matenial viscoelasticity. The Semi-analytical Finite Element
(SAFE) method 1s utilized for modeling Lamb wave
propagation in composite laminates and the material
viscoelasticity is introduced by allowing complex stiffness
matrix. The results indicated the degree of attenuation of
the first several modes and provided more effective way
of delamination detection application n composite
laminates.

VISCOELASTIC MODELS

Wave propagation in linear viscoelastic media can be
modeled by substituting complex components in the
material stiffness matrix. The real part corresponds to the
energy storage in wave propagation and the imaginary
part corresponds to the damping introduced by the
material viscoelasticity:

C=CHac (D
where, C' contains the storage moduli and C" contamns the
loss moduli, both are 6 by 6 matrices.

Two models, the hysteretic model and the
Kelvin-Voigt model, are used in modeling material
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which both  well-established in
NDE. the the
complex component of the stiffness matrix C" 18
independent of frequency and in the Kelvin-Voigt model,

damping are

ultrasonic In hysteretic model,

" 1s a linear function of frequency. The measurement of
C" at a given frequency f; is provided as a 6x6 matrix 1.

These two models can be expressed as follow
(Rose, 1999):
Hysteretic model: C = C’-1n (2)
Kelvin-Voigt model:C = C'- ifin (3)

0

The hysteretic model was considered 1n the study to
represent material damping. The imaginary component of
the stiffness matrix 1s frequency independent as showed
in Eq. 2. Therefore, the hysteretic stiffness matrix has to
be determined only once for the entire frequency range
examined.

MATERIAL PROPERTY IN EACH LAMINA

In order to study Lamb wave propagation, the elastic
constants of all the layers must be expressed in the global
coordinate system (x;, X, X;). For a composite material, this
can be achieved through the rotation of the stiffness
matrix of each lamina:

C,=R,CR; (4)

where, Cq is the complex stiffness matrix in the global
direction of the laminate, C 1s the complex stiffness matrix
in the individual lamina’s principle directions, R, and R,
are the rotation matrices from the principle maternal
directions to the global laminate directions.
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©C o o = o o

(3

where ¢ = cosB and s = sinB. Here, 0 is the angle of
rotation from lamina’s principle direction to the global
direction and the value of 6 is positive when the rotation
is counterclockwise, as shown in Fig. 1.
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Fig. 1: The relationship between principle direction and
the global direction

PROBLEM STATEMENT

Assuming wave propagates along direction x, with
wave number k and frequency w. The cross section lies in
the x,-x, plane. The waveguide 1s composed of anisotropic
viscoelastic materials. Lamb wave equations of motion are
formulated by using Hamilton’s principle. And the
variation of the Hamiltonian of the wave guide which
vamish at all material ponts, 1s:

SH = [ "5 - K)dt (6)

where, @ is the strain energy and K is the kinetic energy.
The strain energy is given by:

D :lj ¢"CedV (7
2 v
where, C is complex stiffness matrix, € is stress field.
The kinetic energy is given by:
_le 8
K= Ejvu pudV (8)

where, p 1s the mass density, u 1s the displacement field.
By substituting Hq. 7 and 8 into Eq. 6, the Hamilton
formulation can be rewritten as follow:

§°[1,8te"yceav + [ su™ypuav Jat=o (9)

SAFE METHOD

A Semi-analytical Finite Element (SAFE) method
simply requires the fimte element discretization of the
cross-section of the waveguide and the displacement
along the wave propagation direction are conveniently
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described in an analytical fashion as harmonic exponential
functions, thus reducing a 3-D problem to a 2-D one
(Gao, 2006; Dong and Nelson, 1972). The general SAFE
technique is extended to account for viscoelastic material
damping by allowing for complex stiffness matrices for the
material.

The plate section is discretized in the thickness
direction x; as showed in Fig. 2, where x,,, X3, X, are
coordinates of nodes 1,2 and 3 along x, direction, by a set
of one-dimensional finite elements with quadratic shape
functions and three nodes, with three degrees of freedom
per node. The displacement vector can be approximated
over the element domain as:

e

[ 3
ZN](XE)UX,]
j=1
3
00, %, %, ) = | SN U, | @9 = N(x, )g e
1
3
2N(x U,
L J
(10)
where, Nj(x;) 13 the shape functions:
N, 0 0O N, 0 0 N, 0 0
N(x)=|0 N, 0 0 N, 0 0 N, 0
O 0 N 0 0 N, 0 0 N,
(1D
X3
% =[N, N, N,]x,, (12)
Xa3
L .
N‘ZE((: -&)
N,=(1-&% (13)
1
sz_(iz'*“:)
2
Uy, Uy U, are the unknown nodal displacements in the

X, X, X, directions:

T
U,
(14)

The strain vector in the element can be represented
as a function of the nodal displacements:

é é =l . . T, o
(&) (8} i(kz,—ot) e} il t)
¢”=|L, —+L, —+L, — |N(x et = (B, +ikB e
x151 x252 x;sj} (x5)q (By 204

(15)
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Fig. 2: SAFE model of wave propagation in composite plate

Where:
(1 0 0] [0 0 0] [0 0 0]
0 0 0 01 0 0 0 0
0 0 0 0 0 0 0 0 1
LX: LX_ LX: 2
! 0 0 0 : 0 0 1 : 01 0
0 0 1 0 0 0 1 00
0 1 0 10 0 0 0 0
B,=L,N,.B,=L,N
(16)
And:
N, =N, &
-5 o an

By considering the total elements in the thickness,
Hamuilton formulation becomes to:

f {g [ 3 eee®dv | S(u“)T)p“)u“)dV}}dt —0(17)

where, n 1s the total number of elements in the thickness
direction and each elements represented a layer in the
composite laminates in the study, ¢ and p® are the
element’s complex stiffness matrix and mass density,
respectively.

By substituting Eq. 10 and 15 into Eq. 17 with some

algebraic manipulation leads to:

[ {U 80 [k +ikkS + Kk — @'m® g }dt -0
1 e=1

(18)

v

Where:

ko= [ [olern o
k= [, [BICYB, ~BiCYB, fix,
K = [ [BICPB, Jix
= [ [N o

(19)

Applying standard finite element assembling procedures
to Eq. 18:

[7{8UT [K, +ikK, + 'K, - oM |Uldt=0  (20)

t

where, U 1s the global vector of unknown nodal
displacements:

K = LanfEJ,K2 = Okg‘”, K,= Ok(ag)M - LnJm(EJ 21)
e=l e=1 e=1

e=]

Due to the arbitrariness of 8U, the following wave
equation 1s obtained:

| K, +ikK, + k'K, —o’M [U=0 (22)

Different from the wave propagation in an elastic
media, the wave numbers k in the viscoelastic media
obtained from Eq. 22 are generally complex, the real part {
1s related to the phase velocity of the wave mode and the
imaginary part ¢ 1s related to the attenuation. So, the wave
number k can be expressed as:

k=Ctio=—4ia (23)
C

b
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For each wave number in Hq. 23, the final
displacement solution of a Lamb wave mode can be
expressed as follow:

H(Xh X5 t) _ U(X3)el(erm) _ U(Xa)el(erwt)efuxl (24)

SCATTERING SNESITIVITY

Two types of damage could occur in composite from
guided wave point of view: one is introduced by long term
environmental aging and fatigue, another type is
delamination or damage introduced by mechanical impact
appears as a discontinuity in material properties. In the
latter case, wave scattering phenomenon can be used to
detect the damage which will be discussed in this study.
There are two dispersion curves are used to describe the
guided waves in a viscoelastic medium: the phase velocity
dispersion cwrve and the attenuation dispersion curve.
Scattering sensitivity of guided Lamb wave is an
important issue in damage detection and the quantitative
analysis of Lamb wave scattering in composite plate with
delamination is difficult. Auld (1990) presented an
S-parameter method to indicate how much energy of the
incident wave is converted into reflected waves and
mode-converted transmission waves. S-parameter can be
expressed numerically as:

as=1 (25)

n LF (ves’ —v'es JefidS
where, v and ¢ are velocity and stress of the wave field in
the composite plate in absence of delamination, v’ and ¢’
are velocity and stress of the wave field in the composite
plate in presence of delamination, S; is the surface of the
delamination, fi 1s the direction normal at the surface of
the delamination. The wave field in composite plate
without delamination is considered to be the incident
wave mode. In the presence of delamiantion, the damaged
wave field can be approximated as stress free at the
surface of the delamination (0 = 0). Then, Eq. 25 is
simplified to the following:

(26)

1 f o
AS= 4IF( v'es JAidS

Equation 26 indicated that the sensitivity is related to
the stress distribution in the wave filed of the undamaged
plate, the wave velocity of the damaged field at the
boundary of the delamination and the shape of the
delamination. However, the shape of the delamination and
the wave field at the boundary of the delamination are
difficult to obtain which are also case dependent,
however, the sensitivity 18 directly related to the
distribution of stress 0 of incident wave at the position of
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the delamination from Eq. 26. In this study, the surface
normal n at the delamination is mn the x, direction.

The following estimation of sensitivity of a guided
Lamb wave mode for multiple delammations with different
propagation distances and depths with considering of
material viscoelasticity and neglecting the detailed size of
the delaminations, the sensitivity can be maximized by
stress components (0;,, 0, Oy ):

zm: ([633 (% Xa)r + [632 (ana)r + [631 (x, Xa)]z)
g4l

m
27)

where, m 1s the number of delammations, 0,,(x,, x,).
0.,(%,, x3), 0;(x,, x;) are the stress components at the
position of delaminations by considering material
viscoelasticity and their values can be calculated by
substituting the obtained displacement fields from Eq. 24
into the constitutive relations:

§ e (Xla XB:t) = CEBE)e(E)
— C(Ge) (B1 + isz)q(e)eﬂermt)
= Cl(B, +ikB,)q Pe e Y

(28)

NUMERICAL RESULTS

Quasi-isotropic composite laminates are commonly
used in aircraft structures, so a & layer quasi-isotropic
composite is studied in the study. The thickness of the
composite structure 18 0.2 mm and the average layer
thickness 15 0.2 mm. Figure 3 shows a sketch of the lay-up
sequence and the multiple delaminations in the composite.
The x, drection is n the fiber direction of the first layer,
the fiber direction of the second layer is at 6 = 457, where
6 can be found in Fig. 4. The plane wave propagation
along the x, direction 1s mdependent of x,, after rotated all
the material properties into the (x,, x,, x;) coordinate
system, phase velocity dispersion curve and
attenuation dispersion curve can be calculated. The

y

0
4
5 90
5 45
R 45
90 [m=
il

ol

A X, Wave propagation direction
—

m. (X,. X;)

)

Xy

10
m =2, (X, X;)

v

Fig. 3: The sketch of Lamb wave propagation ina
8 layers quasi-isotropic composite laminates
[(0/45/90/45)] with multiple delaminations
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Fig. 4: Phase velocity dispersion curve
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Fig. 5: Attenuation dispersion curve

density is 1600 kg cm™ (Neau et al., 2001). The viscosities
are given at 2 MHz.

The material properties of the composite plate in the
numerical simulation are shown m Table 1, Fig. 4 and 5
show the phase velocity dispersion curves and
attenuation dispersion curves obtained from
[(0/45/90/45)] laminates by considering hysteretic model.
Figure 4 shows that with the mcreasing of frequency, the
phase velocities of first several modes are trended to
three values 133.453, 6.70315, 0.9518 km sec™'. From
Fig. 5, it can be see that the major trend of attenuation
increase with frequency but for some specific mode, the
attenuation may decrease with increase of frequency. And
the smallest attenuation can be found for a specific
mode. Because only wave propagation in x; positive
direction 1s considered, the attenuation coefficient
¢ 18 selected to be posiive due tog™ . So only
positive values of « are illustrated in Fig. 5.

Figure 6-8 show sensitivity of first several modes for
wave propagating i O° direction of the laminates. In

Wave propagation directi on.

@ P
ThezZad—]
TheTs—
1.0
(b)
08 | _
2 06 |
>
3
c
3 04
02 |
0.0 - e L
0 5 10 15 20

Frequency (kHz)

Fig. 6(a-b). Sensitivity of different modes to two
delaminations (the first between layer 2 and
layer 3 the second between layer 5 and
layer 6) (a) Location of two delamination and
(b) sensitivity curve

Wave propagation direction

@
— FheZpe— |
hm:
10 T - T
(b)
08 |
2 06
>
B
8 oal
02 L
0.0 = i N —
0 5 10 15 20

Frequency (kHz)

Fig. 7(a-b): Sensitivity of different modes to three
delaminations (the first between layer 2
and layer 3 the second between layer 5 and
layer 6 the third between layer 3 and layer 4)
(a) Location of three delamination and
(b) Sensitivity curve

these cases, the delaminations are located atthe first
interface (between layer 2 and layer 3), the second
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Table 1: The material properties of composite plate

Elastic properties (GPa)

Cll CIZ CZZ Cl CZ C 044 < Cﬁﬁ

Viscous properties (GPa)

M1y Tz Moz it M i} Taa n s

178 835 14.4 835 812 14.4 316 610 6.10

8.23 0.65 0.34 0.6 0.25 0.65 0.24 028 0.25

v

10 15
Frequency (kHz)

20

Fig. B(a-b). Sensitivity of different modes to four
delaminations (the first between layer 2 and
layer 3; the second between layer 5 and
layer 6 the third between layer 3 and
layer 4 the fourth between layer 7 and layer g)
(a) Location of three delamination and
(b) Sensitivity curve

mterface (between layer 5 and layer 6), the third mterface

(between layer 3 and layer 4) and the fourth interface
(between layer 7 and layer ). The first delamination is
assumed located at the origin of the (x,, x,, X;) coordinate
system, the distance between the first and the second
delamination is 3 m, the distance between the first and the
third delamination i1s 2 m and the distance between the
first and the fourth delamination is 1 m. It can be see
clearly that there existed three modes which sensitivities
are higher than others and with consideration of
attenuation from Fig. 5, the most available Lamb wave
mode for delamination detection could be found through
selecting suitable excitation frequency with higher
sensitivity and lower attenuation.

CONCLUSION

In this study, sensitivity of the first several guided
Lamb wave modes 1 viscoelastic composite lammates by
considering multiple delaminations is studied. The
semi-analytical fimte element method 15 utilized for
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modeling wave in laminates and the material damping is
introduced by using complex stiffness matrix. The
hysteretic viscoelastic model is used and attenuation
curves of wave amplitude are obtained. The numerical
results of sensitivity of several modes are presented and
provide some useful mmformation for selecting more
efficient Lamb wave mode in damage detection in
composite laminates.
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