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ABSTRACT

Independent Component Analysis (ICA) is a powerful Blind Source Separation
(BSS) technique, which is an interesting method applied to many applicationsin
engineering. In this study, a novel treatment of noisy mixture is implemented by
developing an improved FastlCA algorithm with an optimized and adaptive step
size. The proposed agorithm isimplemented in three steps: Centering, whitening
and independent component separation. Whitening step is adjusted to deal with
noisy mixtures. The performance of the proposed algorithm is compared with
RobustI CA. Experimental resultsreveal that the proposed algorithm achieved better
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M SE than RobustI CA on different SNR ranges by 62%.
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INTRODUCTION

Blind Source Separation (BSS) isatechniquethat extracts
the original signals from their mixtures without knowing the
parameters of mixing and the source signals. In other words,
there is no prior information about the mixing process or the
generation of the signals, however, it can be extracted up to
certainindeterminacies. Mathematically, theseambiguitiescan
be stated as arbitrary scaling, permutation and delay of the
estimated source signal (Jutten and Karhunen, 2004).
Nevertheless, these indeterminacies maintain the waveforms
of the original sources. Many algorithms have been proposed
to solve the problem of BSS (Anemuller and Kollmeier, 2000;
Asano et al., 2003; Prasad et al., 2005; Ma and Li, 2008;
Diao et al., 2010). The ICA based separation methods are
among the dominant successful BSS methods. The ICA is
considered to be an efficient statistical techniquefor extracting
individual signals from mixtures. Its importance lies in the
assumptions that the diverse processes produce unrelated
signals. Thisassumption allows| CA to besuccessfully applied
in adiverse range of research fields (Al-Qaisi et al., 2008).

Most ICA methods are devel oped in the case of noiseless
data. Some fast and efficient ICA algorithms have been
proposed such as FastiCA (Hyvarinen and Oja, 1997;
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Hyvarinen, 1999a; Prasad et al., 2005; Shi et al., 2004,
Luetal., 2011). However, all these a gorithms perform poorly
when the noise affectsthe data. Hence, somework isproposed
to overcome the ICA limitations (Hyvarinen, 1998, 1999a-c;
Moulines et al., 1998; Tian et al., 2012). Tichavsky and
Koldovsky (2011) survey some of the successful ICA
agorithms in BSS problems for speech and biomedical
signals. Zhang and Tian (2012) proposed a novel a fast
fixed-point convolutive | CA to enhance noisy seismic records
by removing the random noise and concluded that the average
scintillation index ratio of the desired signals was improved
about 7 dB after processed by the novel method. Folorunso
(2014) presented | CA based BSS techniques with application
to real life activities and concluded that ICA is effectively
working well inthe BSS for audio signals. Voss et al. (2013)
developed a practical agorithm for ICA that is provably
invariant under Gaussi an noise using Hessians of the cumulant
functions and developed an efficient fixed-point gradient
iteration based ICA using a special form of gradient iteration
and concluded that their ICA implementation isworking well
on noisy data.

In this study, the mathematical ICA model consists of the
sources that generated through a linear basis transformation
with Additive White Gaussian Noise (AWGN). Animproved
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FastiCA algorithm is developed with an optimized and
adaptive step size to be used in noisy BSS problems. To
process the noisy mixture, whitening pre-processing step is
adapted by subtracting covariance matrix of noisy data from
the covariance matrix of the noise. Moreover, an adaptive step
size is implemented to improve the Fast ICA in terms of
complexity and performance.

PROPOSED IMPROVED FASTICA

ThelCA isastatistical algorithmthat isexpressed asaset
of multidimensional observations, these observations are
combinations of unknown variables, where the underlying
independent unobserved variables are called sources. The
linear ICA model is expressed as follows:

X = QS+n )

where, X =[x1, X2,...... , Xm] ismixed signals, Q isunknown
mixing matrix, Sis statistically independent signalsand n is
AWGN noise. Figure 1 illustrates the main steps to recover
original signalsfrom anoisy mixture, the source signalss,, s,,
s, and s, are mixed by some mixing matrix Q and affected by
AWGN noise.

Itisessential to discusspreprocessing steps(centering and
whitening) that are generally carried out beforeusing proposed
improved FastlCA in noisy BSS problems.

Centering: To simplify the implementation of ICA, An
elementary preprocessing stepisnormally applied to center the
observation vector x by subtracting its mean vector m=E{x},
asfollow:

X = X-E{X} )

Thisimpliesthat siszero-mean, where, E{ s} = QG'E{ X}
and the mixing matrix remains the same after the centering
process.

Whitening: It is known that convergence speed depends on
step size parameters, if the step sizeislarge, the convergence
speed is high (less number of iterations), vice versa. After
applying the centering process, whitening is generally used:

» To make the data suitable for the ICA based separation
algorithms

»  To speed up the ICA convergence

»  To have better stability propertiesfor the ICA separation

In this study, whitening is modified to remove noise from
thedatamixtureby subtracting covariance matrix of noisy data
from the covariance matrix of the noise R, i.e.:
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Fig. 1: Block diagram of the proposed improved FastICA in
BSS problems 2

In other words, the modified covariance matrix:
C.=Cx-R (4)

isused instead of theoriginal covariancematrix C,. Hence, the
improved whitening is capable of removing noise from the
noisy mixture. The vector with zero mean (is transformed by
alinear transformation into anew vector by whitening process,
possibly of lower dimension, whose elementsare uncorrel ated
with each other (Hyvarinen, 1999b). Thelinear transformation
is found by computing the eigen-value decomposition of the
covariance matrix, where, E is the orthogonal matrix of
eigenvectors and D is the diagona matrix of its eigenvalues.
The modified whitening process that removes noise can be
described by the following whitened vector:

v = PX+n (5)

where, whitening matrix = EDGY2WE'.

In addition to removing noise, the modified whitening
processing reduces the number of parameters to be estimated
by the ICA.

ICA separation: In this study, the whole FastICA processis
decomposed into samples, the following genera equation
represents a one-unit FastICA algorithm for each data sample
after the ordinary whitening process:

F(k) = E{v h(f(k-1)"V)}-E{ b’ (f(k-1)TVv)} f(k-1)  (6)

where, f isthe normalized weight vector and histhederivative
of the non-quadratic function H (a non-linearity of kurtosis
function). However, after implementing the modified
whitening to handle noise, the one-unit FastlCA equation is
modified as f*:

f* = A{Xh(v)}-(1+R) f E{h{V)} )

It is known that most suggested solutions to the ICA use

theforth-order kurtosisfor centered and whitened datasignals,

the kurtosis function is classically defined as follows
(Hyvarinen and Oja, 1997):

Kurt (v) = E{Vv*}-3(E{Vv?})? 8
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It is argued that kurtosis is a poor measure of
non-Gaussianity in many applications, therefore, a higher
order statisticsof v istakeninto account through thefollowing
genera construct function J which considers the difference
between the expectation of H for the actual data and its
expectation for Gaussian data, i.e., the contrast function J
measures the non-normality of a zero-mean random variable
y using an even, non-quadratic, sufficiently smooth function
H asfollows:

Xt*) = [E{HY)}-E{HW)} |- ©)

where, the exponent L istypically 1 or 2 andy is defined as
f'X. Moreover, it is known that the followings are suitable
choicesof H (Lu et al., 2011):

H,(u) = -exp(-a,u?2), H,(u) = tanh(u), H,(u) = u®
H,(u) = V/al log cosh a,u (20

To minimize the computational complexity and error
accumulation and to speed up the FastICA convergence, an
adaptive step size is implemented. The idea of the adaptive
step size isto make the step size dependent on gradient norm
in order to get a fast evaluation at the beginning of the
FastICA iterations and to decrease the mis-adjustments as
stationary points are reached. The following equation is used
to optimize the step sizein our improved FastICA (Diaoet al.,
2010):

@

Sop = @rg max | kurt (f*+5,h)| (12)

where, isthe optimal step size, §, isthe previous step size and
k isthe number of samples. Accordingly, the mixing matrix is
updated using the following equation:

F*(i+1) = f* (i) +0,,H (12

where, isthe next value of f*and f* (i)isthe current value of f*.
Given the optimal step size, if the nonlinear cumulants are
positive, the improved FastiCA takes a step in the same
direction as the gradient method, otherwise, it takesa step in
the opposite direction.

SIMULATION AND RESULT

The improved FastICA is evaluated on four statistically
independent audio signals without noise. These audio signals
arewave format, sampled at 22.05 KHz rate with 3 sec period
samples (10000 samplesfor each signal) and coded in 8 bitsas
shown in Fig. 2. These signals are mixed through the
microphone as shown in Fig. 3. All transmitted source
audio signals are mixed and each signal is multiplied by a
coefficient depending on the path between transmitter and
receiver. Hence, these coefficients construct an unknown
mixing matrix. As aresult, every mixed audio signal differs
from others. In Fig. 2, the X axes represents the number of
samples and Y axes represents the amplitude of the signal in
volts.
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Fig. 2(a-d): Four audio signals
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Fig. 3(a-d): Received mixing signals without noise
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Fig. 4(a-d): Zero-mean signals after applying centering step

To estimate the original audio signalsfromtheir mixtures ~ Centering and whitening. Centering removes the mean from
using the improved FastiCA algorithm, the mixed signals  mixed signalsand yieldsfour zero-mean mixturesasshownin
showninFig. 3 must passthrough several preprocessing steps: Fig. 4.
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Fig. 5(a-d): Whiten signals

Whitening is important to find the orthogonal de-mixing
matrix which facilitates the implementation of the improved
FastICA algorithm as shown in Fig. 5.

These preprocessing steps are beneficia to reduce
dimensionality (decrease the complexity) of the processed
mixtures and to remove the second-order dependencies
between the observed signals. Figure 6 shows the origina
(shown in Blue) and the estimated noiseless audio (shown in
Red) signals after applying the improved FastICA. It can be
noted that the improved Fastl CA hasthe ability to recover the
full aperiod of original signal. Hence, It can be concluded that
the performance of the improved FastiCA is robust in
recovering noiseless audio signals.

In any communication system, transmitted signals
interfere with noise. In this study, the improved FastICA is
used to separate the original audio signals from a mixture of
noisy signals. The most common noise is Additive White
Gaussian Noise (AWGN), in AGWN, the term ‘white' refers
to constant spectral density in agiven frequency range and the
term ‘Gaussian’ refers to normally distributed probability
density curve.

In this study, it is assumed that the dimension of the
source and the mixed signals are the same and the noise is
AGWN. Dealing with noisy mixtures makes the separation
process more complex; hence, the improved FastICA is
adapted by a kurtosis contrast function to find the maximum
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non-gaussianity for the estimated signals. However, to
evaluate the performance on noisy signals, additional
experiments were conducted using the improved FastICA.

The performance of the improved FastICA in separating
noisy audio signalsisevaluated over different Signal to Noise
Ratio (SNR) varied from 5-100. The proposed algorithm is
applied onthe same audio signals (Fig. 2) with AWGN, where
SNR equalsto 10.

The same preprocessing steps (centering and whitening)
were conducted. Centering preprocess step produces a
zero-mean signal as shown in Fig. 7. Figure 8 illustrates the
signals after applying the enhanced whitening to minimizethe
effect of AWGN on amixture of the noisy sources.

Figure 9 showsthe original and the estimated signalswith
SNR equalsto 10.

Figure 10 shows the MSE over original sources having
different SNR varies from 5-100. It can be shown that a
significant decrease in MSE occurs in the SNR periods 5-15,
35-40 and 80-100. These results reveal that the estimated
signalscomfort to reliable communication requirements asthe
MSE is always less than 3 dB.

Additional experiments are conducted to evaluate the
performance of theimproved Fastl CA against the RobustICA,
Fig. 11 shows that the proposed improved FastiICA works
much better than the RobustiCA in term of MSE when
separating noisel esssignal swith different mixing matrixesthat

| Volume 15 | Issue 9 | 2015 |



J. Applied Sci., 15 (9): 1158-1166, 2015

2.0

@ (b)

15¢

—+—Estimated signal

—Original signal 1.0t

05 #%
0.0+

Amplitude
Amplitude

-0.5¢

_1. g
158

20 . . . .
15

(d) —— Estimated signal
—— Original signal

—— Estimated signa
——Origina signal

1.0

0.5H H

Amplitude
Amplitude

2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Samples Samples

Fig. 6(a-d): Original (blue) and estimated (red) noiseless signals, (a) Source signal 1, (b) Source signal 2, (c) Source signal 3 and
(d) Source signal 4
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Fig. 7(a-d): Centering signals with noisy data
are selected randomly. The average MSE when using the Another similar experiment (Fig. 12) is conducted to
improved FastICA and RobustICA is 0.38072 and 0.614199, evaluate the performance of the improved FastICA against the
respectively. RobustICA when separating noisy signals and concluded that
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Fig. 9(a-b): Original and estimated noisy signals, (a) Estimated signal and (b) Original signal

the improved FastICA outperforms the RobustiCA. The
average MSE when using the improved FastiCA and
RobustICA is 0.747458 and 0.9332722, respectively.
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The improved FastiCA

l
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is compared against the
RobustICA in separating noisy signals over different SNR
varies from 5-100. it can be concluded that the proposed
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Fig. 12: MSE of estimated signals with SNR = 40db
improved Fast| CA outperforms Robustl CA, the average M SE

for them is -0.461409 and -0.27609287 dB, respectively
(Fig. 13).
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Fig. 13: Comparison between improved FastiCA and
RobustICA over different SNR's

The MSE measures the average of the square of the
“error”, the lower the MSE the lesser the error on the
estimated signal. From above results, it can be discussed that
the proposed algorithm on average performed better than
RobustICA in terms of MSE. However , in terms of scaling
issue of estimated signals the RobustiCA algorithm
outperformed the proposed agorithm (Prasad et al., 2005;
Al-Qaisi et al., 2008; Zarzoso and Comon, 2010;
Walters-Williams and Li, 2011; Tichavsky and Koldovsky,
2011).

CONCLUSION

This study studied the problem of separating mixed noisy
signalsby animproved Fastl CA. Thewhitening preprocessing
step is adapted to eliminate the AWGN noise. The adaptive
step size technique is implemented to minimize the
computational complexity and error accumulation with an
acceptable number of iterations. Hence, this speeded up the
convergence of the proposed improved FastiCA. Moreover,
fourth order kurtosiswith ageneral construct function isused
to measure the non-normality of a zero-mean data. Results
indicate the robustness of the proposed improved FastICA in
separating source signal from noisy mixtures. The proposed
algorithm outperformed RobustI CA in term of M SE evaluated
on different SNR ranges.
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