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A B S T R A C T
Independent Component Analysis (ICA) is a powerful Blind Source Separation
(BSS) technique, which is an interesting method applied to many applications in
engineering. In this study, a novel treatment of noisy mixture is implemented by
developing an improved FastICA algorithm with an optimized and adaptive step
size. The proposed algorithm is implemented in three steps: Centering, whitening
and independent component separation. Whitening step is adjusted to deal with
noisy mixtures. The performance of the proposed algorithm is compared with
RobustICA. Experimental results reveal that the proposed algorithm achieved better
MSE than RobustICA on different SNR ranges by 62%.

Key words: Noisy mixture, adaptive step size, independent component analysis,
AWGN, RobustICA

INTRODUCTION

Blind Source Separation (BSS) is a technique that extracts
the original signals from their mixtures without knowing the
parameters of mixing and the source signals. In other words,
there is no prior information about the mixing process or the
generation of the signals, however, it can be extracted up to
certain indeterminacies. Mathematically, these ambiguities can
be stated as arbitrary scaling, permutation and delay of the
estimated source signal (Jutten and Karhunen, 2004).
Nevertheless, these indeterminacies maintain the waveforms
of the original sources. Many algorithms have been proposed
to solve the problem of BSS (Anemuller and Kollmeier, 2000;
Asano  et  al.,  2003;  Prasad et al., 2005; Ma and Li, 2008;
Diao et al., 2010). The ICA based separation methods are
among the dominant successful BSS methods. The ICA is
considered to be an efficient statistical technique for extracting
individual signals from mixtures. Its importance lies in the
assumptions that the diverse processes produce unrelated
signals. This assumption allows ICA to be successfully applied
in a diverse range of research fields (Al-Qaisi et al., 2008).

Most ICA methods are developed in the case of noiseless
data. Some fast and efficient ICA algorithms have been
proposed such as FastICA (Hyvarinen and Oja, 1997;

Hyvarinen,  1999a;  Prasad  et  al.,  2005;  Shi  et  al.,  2004;
Lu et al., 2011). However, all these algorithms perform poorly
when the noise affects the data. Hence, some work is proposed
to overcome the ICA limitations (Hyvarinen, 1998, 1999a-c;
Moulines et al., 1998; Tian et al., 2012). Tichavsky and
Koldovsky (2011) survey some of the successful ICA
algorithms in BSS problems for speech and biomedical
signals.  Zhang  and  Tian  (2012)  proposed  a  novel  a  fast
fixed-point convolutive ICA to enhance noisy seismic records
by removing the random noise and concluded that the average
scintillation index ratio of the desired signals was improved
about 7 dB after processed by the novel method. Folorunso
(2014) presented ICA based BSS techniques with application
to real life activities and concluded that ICA is effectively
working well in the BSS for audio signals. Voss et al. (2013)
developed a practical algorithm for ICA that is provably
invariant under Gaussian noise using Hessians of the cumulant
functions and developed an efficient fixed-point gradient
iteration based ICA using a special form of gradient iteration
and concluded that their ICA implementation is working well
on noisy data.

In this study, the mathematical ICA model consists of the
sources that generated through a linear basis transformation
with Additive White Gaussian Noise (AWGN). An improved
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Pre-processing stage

FastICA algorithm is developed with an optimized and
adaptive step size to be used in noisy BSS problems. To
process the noisy mixture, whitening pre-processing step is
adapted by subtracting covariance matrix of noisy data from
the covariance matrix of the noise. Moreover, an adaptive step
size is implemented to improve the Fast ICA in terms of
complexity and performance.

PROPOSED IMPROVED FASTICA

The ICA is a statistical algorithm that is expressed as a set
of multidimensional observations, these observations are
combinations of unknown variables, where the underlying
independent unobserved variables are called sources. The
linear ICA model is expressed as follows:

X = QS+n (1)

where, X = [x1, x2,……, xm] is mixed signals, Q is unknown
mixing matrix, S is statistically independent signals and n is
AWGN noise. Figure 1 illustrates the main steps to recover
original signals from a noisy mixture, the source signals s1, s2,
s3 and s4 are mixed by some mixing matrix Q and affected by
AWGN noise.

It is essential to discuss preprocessing steps (centering and
whitening) that are generally carried out before using proposed
improved FastICA in noisy BSS problems.

Centering: To simplify the implementation of ICA, An
elementary preprocessing step is normally applied to center the
observation vector x by subtracting its mean vector m = E{x},
as follow:

X = X-E{X} (2)

This implies that s is zero-mean, where, E{s} = QG1E{X}
and the mixing matrix remains the same after the centering
process.

Whitening: It is known that convergence speed depends on
step size parameters, if the step size is large, the convergence
speed is high (less number of iterations), vice versa. After
applying the centering process, whitening is generally used:

C To make the data suitable for the ICA based separation
algorithms

C To speed up the ICA convergence
C To have better stability properties for the ICA separation

In this study, whitening is modified to remove noise from
the data mixture by subtracting covariance matrix of noisy data
from the covariance matrix of the noise R, i.e.:

x̃ = (Cx-R)G1/2x (3)

Fig. 1: Block diagram of the proposed improved FastICA in
BSS problems 2

In other words, the modified covariance matrix:

C̃x = Cx-R (4)

is used instead of the original covariance matrix Cx. Hence, the
improved whitening is capable of removing noise from the
noisy mixture. The vector with zero mean (is transformed by
a linear transformation into a new vector by whitening process,
possibly of lower dimension, whose elements are uncorrelated
with each other (Hyvarinen, 1999b). The linear transformation
is found by computing the eigen-value decomposition of the
covariance matrix, where, E is the orthogonal matrix of
eigenvectors and D is the diagonal matrix of its eigenvalues.
The modified whitening process that removes noise can be
described by the following whitened vector:

v = Px̃+n (5)

where, whitening matrix = EDG1/2WET.
In addition to removing noise, the modified whitening

processing reduces the number of parameters to be estimated
by the ICA.

ICA separation: In this study, the whole FastICA process is
decomposed into samples, the following general equation
represents a one-unit FastICA algorithm for each data sample
after the ordinary whitening process:

F(k) = E{v h(f(k-1)Tv)}-E{h’(f(k-1)Tv)} f(k-1) (6)

where, f is the normalized weight vector and h is the derivative
of the non-quadratic function H (a non-linearity of kurtosis
function). However, after implementing the modified
whitening to handle noise, the one-unit FastICA equation is
modified as f*:

f* = h́{x̃h(v)}-(I+R) f E{h́{v)} (7)

It is known that most suggested solutions to the ICA use
the forth-order kurtosis for centered and whitened data signals,
the kurtosis function is classically defined as follows
(Hyvarinen and Oja, 1997):

Kurt (v) = E{v4}-3(E{v2})2 (8)
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It   is   argued   that   kurtosis   is   a   poor   measure   of
non-Gaussianity in many applications, therefore, a higher
order statistics of v is taken into account through the following
general construct function J which considers the difference
between the expectation of H for the actual data and its
expectation for Gaussian data, i.e., the contrast function J
measures the non-normality of a zero-mean random variable
y using an even, non-quadratic, sufficiently smooth function
H as follows:

J(f*) = *E{H(y)}-E{H(v)}*L (9)

where, the exponent L is typically 1 or 2 and y is defined as
fTx̃. Moreover, it is known that the followings are suitable
choices of H (Lu et al., 2011):

H1(u) = -exp(-a2u
2/2), H2(u) = tanh(u), H3(u) = u3

H4(u) = 1/a1 log cosh a1u (10)

To minimize the computational complexity and error
accumulation and to speed up the  FastICA  convergence,  an
adaptive step size is implemented. The idea of the adaptive
step size is to make the step size dependent on gradient norm
in order to get a fast evaluation at the beginning of the 
FastICA iterations and to decrease the mis-adjustments as
stationary points are reached. The following equation is used
to optimize the step size in our improved FastICA (Diao et al.,
2010):

δopt = arg maxk*kurt (f*+δkh)* (11)

where, is the optimal step size, δk is the previous step size and
k is the number of samples. Accordingly, the mixing matrix is
updated using the following equation:

F*(i+1) = f*(i)+δoptH (12)

where, is the next value of f*and f*(i)is the current value of f*.
Given the optimal step size, if the nonlinear cumulants are
positive, the improved FastICA takes a step in the same
direction as the gradient method, otherwise, it takes a step in
the opposite direction.

SIMULATION AND RESULT

The improved FastICA is evaluated on four statistically
independent audio signals without noise. These audio signals
are wave format, sampled at 22.05 KHz rate with 3 sec period
samples (10000 samples for each signal) and coded in 8 bits as
shown  in  Fig.   2.   These   signals   are   mixed   through   the
microphone  as  shown  in  Fig.  3.  All  transmitted  source
audio signals are mixed and each signal is multiplied by a
coefficient depending on the path between transmitter and
receiver. Hence, these coefficients construct an unknown
mixing matrix. As a result, every mixed audio signal differs
from others. In Fig. 2, the X axes represents the number of
samples and Y axes represents the amplitude of the signal in
volts.

Fig. 2(a-d): Four audio signals
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Fig. 3(a-d): Received mixing signals without noise

Fig. 4(a-d): Zero-mean signals after applying centering step

To estimate the original audio signals from their mixtures
using the improved FastICA algorithm, the mixed signals
shown in Fig. 3 must pass through several preprocessing steps:

Centering and whitening. Centering removes the mean from
mixed signals and yields four zero-mean mixtures as shown in
Fig. 4.
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Fig. 5(a-d): Whiten signals

Whitening is important to find the orthogonal de-mixing
matrix which facilitates the implementation of the improved
FastICA algorithm as shown in Fig. 5.

These preprocessing steps are beneficial to reduce
dimensionality (decrease the complexity) of the processed
mixtures and to remove the second-order dependencies
between the observed signals. Figure 6 shows the original
(shown in Blue) and the estimated noiseless audio (shown in
Red) signals after applying the improved FastICA. It can be
noted that the improved FastICA has the ability to recover the
full a period of original signal. Hence, It can be concluded that
the performance of the improved FastICA is robust in
recovering noiseless audio signals.

In any communication system, transmitted signals
interfere with noise. In this study, the improved FastICA is
used to separate the original audio signals from a mixture of
noisy signals. The most common noise is Additive White
Gaussian Noise (AWGN), in AGWN, the term ‘white’ refers
to constant spectral density in a given frequency range and the
term ‘Gaussian’ refers to normally distributed probability
density curve.

In this study, it is assumed that the dimension of the
source and the mixed signals are the same and the noise is
AGWN. Dealing with noisy mixtures makes the separation
process more complex; hence, the improved FastICA is
adapted by a kurtosis contrast function to find the maximum

non-gaussianity for the estimated signals. However, to
evaluate the performance on noisy signals, additional
experiments were conducted using the improved FastICA.

The performance of the improved FastICA in separating
noisy audio signals is evaluated over different Signal to Noise
Ratio (SNR) varied from 5-100. The proposed algorithm is
applied on the same audio signals (Fig. 2) with AWGN, where
SNR equals to 10.

The same preprocessing steps (centering and whitening)
were  conducted.  Centering  preprocess  step  produces  a
zero-mean signal as shown in Fig. 7. Figure 8 illustrates the
signals after applying the enhanced whitening to minimize the
effect of AWGN on a mixture of the noisy sources.

Figure 9 shows the original and the estimated signals with
SNR equals to 10.

Figure 10 shows the MSE over original sources having
different SNR varies from 5-100. It can be shown that a
significant decrease in MSE occurs in the SNR periods 5-15,
35-40 and 80-100. These results reveal that the estimated
signals comfort to reliable communication requirements as the
MSE is always less than 3 dB.

Additional experiments are conducted to evaluate the
performance of the improved FastICA against the RobustICA,
Fig. 11 shows that the proposed improved FastICA works
much better than the RobustICA in term of MSE when
separating noiseless signals with different mixing matrixes that
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Fig. 6(a-d): Original (blue) and estimated (red) noiseless signals, (a) Source signal 1, (b) Source signal 2, (c) Source signal 3 and
(d) Source signal 4

Fig. 7(a-d): Centering signals with noisy data

are selected randomly. The average MSE when using the
improved FastICA and RobustICA is 0.38072 and 0.614199,
respectively.

Another similar experiment (Fig. 12) is conducted to
evaluate the performance of the improved FastICA against the
RobustICA  when  separating noisy signals and concluded that
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Fig. 8(a-d): Whiten signals for noisy data

Fig. 9(a-b): Original and estimated noisy signals, (a) Estimated signal and (b) Original signal

the improved FastICA outperforms the RobustICA. The
average MSE when using the improved FastICA and
RobustICA is 0.747458 and 0.9332722, respectively.

The improved FastICA is compared against the
RobustICA in separating noisy signals over different SNR
varies  from  5-100.  it  can  be  concluded  that  the   proposed 
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Fig. 10: Variation of mean square error with signal-to-noise
ratio

Fig. 11: MSE of estimated signals without noise

Fig. 12: MSE of estimated signals with SNR = 40db

improved FastICA outperforms RobustICA, the average MSE
for  them  is  -0.461409  and  -0.27609287  dB,  respectively
(Fig. 13).

Fig. 13: Comparison between improved FastICA and
RobustICA over different SNR’s

The MSE measures the average of the square of the
“error”, the lower the MSE the lesser the error on the
estimated signal. From above results, it can be discussed that
the proposed algorithm on average performed better than
RobustICA in terms of MSE. However , in terms of scaling
issue of estimated signals the RobustICA algorithm
outperformed  the  proposed  algorithm  (Prasad  et  al.,  2005;
Al-Qaisi   et   al.,   2008;   Zarzoso   and   Comon,   2010;
Walters-Williams and Li, 2011; Tichavsky and Koldovsky,
2011).

CONCLUSION

This study studied the problem of separating mixed noisy
signals by an improved FastICA. The whitening preprocessing
step is adapted to eliminate the AWGN noise. The adaptive
step size technique is implemented to minimize the
computational complexity and error accumulation with an
acceptable number of iterations. Hence, this speeded up the
convergence of the proposed improved FastICA. Moreover,
fourth order kurtosis with a general construct function is used
to measure the non-normality of a zero-mean data. Results
indicate the robustness of the proposed improved FastICA in
separating source signal from noisy mixtures. The proposed
algorithm outperformed RobustICA in term of MSE evaluated
on different SNR ranges.
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