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A B S T R A C T
Phase angle and amplitude of a phasor can be provided by method of Least Squares
Error (LSE). The LSE adopted iteratively is able to track the frequency and
amplitude of power system in steady states and in kinds of non-steady ones.
Iterative LSE with resampling is analyzed in conditions of off-nominal input,
nominal input with harmonics and decaying Direct Current (DC) offset and additive
Gaussian white noise. In the circumstances of frequency and phase step changes,
performance of resampling LSE is compared with traditional LSE. Resampling LSE
has better performance than the traditional one in frequency tracking ability and can
provide less mean square error.
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INTRODUCTION

Frequency is one of the most important situation variables
and operation parameter in power system. It is a good indicator
of integrity of a power system facing separation and islanding.
Phasor Measurement Unit (PMU) provides an indication of
lost generation, as an example, a frequency drop of 0.1 Hz is
typical in the Western Electricity Coordinating Council for
800 MW generation loss (NAERC., 2010). In the past several
decades researchers have paid much attention to frequency
measurement and analysis in power engineering. Types of
frequency estimation methods have been reported, such as zero
crossing (Begovic et al., 1993; Nguyen and Srinivasan, 1984),
demodulation technique (Begovic et al., 1993), Newton
algorithm (Terzija et al., 1994), Kalman filter (Wood et al.,
1985; Routray et al., 2002; Siavashi et al., 2009), prony
approach (Lobos and Rezmer,  1997),  artificial  neural
network (Vianello et al., 2010), etc. in time-domain. In the
transform-domain, the Discrete Fourier Transform (DFT)/fast
fourier transform (Yang and Liu, 2000; Zeng et al., 2011) is

widely adopted as well  as  discrete  wavelet  transform
(Chaari et al., 1996; Huang et  al.,  1999;  Lin  et  al.,  2002;
Ren and Kezunovic, 2011).

Frequency can be calculated by Least  Squares  Error
(LSE) with a pseudo-inverse of a  matrix  that  is determined
by a frequency ω0 and samples at time tm (m = 1, 2,…, M,
samples at t1~tM constituting a  data window) of the input
signal (Sachdev and Baribeau,  1979). Using LSE iteratively
is  able  to  track  system   frequency   sample-by-sample
(Sidhu and Sachdev, 1998). Its estimation accuracy is
determined by the number of iterations per sample  interval
and by computation ability of hardware in real-time
application.

In section II, we firstly presented basic idea of method of
LSE, then we put forward a guide line on designing
coefficients matrix for signal containing harmonics. In section
III, we narrated the process of frequency tracking by
resampling LSE. Simulation results of above algorithms in
different scenarios were compared and some specialties of
iterative LSE were given in section IV. Finally we concluded
this study.
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MATERIALS AND METHODS

Traditional LSE method: Suppose the nominal voltage or
current signal of a power system is:

(1)
H

i i i
i 1

s(t) A cos( t ) ( t )


       

where, H is the order of highest harmonic and Ai, ωi = i×ωi, ni

are the amplitude, angular frequency and initial phase angle of
each harmonic. According to rule of Nyquist, least sampling
frequency fs$2×Hf1 should be chosen to eliminate aliasing and
thanks to low pass filter, components with frequency higher
than Hf1 are filtered, so we have:

V = A×X (2)

where, V = [s(t1), s(t2),..., s(t2H)]T, in which s(t1), s(t2) and s(t2H)
are the samples taken at time t1, t2 and t2H (at  least  2H 
samples  are  taken);  X  = [X1, X2,..., X2H-1, X2H]T,  in  which
X1  =  A1  cosn1,  X2  =  A1  sinn1,...  and  X2H-1  = AH cosnH,
X2H = AH sinnH and the matrix:
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in  which  a11  =  sin(ω1t1),  a12  =  cos(ω1t1),   a13  =  sin(ω2t1),
a14 = cos(ω2t1),..., a1_2H-1 = sin(ωHt1), a1_2H = cos(ωHt1),... and
a2H_1  =  sin(ω1t2H),  a2H_2  =  cos(ω1t2H),  a2H_3  =  sin(ω2t2H),
a2H_4 = cos(ω2t2H),..., a2H_2H = sin(ωHt2H), a2H_2H = cos(ωHt2H).
When, a fault or a disturbance occurs, the current signal
consists of exponentially decaying DC offsets in electrical
power system (ElRefaie and Megahed, 2010; Benmouyal,
1995; Kezunovic et al., 1992; Sidhu et al., 2003). The
decaying rates depend on the time constants determined by the
inductive reactance to resistance ratio (X/R ratio) of the system
(Diniz de Oliveira et al., 2012; Balamourougan and Sidhu,
2006; Lin and Liu, 2002; Belega and Petri, 2011). The larger
the  X/R  ratio,  the  slower  the  DC  component  decays
(Kang et al., 2009; Gu and Yu, 2000; Lee et al., 2009). Signal
with the nominal component and a decaying DC offset is
represented as:

s(t) = A1 cos(ω1t+n1)+AdceG
t/τ (0#t#TDC) (3)

where Adc and τ are the amplitude and time constant of the
decaying DC offset component. The TDC is the effecting period
of decaying DC offset,  since  the  decaying  DC   offset  exists

only in several cycles and then disappears. It is a non-periodic
signal and its frequency spectrum encompasses all the
frequencies which cannot be removed by anti-aliasing low
pass filter. Matrix A has to be rewritten according to input
signal as:
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where,   am1  =  1,   am2  =  tm,   am3  =  t2
m,   am4  =  sin(ω1tm),  

at  time tm  (m$5)  for  iterative  LSE.  In  order  to  obtain X,
we have:

X = [AT A]G1 ATV = A+V (4)

We get phasor with amplitude Y1 and phase angle θ1:

Y(t1) = Y1ejθ1 (5)

Where:

θ1 = atan[Y(t1)image/Y(t1)real] (6)

where, atan is the inverse tangent function. The Y(t1)image and
Y(t1)real are the imaginary part and real part of phasor Y(t1)
and:

1 2 2
1 2Y X X 

In order to get Y(t2), we have to sample the input signal at time
t2 and t3, whose time interval is Ts. The data window to get
Y(t2) is shifted by one Ts from that of Y(t1). So the angular
frequency is calculated by f1 = (θ2-θ1)/(2πTs). Generally we
have frequency at tm:

f1
m = (θm+1-θm)/(2πTs) (7)

Traditional LSE algorithm uses fixed sampling frequency
of 720 Hz as specified in Sachdev and Baribeau (1979) and
Sidhu and Sachdev (1998). However, frequency of the input
may change under different conditions, such as off-nominal
signal in kinds of transient states or under sudden step
changes. In these circumstances  one  data window may
contain non-integer number  of  samples  that leads to
spectrum leakage and error of estimation. If we  change the
rate of  sampling  according  to previous estimated
frequencies,  there  may  be integer  number  of sample  in  one
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Fig. 1: Illustration of shifting windows of a cosine waveform with time-tag at starting time of t = 0 sec

data window and then the error of frequency would be
minimized. Also the nominal signal may be polluted by
harmonics, inter-harmonics, decaying DC offsets, additive
Gaussian with noise, etc. Window-based data acquiring
process is shown in Fig. 1.

Suppose frequency of input  signal  is  an  off-nominal
one.  By  Eq.  7,  we  can  estimate  the  frequency  iteratively
by resetting the  matrix  A  with  different  estimated 
frequency f'. In reality, sampling  rate  is  set  properly  to
fulfill  the  requirement of  Nyquist’s  rule  and  the  criterion 
of  sampling   in   Terzija   et   al.   (1994).   Secondly, an
over-determined linear set is built to give a more precise
estimation with  more  samples. Steps  of  iterative LSE
method are:

Step 1: Sample the signal with frequency fs and form a data
window

Step 2: Obtain matrix A according to sampling frequency at
time tm, m =1, 2,..., M, where M is the length of data
window. M is bigger than length of vector X to
construct an over-determined linear set

Step 3: Obtain X according to Eq. 4
Step 4: Obtain phase angle  of  phasor  Y(t1)  and  Y(t2)  by

Eq. 6 and then estimated frequency f' by Eq. 7.
Number of iteration is 1

Step 5: Resample the input signal and reset the matrix A
according  to   estimated   frequency  f'   at   time   tm,
m = 1, 2,..., M. Repeat steps 1~4 and get f". Number
of iteration is 2

Step 6: If |f'-f"|#δ, iteration process converge, where δ is a
preset minimal number; and also if number iteration
approaches the maximal number Nite_max, iteration
process stops

Frequency estimation by iterative resampling-LSE
method: In order to track the frequency sample-by-sample, we
have to use the process of the iterative LSE per sampling time
interval. The initial frequency to get matrix A in the following
interval is also the estimated one of previous interval. Number
of iterations per sampling interval, limited by computation
ability of a digital processor, influences frequency tracking
ability and convergence speed of the estimations process.
Method of LSE adopts iteration process to get the off-nominal
frequency more and more precisely. More iteration is
accomplished during one time interval, more accurate we get
but more time is consumed. Flow chart of resampling LSE is
in Fig. 2.

RESULTS

Suppose the input signal contains a 3rd order harmonic
and a decaying DC offset lasting in several cycles at the
beginning of simulation as shown in Eq. 8. Parameters used in
simulation are listed in Table 1:

     X(t) = A1 cos(ω1t+n1)+A3 cos (ω3t+n3)+AdceG
t/τ(0#t) (8)

We can design the matrix A with the help of Taylor
expansion as:

11 12 17

21 22 27

m1 m2 m7

a a a

a a a
A

a a a

 
 
 
 
 
 





   



where,   am1  =  1,   am2  =  tm,   am3  =  t2
m,   am4  =   sin(ω1tm),

am5  =  cos(ω1tm),  am6  =  sin(ω3tm),  am7  =   cos(ω3tm)   at   time
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Fig. 2: Flow chart of resampling LSE

Table 1: Basic parameters utilized in simulation
Name Notation Value Unit
Nominal frequency f1 60 Hz
Nominal angular frequency ω1 2π f1 radian
Initial sampling frequency fs 720 Hz
Initial sampling interval Ts 1/720 Second
Length of one cycle+ T 1/60 Second
Shifting frequency off the nominal one Δf [-5,5] Hz
Signal to noise ratio SNR [20,60] dB
Highest order of harmonics N 3 -
Length of data window L 14,19 -
Amplitude of nominal component A1 1 p.u.
Initial phase angle of nominal component φ1 0 deg
Amplitude of 3rd order harmonic A3 0.1 p.u.
Initial phase angle of 3rd order harmonic φ3 45 deg
Frequency of 3rd order harmonic f3 180 Hz
Amplitude of decaying DC offset Adc [0.1,0.5] p.u.
Time constant of decaying DC offset τ [0.1T,2T] Second
+The cycle is calculated according to the nominal frequency

tm (m$7); ω3 = 2πf3 and X = [X1, X2,..., X7]
T, where X1 = Adc,

X2  =  -Adc/τ,  X3  = Adc/(2τ
2),  X4  =  A1 cosn1,  X5  =  A1 sinn1,

X6 = A3 cosn3, X7 = A3 sinn3.
At first, we choose the best sampling rate and data

window for LSE algorithms,  since  the  performance  of  these
algorithms are highly connected with them. Former studies
show that lower sampling rate and  longer   data  window  help

to obtain  a  better  result  (Sachdev  and  Baribeau,  1979;
Sidhu and Sachdev, 1998). The finput denotes the frequency of
input signal.

In  Fig.  3,  we  find  that   the  number  of iterations
during each sampling interval is set  to be 2 or 3,  which  is
good enough  to  acquire  a  high  accuracy for resampling
LSE  and  comparing  with  the  traditional  one, the
resampling  LSE  method  tends  to  converge  more  robustly.
In Fig. 4, we  know  that  tracking  accuracy  of resampling
LSE in  higher  than  that  of  the  traditional  one. The
dynamic range of  resampling  LSE  is  smaller  than  that of
the traditional one. Figure 5 shows the Mean Square Error
(MSE) of  two LSE  methods  with  different  variables  such
as time constant and amplitude of decaying DC offset
component.  When,  the  amplitude  of  decaying  DC   offset
is 0.2 p.u. and the time constant is 0.1 T, the MSE are 1.2106
and 0.5222 for traditional LSE and resampling LSE,
respectively.

Figure 6 tell us that resampling LSE does not work well
when signal to noise ratio (SNR) is less than 25~30 dB. In the 
practice  of  power  system,  SNR   is   always   higher   than
30 dB. So Gaussian white noise could not do too much harm
to resampling LSE in practice.
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Fig. 3(a-b): Performance  of  traditional  and  resampling  LSE  methods  with  nominal  input  frequency  (Initial  sampling  rate
fs = 720 Hz, data window L = 14, finput = 60 Hz, first 30 estimated frequencies are plotted), (a) Number of iteration
Nite = 2 in each sampling interval and  (b) Number of iteration Nite = 3 in each sampling interval

Fig. 4(a-b): Performance of traditional and resampling LSE  methods  with  off-nominal  input  frequency  (Initial sampling rate
fs =  720  Hz,  data  window  L  =  14,  Number  of  iteration  Nite  =  2,  first  30  estimated  frequencies   are  plotted),
(a) finput = 55 Hz and (b) finput = 65 Hz
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Fig. 5: Performance of traditional  and  resampling  LSE  methods  with  different  decaying  DC  offset  (Initial  sampling  rate
fs = 720 Hz, data window L = 14, Number of iteration Nite = 2, finput = 60 Hz, first 30 estimated frequencies are used for
MSE calculation)

Fig. 6(a-b): Performance of traditional and resampling LSE methods with noise (Initial sampling rate fs = 720 Hz, data window
L = 14, finput = 60 Hz, first  30  estimated  frequencies  are  used  for  MSE calculation and averaged in 1000 times),
(a) Number of iteration Nite = 2 and (b) Number of iteration Nite = 3

1098www.ansinet.com | Volume 15 | Issue 8 | 2015 |



J. Applied Sci., 15 (8): 1093-1102, 2015

DISCUSSION

To study the dynamic tracking ability of LSE, step
changes of input signals under various conditions are proposed
by IEEE Std. The C37.118 (IEEE Standard, 2006, 2011). We
compare the result of resampling LSE with the traditional one
in the following parts, numerical comparison are listed in the
following tables and figures.

Frequency step change:

C Scenario 1: Nominal input signal. The input signal
contains only the nominal sine signal. The first 1 Hz
frequency change occurs at 2.6×T, the second -1 Hz
frequency change occurs at 6.9×T

Table 2: Performance of traditional and resampling LSE methods with number
of iterations (window length L = 19)

Number of iterations
-----------------------------------------------------------------

MSE 1 2 3 4
Traditional LSE 10.1792 44.9310 113.1579 228.2406
Resampling LSE 10.1792 8.6464 18.4575 9.8293
Gain - 7.1571 7.8751 13.6587
Traditional LSE 11.7281 51.5753 130.2425 265.0047
Resampling LSE 11.7281 11.3092 15.3735 20.3517
Gain - 6.5901 9.2798 11.1465
MSE: Mean square error

C Scenario 2: Nominal input signal  with  DC  offset  and
3rd order harmonics, without noise

C Scenario  3:  Nominal  input  signal  with   DC   offset,
3rd order harmonics and additive Gaussian white noise,
SNR = 30 dB

For Table 2 and 3 and Fig. 7a-c, we find resampling LSE
algorithms has 6~11 dB gains comparing with traditional LSE.
Because of iterations in sampling interval, there are still jitters
in frequency tracking as shown in above figures. The
overshoots appear around the time that step changes happen,
however the peak value and MSE of resampling LSE is less
than that of traditional LSE. We choose L = 19 as the length of
data window which is longer than  that  of  (Sidhu and
Sachdev, 1998), since longer data window can minimize the
influence of Gaussian white noise and also can improve the
accuracy of frequency tracking ability but more computation
burden and storage requirement.

Table 3: Performance of traditional and resampling LSE methods with number
of iterations (window length L = 19; 1000 time average)

Number of iterations
-----------------------------------------------------------------

MSE 1 2 3 4
Traditional LSE 11.9846 52.5273 132.4945 268.9973
Resampling LSE 11.9820 12.2859 18.6639 19.0251
Gain - 6.3098 8.5120 11.5042
MSE: Mean square error

Fig. 7(a-f): Continue
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Fig. 7(a-f): Comparison of resampling LSE and traditional LSE (Number of iteration Nite = 2), (a) Scenario 1, (b) Scenario 2, (c)
Scenario 3, (d) Scenario 4, (e) Scenario 5 and (f) Scenario 6
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Table 4: Performance of traditional and resampling LSE methods with the
number of iterations, frequency is off nominal one (window length
L = 19)

Number of iterations
-----------------------------------------------------------------

MSE 1 2 3 4
Traditional LSE 0.2737 1.0948 2.4650 4.3880
Resampling LSE 0.2737 0.0967 0.4896 0.3566
Gain - 10.5391 7.0198 10.9009
Traditional LSE 0.8277 3.2766 7.3082 12.9005
Resampling LSE 0.8277 1.2127 2.5305 4.0641
Gain - 4.3176 4.6060 5.0164
MSE: Mean square error

Table 5: Performance of traditional and resampling LSE methods with the
number of iterations, frequency is off nominal one (window length
L = 19; 1000 time average)

Number of iterations
-----------------------------------------------------------------

MSE 1 2 3 4
Traditional LSE 1.0869 4.3166 9.5839 17.1295
Resampling LSE 1.0897 1.8489 3.6819 5.5834
Gain - 3.6823 4.1547 4.8685
MSE: Mean square error

Form Table 4 and 5 and Fig. 7d-f, we can draw the
flowing conclusions. There are huge overshot near the point of
frequency step change and jitter phenomenon when the input
frequency is the off-nominal one. There are certain specialties
of iterative LSE: Design of matrix A should conform to input
signal, in another word, designer has to estimate how many
harmonics are contained in the signal after low pass filter.
Otherwise, the result of LSE would be error, which is difficult
to be revised by iteration. Data window of LSE is defined by
the number of unknown parameters in every row of  matrix A.
A longer data window contains more data which are more
easily distorted by dynamic change of power system and it
also causes longer delay for reporting PMU to phasor data
concentrator. Performance of LSE and convergence speed are
affected by designing of matrix A. If several decaying DC
offset components are contained simultaneously in the signal,
it is a huge problem for designing matrix A. Method of LSE is
sensitive to signal distortions and signal step change caused by
faults of power system, since it is a time-domain algorithm
without abilities of de-noising and anti-aliasing.

CONCLUSIONS

We proposed a method of resampling LSE, whose
performance was analyzed and compared with the traditional
one, when the incoming signal containing harmonics and
decaying DC offset. The key point of resampling LSE is that
it resamples the input signal according to frequency calculated
in previous sampling interval and the iterations processes are
accomplished in each interval, which is limited by the
computation ability of digital signal processor chips. Iterative
LSE can track the nominal frequency and the off-nominal one
in presence of additive Gaussian white  noise  with  harmonics.

The resampling one is less sensitive to DC offset than
traditional one. Resampling LSE shows better performance of
frequency tracking comparison with the old one with less MSE
and better performance in dynamic states of a power system.
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