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A B S T R A C T
An efficient precomputation-based generic-point parallel scalar multiplication
method is presented in this study. The proposed method takes a set of generic points
and performs their precomputations concurrently using an equivalent set of elliptic
curve cryptoprocessors. Then, parallel scalar multiplications are performed
sequentially for each of the generic points. The new method outperforms the
existing postcomputation-based methods. Furthermore, it is scalable for any number
of parallel processors and performs better as the number of consecutive requests
increases.  The  proposed  method  has  been implemented on an FPGA and its
Area-Time2 (AT2) performance metric outperformed recent fast implementations.
Accordingly, the proposed method is very suitable for use in high-performance end
servers that use parallel elliptic curve processors.
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INTRODUCTION

Initially proposed by Miller (1986) and Koblitz (1987),
Elliptic Curve Cryptosystems (ECCs), which are based on the
Discrete Logarithm Problem (DLP), are perceived to be a
serious alternative to the RSA system with a much shorter
word length (Rivest et al., 1978). Due to the apparent
difficultly in tackling the problem, the key sizes can be
considerably reduced (Blake et al., 1999) and the security of
an ECC with a key size of 128-256 bits has been proven to be
equal to that of an RSA system with 1-2 kb. Due to these
advantages, ECCs have recently gained considerable
recognition andare incorporated in many standards.

The basic operation for ECCs is scalar multiplication,
denoted as kP (Hankerson et al., 2004). Scalar multiplication
of a group of points on an elliptic curve is analogous to the
exponentiation of a multiplicative group of integers modulo a
fixed integer m. However, for high-performance end servers,

the current sequential scalar multiplication methods are too
slow to meet the demands of the increasing numbers of
customers. Thus, efficient scalar multiplication methods for
such servers need to be identified. Scalar multiplication
methods that can be parallelized are often used for high-speed
implementations. Although precomputations (Brickell et al.,
1993) have been applied to speed up scalar multiplication, they
require sequential steps that cannot be parallelized and are
primarily advantageous when the elliptic curve point is fixed.
However, during secure communication sessions using public
keys, the elliptic curve point changes, as it depends on the
public key of the communicating entity and hence, session
dependent. This is also the case when digital signatures are
used. Therefore, scalar multiplications are generally performed
with a generic elliptic curve point. Because the elliptic curve
point is likely to differ in each session, the overheads resulting
from the necessary precomputations must be considered when
estimating the total computational time required.
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Postcomputations    have    recently    been    proposed
(Al-Somani    and    Ibrahim,    2009;    Al-Somani,    2010;
Al-Somani et al., 2014) as an alternative method of speeding
up scalar multiplication. In (Al-Somani and Ibrahim, 2009),
the precomputation overheads are replaced by
postcomputations that can be parallelized. The multiplier  k  is
partitioned into u partitions  that  can  be  processed  in parallel
by u processors using the binary method. Postcomputations are
then distributed on u-1 processors to be performed in parallel.
The points that result from processing these key partitions with
the postcomputations are finally assimilated to produce kp.
However, the performance of the postcomputation-based
method is analyzed in (Al-Somani, 2010) and the results show
that the best performance is achieved when 8 cryptoprocessors
are used with 128#m#256, which limits the performance when
more parallel cryptoprocessors are available.

An efficient postcomputation method was recently
proposed in (Al-Somani et al., 2014), which uses an efficient
mapping technique between the computations and the
processors. The results in (Al-Somani et al., 2014) show that
the proposed method is efficient and scalable for any number
of parallel processors and performs better as the number of
consecutive requests increases. In this study,  a  highly
efficient precomputation-based generic-point parallel scalar
multiplication method is presented. 

BRIEF INTRODUCTION TO ELLIPTIC CURVE
CRYPTOSYSTEMS

Elliptic curve cryptosystems (Miller, 1986; Koblitz, 1987)
attract a great deal of research attention and are included in
numerous standards. The ECCs are emerging as an attractive
alternative to other public-key schemes such as RSA as they
offer a smaller key size and higher strength per bit. Extensive
research has been conducted on the underlying mathematics,
security strength and efficient implementation of ECCs. The
discrete points on an elliptic curve form an abelian group, the
group operation of which is known as “Point addition”
(PADD). Elliptic curve point addition is defined according to
the “Chord-tangent process.” Point addition of the same point
to itself is referred to as point doubling (PDBL). 

Scalar multiplication is the basic operation in ECC
(Hankerson et al., 2004). Computing kP can be achieved with
the binary method (Hankerson et al., 2004), the so called
double  and  add  method,  based  on  the  binary  expression
of the multiplier k. The kP can be computed using a binary
method as follows.

Let k = (km-1,…,k0), where km-1 is the most significant bit
of k, be the binary representation of k. The multiplier k can be
written as:

(1)
i m 1

i m 1 1 0
0 i m

k k 2 k 2 k 2 k


 

     

Using the Horner expansion, k can be rewritten as:

k = (þ((km-12+km-2)2+þ+k1)2+k0) (2)

Accordingly:

kP = 2 (þ2 (2km-1P+km-2P)+þ+k1P+k0P (3)

The average time complexity of the binary method is:

Time complexity = (m) PDBL+(m/2) PADD (4)

PROPOSED METHODS

The main idea here is to perform u sequential
precomputations of u generic points concurrently using u
processors in the first stage by mapping each generic point to
an individual processor. In the second stage, the precomputed
points are used to perform the parallel scalar multiplication of
each point of the u generic points. Each multiplier k of the u
multipliers is partitioned into a number of equally sized
partitions (v) that can be processed in parallel by u processors.
The points resulting from processing these key partitions are
assimilated at the end to produce kP. The number of available
processors limits the number of partitions of each k. For a
particular P and k, each partition is associated with a
precomputed point to maintain its significance. For u
partitions, (u-1) precomputed points are required for each k.
Precomputed points can be computed simply by a sequence of
doubling operations of the base point P. The computation of
kP for a particular P and k in parallel can be carried out as
follows.

Let k = (km-1,..., k0) be the binary representation of
multiplier k. Let u be a small integer and let v = (m/u). A set
of (uv-m) zero bits is appended to the left of the binary
representation of k and the resulting bit string is partitioned
into   u   partitions   each  of  a  length  v.  Thus,  k  becomes
k = (k(u–1)||k(u–2)||…||k(1)||k(0)), where, each k(i) is a partition of a
length v = (m/u). The scalar multiplication product kp can be
computed as:

(5)i
0 i u

kP s
 

 

where, si is defined as:

si = 2 (þ2 (2kiv+v-1(2
ivP)+kiv+v-2(2

ivP))+þ+kiv+1(2
ivP))+kiv+0(2ivP)

(6)

The kP for u points and keys using Eq. 5 and 6 can be
computed using the following algorithm.
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Algorithm 1: Proposed method
Step 1: Inputs: P[0], P[1],..., P[u-1], k[0], k[1],..., k[u-1]
Step 2: By  padding  the  ks  with  (uv-m)   zeros   if  necessary, 

write  each k  =  (k(u–1)||k(u–2)||…||k(1)||k(0)),   where   each   k(i) 
 is   a   partition   of   length v = [m/u]

Step 3: Initialization
Step 3.1: For i = 0 to u-1, do
Step 3.1.1: Q[i]7P[i]
Step 3.1.2: R[i]7O
Step 4: Perform concurrent precomputations of u points for each of

the Ps
Step 4.1: For i = 0 to u-1, do (in parallel)
Step 4.1.1: P0[i]7Q[i]
Step 4.2:  For w = 0 to u-1 do (in parallel)
Step 4.2.1: for i = 1 to u-1, do
Step 4.2.1.1: for j = 0 to v-1, do
Step 4.2.1.1.1: Q[w]72Q[w]
Step 4.2.1.2: Pi[w]7Q[w]
Step 5: Key partition association with precomputed points
Step 5.1: for i = 0 to u-1 do
Step 5.1.1: for j = 0 to u-1 do
Step 5.1.1.1: (k[i](j), Pj[i]).
Step 6: Scalar multiplication:
Step 6.1: for i = 0 to u-1 do
Step 6.1.1: for j = 0 to u-1, do (in parallel)
Step 6.1.1.1: Q[i] The Binary Method (k[i](j), Pj[i])
Step 6.1.1.2: R[i]7R[i]+Q[i]
Step 6.1.2: Output R[i]

Algorithm 1 shows the pseudo code of the proposed method.
Algorithm 1 accepts u requests, which means u points and u
keys. For u requests, P[i] and k[i] represent the base point and
the key of the request i, respectively. The partitioning of the ks
into u partitions is performed in Step 2. For a particular key
k[i], k[i](j) represents the jth partition of the key k[i].
Precomputed points are computed concurrently for each of the
P points by repeated doubling in Step 4. For a particular point
P[i], Pj[0] represents the base point of the key partition J.

For a particular P and k, each partition k(i) is associated
with a particular precomputed point Pi to maintain the
significance of each partition (Step 5). For a particular P and
k, parallel scalar multiplications start in Step 6. An individual
processor processes each partition independently. The points
resulting from  each  execution  of  the  binary  scalar 
multiplication method (Hankerson et al., 2004) are
accumulated in point R (Step 6.1.1.2), which requires (u-1) the
addition of extra points. 

Example:  Let,  k  =  (1000  0101  1100  0011)2 = (34243)10,
m  =  16  u  = 2. The key partitions are k(0) = 1100 0011 and
k(1) = 1000 0101. The scalar multiplication of these partitions
is then computed in parallel for two consecutive requests,
using the same key for simplicity and two different points
(P[0] and P[1]), as:

Stage 1: Concurrent precomputations stage.
Processor(0): Precompute P8[0]
Processor(1): Precompute P8[1]

Stage 2: Processing stage
C Processing the 1st request (kP0)
Processor(0): s0,P[0]  = (2(2(2(2(2(2(2(1)-P[0]+(1)-

P[0])+(0)P[0])+(0)P[0])+(0)P[0])+(0)
P[0])+(1)P[0])+(1)P[0]) = 195 P[0]

Processor(1): s1,P[0]  =  (2(2(2(2(2(2(2(1)-P8[0)+
(0)P8[0])+(0)P8[0])+(0)P8[0])+
(0)P8[0])+(1)P8[0])+(0)P8[0])+(1)P8

[0]) = 34048 P8-[0]

Accordingly, kP[0] is computed as:

kP[0] = s0,P[0]+s1,P[0] = 195P[0]+34048P[0] = 34243P[0]

C Processing the 2nd request (kP[1])
Processor(0): s0,P[1] = (2(2(2(2(2(2(2(1)-P[1]+(1)-

P[1])+(0)P[1])+(0)P[1])+(0)P[1])+(0)
P[1])+(1)P[1])+(1)P[1]) = 195 P[1]

Processor(1): s1,P[1] = (2(2(2(2(2(2(2(1)-P8[1]+
(0)P8[1])+(0)P8[1])+(0)P8[1])+
(0)P8[1])+(1)P8[1])+(0)P8[1])+(1)
P8[1]) = 34048 P-[1]

Accordingly, kP[1] is computed as:

 kP[1] = s0,P[1]+s1,P[1] = 195P[1]+34048P[1] = 34243P[1]

PERFORMANCE ANALYSIS

The average time the proposed method takes to compute
kP, depending on the number of consecutive requests, denoted
here by rs, equals:

  r v
Time complexity v(u 1)DBL r (vDBL u 1 ADD

u 2
           
   

(7)

The number of precomputed points to be stored for each
of the u generic points equals (u-1). Each partition requires one
storage element, as in the binary method. Accordingly, the
number of storage elements required for the proposed method
equals u(u-1)+u = u2 storage elements. However, space is not
a limiting factor here, as the target is high-performance end
servers that use parallel processors.

The performance analysis results in (Al-Somani, 2010)
show that the best performance is achieved when eight
processors    are    used.    Accordingly,    the    methods    in
(Al-Somani and Ibrahim, 2009; Al-Somani et al., 2014) are
compared with the method proposed in this study when eight
processors (u = 8) are deployed using different values of m.
For simplicity, it is assumed here that the required computation
time for point addition is twice that required for point
doubling. Table 1 shows the comparison results, in terms of
point doublings, with up to 32 consecutive requests. Figure 1
depicts the results when m = 256 bits.
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Table 1: Results of the proposed method with m = 128, 160, 200, 256 and u = 8
Total (DBLs)
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
r = 2 r = 4 r = 8 r = 16 r = 32
------------------------------ ------------------------------- -------------------------------- ------------------------------- -------------------------------

m * ** New * ** New * ** New * ** New * ** New
128 268 190 120.00 536 380 240.0 1072 760 480 2144 1520 960 4288 3040 1920
160 332 230 143.00 664 460 286.0 1328 920 572 2656 1840 1144 5312 3680 2288
200 412 280 171.75 824 560 343.5 1648 1120 687 3296 2240 1374 6592 4480 2748
256 530 350 212.00 1060 700 424.0 2120 1400 848 4240 2800 1696 8480 5600 3392
*Al-Somani and Ibrahim (2009) and **Al-Somani et al. (2014)

Table 2: AT2 comparison results over GF (2163)
AT2

---------------------------------------------------------------------------------------------------------
Area (slices) Time (µsec) r = 1 r = 2 r = 4 r = 8 r = 16 r = 32 References
15020 36.77 2.03E+07 8.12E+07 3.25E+08 1.30E+09 5.20E+09 2.08E+10 Chelton and Benaissa (2006)
15368 33.05 1.68E+07 6.71E+07 2.69E+08 1.07E+09 4.30E+09 1.72E+10 Chelton and Benaissa (2008)
4080 20.56 1.72E+06 6.90E+06 2.76E+07 1.10E+08 4.42E+08 1.77E+09 Ansari and Hasan (2008)
20807 7.72 1.24E+06 4.96E+06 1.98E+07 7.94E+07 3.17E+08 1.27E+09 Zhang et al. (2010)
22936 5.48 6.89E+05 2.76E+06 1.10E+07 4.41E+07 1.76E+08 7.05E+08 Sutter et al. (2013)
62073 2.75 4.68E+05 1.87E+06 7.49E+06 3.00E+07 1.20E+08 4.80E+08 New (proposed here)
A: Area, T: Time

Fig. 1: Implementation results with m = 256 and u = 8

RESULTS

The  lower  bound  on  the  area-time  cost  of  a  given
design is usually used as a performance metric AT2α, 0#α#1,
where the choice of α determines the relative importance of
area and time (Thompson, 1980). Such lower bounds have
been obtained for several problems, e.g., discrete Fourier
transform, matrix multiplication, binary addition and others
(Thompson, 1980). Once the lower bound on the chosen
performance metric is known, designers attempt to devise
algorithms  and  designs  that  are  optimal  for  a  range  of
area  and  time  values.  Even  though  a  design  might  be
optimal  for  area  (A)  and  time  (T)  values  within  a  certain
range, it is nevertheless of interest to obtain designs for the
minimum time, i.e., maximum speed performance and area
values. 

In this study, we are interested in high performance
implementations. Accordingly, to make a more meaningful
comparison   between   the  proposed  method  and  recent  fast

Fig. 2: Results with m = 256 and u = 8

implementations   (Chelton   and  Benaissa,  2006;  Ansari  and
Hasan, 2008; Chelton and Benaissa, 2008; Zhang et al., 2010;
Sutter et al., 2013), the AT2 measure is evaluated. The
proposed method was modeled using VHDL and synthesized
on  a  Xilinx  Vertex  7  FPGA  (xc7v2000t-2flg1925)  over
GF (2163) with Gaussian Normal Basis (Ash et al., 1989) and
Lopez-Dahab coordinates (Lopez and Dahab, 1998). The
proposed ECC cryptoprocessors consists of eight scalar
multiplication processors. The synthesis report shows that the
number of slices is 62073 and the maximum frequency is
297.461 MHZ. Table 2 shows the AT2 comparison results for
the proposed method and recent fast implementations with up
to 32 consecutive requests. Figure 2 depicts the results of the
four fastest implementations.
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DISCUSSION

Table 1 shows the comparison results for the proposed
method and the postcomputation methods (Al-Somani and
Ibrahim, 2009; Al-Somani et al., 2014). The results clearly
show that the proposed method outperforms the
postcomputation methods (Al-Somani and Ibrahim, 2009;
Al-Somani et al., 2014) when the number of consecutive
requests is two or more. The results also show that the
proposed method performs better as the number of consecutive
requests increases. Moreover, the proposed method is scalable
for any number of parallel processors and is not limited to just
eight, as in (Al-Somani and Ibrahim, 2009).

Table 2 shows the AT2 comparison results for the
proposed method and recent fast implementations (Chelton
and Benaissa, 2006; Ansari and Hasan, 2008; Chelton and
Benaissa, 2008; Zhang et al., 2010; Sutter et al., 2013). The
results clearly show that the AT2 performance metric of the
proposed implementation outperforms the previous
implementations in the literature (Chelton and Benaissa, 2006;
Ansari  and  Hasan,  2008;  Chelton  and  Benaissa,  2008;
Zhang et al., 2010; Sutter et al., 2013). Accordingly, the
proposed method is highly suited for use in high-performance
end servers that use parallel elliptic curve processors.

CONCLUSION

Postcomputations have recently been proposed in which
the precomputation overheads are replaced by
postcomputations that can be parallelized. An efficient
precomputation-based generic-point parallel scalar
multiplication method is presented in this study. The proposed
method accepts a set of generic points and performs their
precomputations concurrently using an equivalent set of
elliptic curve cryptoprocessors. Then, parallel scalar
multiplications are performed sequentially for each of these
generic points. The new method outperforms the existing
postcomputation-based methods and is scalable for any
number of parallel processors. Furthermore, the proposed
method was implemented on an FPGA and the AT2

performance metric of the proposed method outperformed the
recent fast implementations in the literature.
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