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Abstract: As a powerful analytical tool of data mining, clustering analysis has gained considerable attention.
This study first introduces the concept of artificial immune multi-objective optimization algorithm and the
relevant theories of multi-objective clustering algorithm. Secondly, because the traditional clonal selection
algorithm 1s applied to the clustering analysis, too many parameters exist, proposes a new algorithm of applying
the multi-objective optimization algorithm joined with local learning operator to the multi-objective fuzzy

clustering. Finally, the proposed fuzzy clustering method 1s applied to an artificial data set, the sumulation
results show that the algorithm has ligh clustering accuracy.
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INTRODUCTION

Data Mining (DM) is a core of knowledge discovery
process in database (Bao et al., 2012). Cluster analysis,an
umportant branch of data mining and an important tool of
simplifying data, provides an mtegral techmical support
for DM to achieve automated information.

Optimization problem 1s one of the main problems in
engineering practice and research. The
optimization problems of containing only one objective

scientific

function are known as a single objective optimization
problem and the optimization problems of containing two
or more objective functions are known as multi-objective
optimization problems. Recently, artificial immune system
for solving multi-objective optimization problems has
gained the interest of many  researchers. The
non-dominated neighbor immune algorithm (Gong et af.,
2008) proposed by lao and Gong 1s one of the
representative algorithms.

In tlus study, based on the multi-objective
optimization algonithm of artificial immune system, we join
the local learmng operator for multi-object clustering.

MULTI-OBJECTIVE OPTIMIZATION

In the multi-objective optimization problems
restrictions are placed on the decision variables. The
optimization on one of the objects must be at the cost of

the other objects and unit of each object 13 often not the
same. So it 15 difficult to objectively evaluate the

advantage and disadvantage of —multi-objective
optimization problems. In multi-objective optimization
problems, one solution is maybe the best regarding one
object but 18 not favorable of the other objects. Thus
there exists a compromised solution called pareto-optimal
set or non-dominated set.

Mathematical formulation of the multi-objective
optimization problems (Meng ef al., 2008; Gong et al.,
2010): A multi-objective optimization problem with n
decision variables and m object variables can be
expressed as follows:

i=1,2,--,q (1)

where, x = (x,...., x)eXcR" 1s an n-dimensional decision
vector from the n-dimensional decision space x,
Y = (¥, V)€ YC R i an m-dimensional objective vector
from the m-dimensional objective space Y. The objective
function F(x) defines m mapping functions from the
decision space to the objective space. g(x)<0(i=1,2,.., q)
defines q inequality constraints. hix)=0( =1, 2., p),
defines p inequality constraints. In this frameworlk, several
important definitions are given as follow:

+  Feasible solution: for one x€X, it 1s called feasible
solution if it satisfies the constrant conditions (1=1,
2,..Qandh(x)=0(3=1,2,.,p)givenabove
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¢+  TFeasible solution set: The set composed of all
feasible solutions is called feasible solution set and
1s recorded as X XX

* Pareto predominant: Assume x, and x; are two
feasible solutions of above multi-objective
optimization problems, x; is called pareto superior

than x, 1f and only if:
vi=1,2,..,m, fix )<t (xy) 2
3 =1,2..,m, fxJ)<f(x3) (3
It 1s notated as x,>x; and called x, control x;.

*  Pareto optimal solution: Solution x*€X; 13 called
pareto optimal solution (non dommated solution) if
and only if the following condition is satisfied:

—IxeXpx=x* 4

+  Pareto optimal solution set: Pareto optimal solution
set is the set of all Pareto optimal solution:

P* 2 {x*|-3xeXpxox*t (5

¢+ Pareto frontier: The swface composed of all
objective vectors in the Pareto optimal set P* m
assoclation with pareto optumal solutions 1s called
Pareto frontier PF:

PF*a {F(x*)y = (£,(x*),..., L(x*))|x*eP*} (6)

Evolutionary multi-objective optimization algorithm
(Bin et al., 2012; Tao et al., 2013): As a heuristic search
algorithm,  evolutionary  algorithms  have
successfully applied to the multi-objective optimization
field. Tt has been developed into a relatively hot research
direction Evolutionary Multi-objective Optimization
(EMO).

Rosenberg (1967) recommended dealing with
multi-objective  optimization problems based on the
evolutionary  searching but the idea was not
mnplemented. Holland (1975) proposed the genetic
algorithm. Ten vyears later, Schaffer proposed the
vector evaluated genetic algorithm, for the first time he
initiated the combination of genetic algorithm and multi-
objective optimization problems. Goldberg (1989)
proposed a new idea for solving multi-objective
optimization problems by combining the pareto theory in
economics with evolutionary algorithm in his book
“Cenetic Algorithms m Search, Optimization and
Machine Learming”, which provided a

been

significant

contribution to guide the study of subsequent
evolutionary multi-objective optimization algorithm.

Evaluation of the multi-objective optimization algorithm
solution: To evaluate the convergence of solution and its
distribution uniformity, the convergence metric proposed
by Deb and Spacing metric proposed by Schott (1995) are
commonly used. They are defined as below.

Convergence metric: Let P* = (p,, p,,..., ppy) be the pareto
optimal solution set of umform distribution on 1deal pareto
frontier, A = (a,, ..., ;4 be the approximate pareto optimal
solution set obtained by using the EMO algorithm. We
can get the minimum normalized Euclidean distance d; of
the solution of distance P* for each solution a, in set A:

7

where, £,"* and £, 1s the minimum and maximum of the
m-th objective function in set P*. The convergence metric
is defined as the average of normalized distance of all the
points m set A:

4]

d
c(a) éz‘ i ®)

A

The convergence metric represents the distance of
algorithm between the approximate pareto optimal
solution set and ideal pareto frontier. Therefore the
lowerthe metric, the better the convergence of the
solution and the closer it is to the ideal Pareto frontier.

Spacing metric: If the set A is the approximate pareto
optimal solution set achieved by the algorithm, the
spacing metric S can be defined as:

Ile-

L Sa-a ©)

g —
|a|-1&

Where:

)

d‘:mmj{zk:‘fm(al)—f (aj)|}, a.aea, ij-12-.a] (10
el

Aad (D

q-

4]
k is the number of the objective functions. When the 5
value 1s equal to 0, it shows that the non-dommated
solution is equally spaced in the objective space.
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Moulti-objective optimization algorithm based on artificial
immune system (Wang and Li, 2007; Shang et al., 2012):
Non-dominated Neighbor Immune Algorithm (NNIA) has
been proposed by Jiao and Gong. They simulated based
on the diversity of antibody symbiosis and a few
antibodies activation in immune responses, selected only
a few relatively isolated non-dominant individuals as
active antibodies through an individual selection method
based on the Non-dominant neighbor, carried out
proportional cloning based on the congestion of active
antibodies and adopted restructuring operation and
mutation operation different from the GA for the clonal
antibody group to strengthen the searching for the Pareto
frontier in sparser region.

Algorithm related technical

Objective function (Siang and Khor, 2012): Antibodies
adopt the real encoding based on clustering center. The
algorithm optimizes both objective functions:

£ =0, 0= £330, ) s, (12

(13)

Calculation of fitness function: After algorithm iteration
carried out certain steps, select the solution which
maximizes the PBMF index from the approximate pareto
solution set as the optimal solution:

1 E, = max, ; Hvl - VJ”

(14)

PBMF =

VL A NN
¢ Z:=1Z:\=1(uii)m‘|xi - V)”

Joined local learning operator multi-object clustering
(Gong et al., 2010; Liu et al., 2012)
Algorithm process:

* Inmitialization: Set up the algornthm parameters, set
the termination conditions, generate the initial
antibody population B,, set the population size as np,
sett=10

*  Update the superior antibody group: Find out the
superior antibody from antibody group B, and form
a temporary superior antibody group DT, If the
antibody group size DT, is not greater than the
superior antibody group size’s upper hmit ny, let
D, = DT, otherwise, calculate the crowding distance
in the antibody group DT,, and choose ny, antibodies
with bigger crowding distance to form superior
antibody group D,

¢+  Termination evaluation: If t>G,,. the antibody
group D, can be considered as the approximate
Pareto solution set. Stop the algorithm. Otherwise, let
t=t+1

¢+  Non-dominant neighborhood selection: If the size of
antibody group D, 18 not greater than the size of
active population size upper hmit n,, let active
population A, = D,, otherwise, calculate the crowding
distance in antibodies group D, and choose np

of the bigger crowding distance
constituting active antibody group A,

+  Proportional clone operation: Carry out proportional
clonal operation for antibody group A, to get

antibodies

antibody group C, after clomng

»  Local learning operation: Antibody group C, carry
out local learning operation according to certain
probability (Local learning probability p,), to get
antibody group C,

*  Restructuring and super-mutation operation: Carry
out restructuring and super- mutation operation for
antibody group C', to get antibody group C",

*  FCM iterative operation: Carry out a step FCM
iterative operation for antibody group C", to get
antibody group C',

¢+ Merge antibody group C'", and D, to get the
combined antibody group B; go to step 2

RESULTS AND DISCUSSION

Data sets: This experiment adopted the UCI data sets and
multidisciplinary synthetic data set. Where UCI data sets
contains iris, wdbc, wine, glass, breastcancer. Synthetic
data set contains ASD 4 2, ASD 5 2. ASD 10 2,
ASD 11 2, ASD 12 2, ASD 14 2, twenty, sizesd,
AD 15 2, AD 20 2.

Algorithm parameter setting and experimental results:
NNIA-MOC: The fuzzy exponential index m 1s 2.0, the
maximum number of iterations G, is 100, dominant
population size ny, 18 100, active population size 1, 1s 20,
clonal population size ng is 100, mutation probability p,, is
1/1 (1 1s the length of the antibody, algorithm adopts real
number encoding based on clustering center),
learning probability py is 0.8, local learning intensity s is

local

0.3. Algorithm was ran independently 20 times on each
data set. The clustering partition average accuracy and its
mean square error on each data set were calculated. At the
same time, the average accuracy, Adjusted Rand Tndex
(ART) value and Minskowski Score (MS) value of data
clustering result in each data set were also given in
Table 1.
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Table 1: Data clustering result of average accuracy, robustness and MS value

Data set Average accuracy ARI MS

ASD 4 2 0.9951(0) 0.9877(0) 0.1337(0)

ASD 52 0.9452(0.0047) 0.8710(0.0099) 0.4512(0.0173)
ASD 10 2 0.9949(0.0015) 0.9886(0.0033) 0.1404(0.0214)
ASD 11 2 0.9786(0.0535) 0.9896(0.0160) 0.1173(0.0664)
ASD 12 2 0.9653(0.0533) 0.9839(0.0195) 0.1449(0.0856)
ASD 14 2 0.9142(0.0836) 0.9726(0.0207) 0.2011(0.0917)
Twenty 1(0) 1(0) 0(0)

Sizess 0.6146(0.0440) 0.4016(0.0062) 0.7233(0.0044)
AD 15 2 0.9910(0.0347) 0.9921(0.0247) 0.0556(0.1116)
AD 202 1(0) 1(0) 0(0)

Table 2: The active population size, cloning size and dominant population
size on the performance of the algorithm

Active e, Np

population

size size 20 50 100

1, 5 0.9421(0.0582) 0.9503(0.0599) 0.9348(0.0651)
10 0.9305(0.0735) 0.9621(0.0546) 0.9622(0.0553)
20 0.9032(0.1056) 0.9215(0.0963) 0.94350(0.0647)
50 0.9368(0.0718) 0.9241(0.0632) 0.9422(0.0697)
100 0.8985(0.1124) 0.9071(0.0912) 0.9591(0.0763)

The experimental results in Table 1 show that
NNIS-MOC algorithms can reach 100% clustering
accuracy on the data set of twenty, AD 20 2. It can
approximately reach 100% clustering accuracy on the data
setof ASD 4 2ASD 10 2and AD 15 2.

Algorithm parameter analysis: For data set ASD 12 2,
the algorithm was ran independently under different
parameter settings. The average accuracy of algorithm is
givenin Table 2.

Followed the settings of NNIA i conducting
multi-objective function optimization, we set active
population size n, being 20, dominant population size ny
and clonal population size n. being 100.

CONCLUSION

In this study, multi-objective optimization algorithm
(NNILA) jomed with the local learming operator 1s used for
multi-objective clustering. From the simulation results one
can see that the algorithm can achieve high clustering
accuracy. Of course, as we already know, due to the
existence of a variety of cluster validity index, selecting
the appropriate objective function will play an important
role on algorithm performance. A further exploration may
be considered following this direction.
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