——

!

>

b

y — Ui
-

. —

T—

Journal of
Applied Sciences

ISSN 1812-5654

ANSI»nez7
SCience an open access publisher
alert http://ansinet.com




Tournal of Applied Sciences 14 (1) 89-94, 2014
ISSN 1812-5654 / DOL: 10.3923/ja8.2014.89.94
© 2014 Asian Network for Scientific Information

A Robust Optimization Model for the Vehicle Routing Problem under
Uncertainty Based on Theory of RR-EP

?Liang Sun and *Xiao- Yuan Wang
'School of Mechatrenics Engineering and Automation, Shanghai University, Shanghai 200072, China
*School of Transportation and Vehicle Engineering, Shandong University of Technology, Ziba 255049, China

Abstract: The robustness measure in E-SDRM (expected value semi-deviation robust model) only pays attention
to the measurement of risk part but ignores decision-makers” attitude towards some situations such as bidding
or captical budget. Aiming to solve this problem in E-SDRM for the proposed problem, a new robust model
referred to as the expected value-combinatorial semi-deviation robust model (E-CSDRM) is proposed. E-CSDRM
can not only measure the potential risk of decision-makers’ but also give enough consideration to the profits
over expectation given a specific decision-makers’ attitude towards some situations such as bidding or captical
budget. Theoretical analysis shows that E-CSDRM is a generalization of E-SDRM and simulation results

demonstrated the effectiveness of the new model.
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INTRODUCTION

Solving the Vehicle Routing Problem (VRP) 1s the
key to efficient transportation management and
supply-chain coordination. One of the most commonly
adopted vehicle routing formulations is the Capacitated
Vehicle Routing Problem (CVRP). This concerns the
minimum delivery cost of a single product from a depot to
customers through a specified number of capacity
constrained vehicles. If the demands of the clients are
randomly varied, the problem 1s termed a vehicle routing

problem with stochastic demands (VRP Under
Uncertatinty) (unrevised).
To manage the transportation and coordinate

the supply cham efficiently, it 1s important to solve the
Vehicle Routing Problem (VRP). The vehicle routing
problem can be presented in various forms. Among those
vehicle routing formulations, the Capacitated Vehicle
Routing Problem (CVRP) 1s most commonly used. If one
or both of the demand and edge costs
(distance, transportation cost, travel time, etc.) are
uncertain, the variant of vehicle routing problem 1s termed
vehicle routing problem under uncertainty (revised).
The optimal scheduling scheme used in existing
Stochastic models for VRP is the Expectation-Value Model
(EVM) (Goodson ef al., 2012; Novoa and Storer, 2009).
Thus takes the expected value of the total delivery expense
(or time) as the optimization objective. Using EVM with
stochastic demands ignores the negative impacts that

possible adverse events can have on operation. At the
same time, optimal solution of them 1s not feasible for all
realizations of the data in a predetermined uncertainty set.
In order to solve these problems, the recourse (Lei ef al.,
2011; Mendoza et al, 2010} and chance-constraint
(Bertsimas and Simchi-Levi, 1996; Gendreau ef af., 1996,
Cordeau et al., 2007) models, two kinds of EVM, were
proposed. However, like EVM, the recourse and chance-
constraint models can not make a trade-off between the
expectation value of the optimization objective and its
variability when used in VRP Under uncertatinty Aimed
at  addressing these problems, robust optimization
models for VRP Under Uncertatinty (List et al., 2003;
Sungur et al., 2008) have received much attention in the
last decade. E-SDRM 1s a kind of robust optimization
model for VRP Under Uncertatinty E-SDRM is mainly
applied in the routing of buses (a vehicle routing problem
that takes the bus company as the depot, customer
numbers that vary randomly and the time spent by
customers for waiting buses as the demand). To
incorporate  the disturbances  of  daily
passenger demand that occurs i actual operations,
Yan and Tang (2008) established an expected value
semi-deviation robust model (E-SDRM) for routing buses
with stochastic demand (Sun et «l, 2011; Yan and
Tang, 2008).

E-SDRM This model combines the concept of
semi-variance devised by Markowitz (1952) (unrevised)
and Markowitz (1952) (revised), the robust optimization

stochastic
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model proposed by Mulvey et al. (1993) and Mulvey and
Ruszezynski (1995) and the actual characteristics of
operation of a bus company. E-SDRM is an extension of
expectation-value optimization (Tom and Mohan, 2003;
Vuchic, 2005; Yan et al., 2006) to the routing of buses.
Essentially, it consists of an optimization objective term
and a robust measurement term. The method aims to
minimize the sum of the expectation-values of the total
transportation cost (the optimization objective term) and
its variability (the robust measurement term) multiplied by
a weighting value. Yan ef al. (2006) proposed a reliable
novel bus route schedule design solution by taking mto
account the uncertainty in the buses’ travel times and the
bus driver’s schedule-recovery efforts. The aim was to
mirmmize the sum of the expectation values of the random
schedule deviations and its varnability multiplied by a
weighting value (Yan et al., 2012).

By adopting a balance factor, E-SDRM for VRP under
uncertainty considers both the average performance of
the optimization objective term subject to stochastic
demands and the average deviation between the
optimization objective and the expectation value. Tt is
obvious that E-SDRM makes some improvements
compared to EVM. However, 1t still has some aspects
related to its optimization objective and robust
measurement that require further investigation.

Validity of the robust measurement: The value of the
optimization objective in response to different possible
events (‘relative risks’) may get worse compared to the
expected value because of stochastic demands, or it may
get better (1e., ‘excess benefits”). Total transportation
cost in different scenarios may be greater than the
expected value of total transportation cost (i.e., “potential
risks™), or it may be less than expected value of total
transportation cost (ie., ‘incidental benefits™). When
expected value of total transportation cost as the
reference point from which deviation are measured in
E-SDRM, potential risks and incidental benefits cancel
out. Hence, the risk preference of the decision-maker
should be determined by considering the loss of
mcidental benefits or the reduction i the potential risk.
When the decision-maker chooses different reference
level of expected total transportation cost about which
variability will be measured, the risk preference of the
decision-maker should be determined by considering the
loss of mcidental benefits as well as the reduction m the
potential risk rather than just potential risk or meidental
benefits alone.

Contrary to the existing contributions mn this field,
we propose a new robust optimization model
(termed E-CSDRM) for VRP Under Uncertatinty based on
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E-SDRM (unrevised). On basis of theory of RR-EP model,
a new robust optimization model (termed E-CSDRM) for
VRP under uncertainty is proposed (revised) based on
RR-EP model (Niuand Wang, 2013). The semi-deviation
i E-SDRM 1s substituted for robust measurement of
combinatorial semi-deviation in the new method. This has
the effect of reducing both relative risk and the loss of
excess benefit, so the adaptability of the robust

measurement under stochastic demands 15 also
strengthened.
MATERIALS AND METHODS

Basic concepts

Definition 1: Risk preferences: This refers to the attitude
of the decision-malker with regard to the loss of incidental
benefit while restraimng the potential risk. If the
decision-malker thinks he or she will still gain from the
incidental benefit while restraining the potential risk, then
it 18 an optimistic risk preference, otherwise it 1s a
pessimistic one.

Assumptions: Put concisely, these are:

»  d" does not exceed the vehicle’s capacity Q

»  The costs ¢, are assumed to be symmetric (although,
results can easily be modified to hold even in the non
symmetric case) and they satisfy the triangle
inequality:

c (A, (i, <e (X, (@ @rte (4, (q, )

foreachAin A
»  The stochastic demands of different customers are
independent

Formulation: VRP under uncertainty is defined on a
complete undirected graph G = (V, A), where V = {v,, ...,
v,} is the vertex set and A = {v, v;}cVxV, i#] is the edge
set. Vertex v,£V is the depot at which s identical vehicles
of capacity Q) are based, whereas the remaining vertices
represent customers.

For a set of vehicles K, a cost function ¢: AxA-R" for
traveling along the edges of G and a demand function
d: AXN-R"U {0} are defined for V. Here, ¢;" = c(4, (i, j))
the commodity from
customer i to customer j using vehicle k {lk=1, ..., m}
and d! = d (i, &) denotes the demand on custemer i from
the possible event A in A (A 1s a set of possible events
representing the stochastic demands of customers). The
total demand on some commodity from possible event A
15!

denotes the cost to deliver
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Based on commercial and social considerations,
operators are expected to minimize their expected total
transportation costs. On this basis, the operator needs to
choose a scheduling scheme to ensure that every
customer be visited exactly by exactly one vehicle as the
demands of the customers change. Each vehicle should
start from the depot and eventually return to the place of
its departure. A robust optimization model 1s formulated
for VRP under uncertamty. The aim is to mimimize the sum
of the expected value of the total transportation costs and
the weighted variability.

Optimization objective term: The optimization objective
term of E-CSDRM is the same as optimization objective
term of E-SDRM.

Reference level of optimization objective: w (w>0)isa
reference level of Eq. 2. Thus, w.EV is the reference point
from which deviation are measured. Besides w =1, @ can
reflect some matters of concermn to decision-makers of the
depot, such as bidding (w<l) and capital budget
situations{w<1).

Robust measurement term: The optimization objective
term under the stochastic demands 1s the expected value
of the total transportation costs. Therefore, the relative
risks and excess benefits of the total transportation costs
caused by demand uncertainty are defined, respectively,
as follows.

Definition 2: If h (s, &) for some scenarios is greater than
EV (please see appendix mn detail), the expectation excess
over EV 138 called the relative risk. This can be expressed
as:

(1)

RR{h(s, 1))=Y max(0,h(s, 1)~ o- EV)p*

Aeh

Definition 3: Ifh (s, A) for some scenarios is less than EV,
the expectation deficiency below EV is called the
incidental benefit. This can be expressed as:

EP(h(s,%))= 3 min (0,h{s,2) - o EV)p*

(2

Combining Eq. 1 and 2, the robustness measure term
of E-CSDRM is defined by:

I'(s) = PRR(h(s,2)) — (1 )| EP (s, 1) | (3
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As for E-CSDRM, this robustness measure term is
still a deviation expectation, but it considers both
reducing the relative risk and lessening the loss of excess
benefit. In Eq. 3, p (0<p<1) denotes the interplay between
the loss of excess benefit and the reduction in the relative
risk-it 18 determined by the decision maker.

Combining Hq. 10 and 3, the robust optimization
model can be expressed as:

(CE-CSDRM) minimize:

{5 _cspr =@ E(h(s, 1)) +T'(s)

subject to:
Sy =L Wy e Vv )
k=1
i}’m =m (5)
k=1
P =2 Xy =V, T eV =1.m (6)
v eV
Prob(ydy, > Q)=ok=123. ...,m (7
=V
3wy 4S|-LYSSVi{y LIS 22k=12...m (8)

=

Prob(z diyy > Q)
v

15 a probability that in proposed routes the total demand
will be greater than the vehicle capacity given the maximal
service ability of the depot was observed. The parameter
¢ 18 a positive constant (O<o<1).

Constraimnt (11) 1s referred to a chance-constraint.

The constraint in Eq. 4-8 impose that each customer
15 visited exactly once, that m vehicles leave the depot
and that the same vehicle enters and leaves a given
customer, respectively.

Equation 8 is a sub tour elimination constraint,
which imposes that for each vehicle k at least 1 arc leaves
each vertex set S visited by k and not containing the
depot.

RESULTS

Analysis of the properties of C-CSDRM for the proposed
problem

Theorem 1: (Validity analysis of the robustness measure
term). With the aid of p, the robustness measure term in
E-CSDRM can reflect different kinds of risk preferences
under a given decision preference.
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Proof: Since, the robustness measure in CE-SDRM
measures the conditional expected value of total
transportation cost given that failure event has occurred.
It 1s still essentially an expected value, so we have RR
()20 and EP (s) # 0. so we have (unrevised). The proof is
shown by considering the following 3 cases:

+  When:

o max | EPE)]
|EP(s)| +RR(s)

I'(s) 0, so it 1s obvious that f, .. ~EV.

This means that reducing the potential risk is
at the cost of heavy loss of mcidental benefit. The
decision-maker cannot make the value of the
objective function of the optimization function less
than the value of the optimization objective, even
with the aid of icidental benefit, so the risk
preference 1s pessimistic

¢« When:

{ |EP(s)| }
n= —_—
| EP{s) | +RR(s)

I'(3)<0, so f. L.um<EV.

This means that although reducing the potential
risk leads to the loss of mcidental benefit to some
extent, the decision-maker can still gain some
incidental benefit. So, there is the possibility that the
decision-maker can achieve better optimization
performance by means of incidental benefit. In this
case, w 1s for the decision-maker to choose available
and reasonable ncidental benefit, so the sk
preference is optimistic

*  When

Min{ |EP(s)]|

ax |EP(s)|
|EP(s)| +RR(s)| | EP{s)| +RR(s)

The decision maker’s attitude towards risk change
with solutions.
Theorem 2: (Relationship between E-CSDRM and
E-SDRM). E-CSDRM will degrade to E-SDRM if p =1 and
w=1
Proof: When p=1 and w = 1, E-CSDRM becomes:

£, . pe =EM(s,A)+RR(h(s,A))"

Hence, it 1s obvious that Theorem 2 holds
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Fig. 1: Variation with w when p = 0.85

Theorems 2 shows that E-CSDRM includes E-SDRM.
It 18 clear that E-CSDRM 1s a generalization of E-SDRM.

Numerical results: Analysis of the mfluence on nsk
preference of w and p in CE-CSDRM.

Operators are to route for 5 clients and one
commodity. There are 2 vehicles in the depot with
maximum loads of 400 and 500. The transportation cost 1s
assumed to be symmetrical between the depot and
demanding nodes (the cost from customer 1 to
customer j equals the cost from customer j to customer i,
i1,7€41,2,3,4,5,}. The amount of demand for each client
under various possible events is  produced using
pseudo-random numbers n the interval [200, 500]. In
addition, random numbers were randomly generated from
the mterval [70, 100] for the transportation costs between
the depot and the clients. The influence of the maximum
service capacity of the depot on the total transportation
costs of various possible events 1s subject to the normal
distribution [4, 0.2]. Sets of possible events were
generated using the above scheme comprising 50 possible
events.

X axes are value of w. Y axes are values with regard
to optiumization objective, objective fimetion, robustness
measure.

Influence of @ on the optimistic risk preference of the
decision-maker in CE-CSDRM: With p 0.85,
calculations were carried out using 11 values of w taken
from the interval [0.5, 1.5] (and the step size is again 0.1).
From Fig. 1, it 1s seen that the objective function
decreases with an increase in w. This means there is a
better performance with an increase in w. In addition, it is
easy to see from Fig. 1 that the optimization objective and
robustness measure terms always change conversely.
This means that the robustness measure term will
correspondingly decrease when the optimization objective
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increases and vice versa. This demonstrates that besides
realization of the decision-maker’s optimistic risk
preference, the CE-CSDRM can also obtain incidental
benefit while reducing the potential risk. This conforms
with the analysis of Theorem 3.

CONCLUSION

Tn this study, E-CSDRM was proposed for VRP under
uncertainty of a single depot, multiple vehicles and a
single commodity. The model considers the stochastic
demands of clients and encapsulates the relative risk and
excess benefits of the variation of the total transportation
costs under the stochastic demands. The optimization
objective of CE-CSDRM is the minimization of the total
transportation costs. We can draw the following
conclusions through theoretical analysis (unrevised). The
advantages of E-CSDRM are as follows:

« E-CSDRM of VRP under
generalization of E-SDRM

¢« As well as considering both reducing relative risk
and lessening the loss of excess benefit under
stochastic demands, the robustness measure term in
CE-SDRM also reduces the degree of deviation of h
(s, A) from the optimization objective term (in a mean
square error sense). Expected total edge costs as
reference point from which deviation are measured in
robustness measure of E-SDRM. Thus, E-SDRM can
not take some situations that relevant to bidding or
capital budget situations into consideration

¢+  Contrary to E-SDRM for the proposed problem,
E-CSDRM can take into account these situations
using a reference level of EV. Thus, it improves the
adaptability of the optimization objective term with
respect to varation of stochastic demands

uncertainty is  a

Although, E-CSDRM does have some significant
improvements over E-SDRM, as described above, there
are still some problems that are left to address further via
research: As a generalization of E-SDRM, E-CSDRM has
some limitations in common with E-SDRM. For example,
although it is possible to find an optimal scheduling
scheme for the objective function concerned, the
feasibility of this scheme is not guaranteed for all of the
possible events without any assumptions on stochastic
demands. So, methods of improving the adaptability of
the optimal scheduling scheme need further investigation.

Appendix

Brief introduction to E-SDRM

Optimization objective term: The total transportation cost
of the schedule scheme s due to possible event A can be
represented as:
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his, =333 clxy (9

eV jeV ke

Let p* be the probability of the possible event 4 in A.
Then, the expectation value of the total transportation
cost for all possible events, E (h (s, 4)), is:

EhG ) =3p3 3 3 dxy, (10)

Meh ieV jeV keK

where, p*=0 and:

Let:
EV =E (h(s, A))

Robust measurement term (multiplied by a weighting
value): E-SDRM treatment of VRP Under Uncertatinty not
only considers optimization of the expectation value of
the optimization objective term, but also the expected
excess over B (h (s, A)). If the values of the optimization
objective for different possible events are higher than
expected, then it will have some impact on the
minimization of the total transportation costs. The robust
measurement term is given by:

Eth(s, &) — E(h(s, A"
= Zpl max{0,h(s,A) - E(h(z, 1))}

(1)

Formulation: Combining the definitions of optimization
object term and robustness measurement term, E-SDRM
15 described as follows:

(E-SDRM) minimize:

£ spr = E(h(s,2))+ w- E(h(s, %) - E(h(s, )" (12)

In Eq. 4, w denotes the influence of the expectation
value deviation on the expected value, w20. The
constraints and decision variables are the same as in the
E-CSDRM case.
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