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ABSTRACT

An efficient precomputation-based generic-point parallel scalar multiplication
method is presented in thisstudy. The proposed method takesaset of generic points
and performstheir precomputations concurrently using an equivalent set of elliptic
curve cryptoprocessors. Then, parallel scalar multiplications are performed
sequentialy for each of the generic points. The new method outperforms the
existing postcomputati on-based methods. Furthermore, itisscal ablefor any number
of parallel processors and performs better as the number of consecutive requests
increases. The proposed method has been implemented on an FPGA and its
Area-Time? (AT?) performance metric outperformed recent fast implementations.
Accordingly, the proposed method isvery suitablefor usein high-performanceend
servers that use parallel elliptic curve processors.
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INTRODUCTION

Initially proposed by Miller (1986) and Koblitz (1987),
Elliptic Curve Cryptosystems (ECCs), which are based on the
Discrete Logarithm Problem (DLP), are perceived to be a
serious aternative to the RSA system with a much shorter
word length (Rivest et al., 1978). Due to the apparent
difficultly in tackling the problem, the key sizes can be
considerably reduced (Blake et al., 1999) and the security of
an ECC with akey size of 128-256 bits has been proven to be
equal to that of an RSA system with 1-2 kb. Due to these
advantages, ECCs have recently gained considerable
recognition andare incorporated in many standards.

The basic operation for ECCs is scalar multiplication,
denoted as kP (Hankerson et al., 2004). Scalar multiplication
of a group of points on an elliptic curve is analogous to the
exponentiation of amultiplicative group of integers modulo a
fixed integer m. However, for high-performance end servers,
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the current sequential scalar multiplication methods are too
slow to meet the demands of the increasing numbers of
customers. Thus, efficient scalar multiplication methods for
such servers need to be identified. Scalar multiplication
methods that can be parallelized are often used for high-speed
implementations. Although precomputations (Brickell et al.,
1993) havebeen applied to speed up scalar multiplication, they
require sequential steps that cannot be parallelized and are
primarily advantageous when the elliptic curve point isfixed.
However, during secure communication sessions using public
keys, the dliptic curve point changes, as it depends on the
public key of the communicating entity and hence, session
dependent. This is also the case when digital signatures are
used. Therefore, scalar multiplicationsaregenerally performed
with a generic elliptic curve point. Because the elliptic curve
pointislikely to differ in each session, the overheadsresulting
from the necessary precomputations must be considered when
estimating the total computational time required.
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Postcomputations have recently been proposed
(Al-Somani and lbrahim, 2009; Al-Somani, 2010;
Al-Somani et al., 2014) as an alternative method of speeding
up scalar multiplication. In (Al-Somani and Ibrahim, 2009),
the precomputation overheads are replaced by
postcomputationsthat can be parallelized. Themultiplier k is
partitioned into u partitions that can be processed inparallel
by u processorsusing the binary method. Postcomputationsare
then distributed on u-1 processorsto be performed in parallel.
Thepointsthat result from processing thesekey partitionswith
the postcomputations are finally assimilated to produce kp.
However, the performance of the postcomputation-based
method isanalyzed in (Al-Somani, 2010) and the results show
that the best performanceisachieved when 8 cryptoprocessors
areused with 128<m<256, whichlimitsthe performancewhen
more parallel cryptoprocessors are available.

An efficient postcomputation method was recently
proposed in (Al-Somani et al., 2014), which uses an efficient
mapping technique between the computations and the
processors. The resultsin (Al-Somani et al., 2014) show that
the proposed method is efficient and scalable for any number
of paralel processors and performs better as the number of
consecutive requests increases. In this study, a highly
efficient precomputation-based generic-point parallel scalar
multiplication method is presented.

BRIEF INTRODUCTION TO ELLIPTIC CURVE
CRYPTOSYSTEMS

Elliptic curvecryptosystems(Miller, 1986; Koblitz, 1987)
attract a great deal of research attention and are included in
numerous standards. The ECCs are emerging as an attractive
alternative to other public-key schemes such as RSA as they
offer asmaller key size and higher strength per bit. Extensive
research has been conducted on the underlying mathematics,
security strength and efficient implementation of ECCs. The
discrete points on an elliptic curve form an abelian group, the
group operation of which is known as “Point addition”
(PADD). Elliptic curve point addition is defined according to
the “ Chord-tangent process.” Point addition of the same point
to itself isreferred to as point doubling (PDBL).

Scalar multiplication is the basic operation in ECC
(Hankerson et al., 2004). Computing kP can be achieved with
the binary method (Hankerson et al., 2004), the so called
double and add method, based on the binary expression
of the multiplier k. The kP can be computed using a binary
method as follows.

Letk = (Kyq,---,Ko), Wherek,, ; isthe most significant bit
of k, bethe binary representation of k. The multiplier k can be
written as:

Using the Horner expansion, k can be rewritten as:
K = (- (K1 24K, )2+ +k ) 2+k,) 2
Accordingly:
kP =2 (-2 (2ky.1P+kpy, ,P)++k P+k P (3)
The average time complexity of the binary method is:
Time complexity = (m) PDBL+(m/2) PADD 4
PROPOSED METHODS

The main idea here is to perform u sequentia
precomputations of u generic points concurrently using u
processors in the first stage by mapping each generic point to
anindividual processor. In the second stage, the precomputed
points are used to perform the parallel scalar multiplication of
each point of the u generic points. Each multiplier k of theu
multipliers is partitioned into a number of equaly sized
partitions (v) that can be processed in parallel by u processors.
The points resulting from processing these key partitions are
assimilated at the end to produce kP. The number of available
processors limits the number of partitions of each k. For a
particular P and k, each partition is associated with a
precomputed point to maintain its significance. For u
partitions, (u-1) precomputed points are required for each k.
Precomputed points can be computed simply by asequence of
doubling operations of the base point P. The computation of
kP for a particular P and k in parallel can be carried out as
follows.

Let k = (Kpq,--» Ko) be the binary representation of
multiplier k. Let u be asmall integer and let v = (m/u). A set
of (uv-m) zero bits is appended to the left of the binary
representation of k and the resulting bit string is partitioned
into u partitions each of a length v. Thus, k becomes
k = (K&K, kD k©), where, each k© is a partition of a
length v = (m/u). The scalar multiplication product kp can be
computed as:

kP=2.s ©

O<i<u
where, 5 isdefined as:

§= 2 (2 (2kiv+v-1(2ivP)+kiv+v-2(2ivp))+"'+kiv+1(2ivp))+kiv+0(2ivp)
(6)

K = Z k2 =k 2" 4tk 24k, 1 The kP for u points apd keys gsing Eq. 5 and 6 can be
0si<m computed using the following agorithm.
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Algorithm 1: Proposed method

Step 1 Inputs: P[0], P[1]...., P[u-1], k[O], K[1]...., k[u-1]

Step 2: By padding the ks with (uv-m) zeros if necessary,
write eachk = (K“Yk“2)...[kVIk?), where each kO
is a partition of lengthv =[m/u]

Step 3: Initialization

Step 3.1: Fori=0tou-1, do

Step 3.1.1: Q[il-Pli]

Step 3.1.2: R[i]-O

Step 4: Perform concurrent precomputations of u points for each of
the Ps

Step 4.1: Fori=0tou-1, do (in parallel)

Step 4.1.1: Poli]-Qli]

Step 4.2: For w=0tou-1do (in parallel)

Step 4.2.1: fori=1tou-1,do

Step4.21.1: forj=0tov-1,do

Step 4.2.1.1.1:  Q[w]-2Q[w]

Step 4.21.2:  P[w]-Q[w]

Step 5: Key partition association with precomputed points

Step 5.1: fori=0tou-1do

Step 5.1.1: forj=0tou-1do

Step5.1.1.L  (K[i]9, P[i]).

Step 6: Scalar multiplication:

Step 6.1: fori=0tou-1do

Step 6.1.1: forj=0tou-1, do (in paralel)

Step 6.1.1.1:  Q[i] The Binary Method (k[i]?, P[i])
Step 6.1.1.2:  R[i]-R[i]+Q[i]

Step 6.1.2: Output RYi]

Algorithm 1 shows the pseudo code of the proposed method.
Algorithm 1 accepts u requests, which means u points and u
keys. For u requests, P[i] and k[i] represent the base point and
thekey of therequest i, respectively. The partitioning of theks
into u partitions is performed in Step 2. For a particular key
K[i], K[i]9 represents the jth partition of the key K]i].
Precomputed points are computed concurrently for each of the
P points by repeated doubling in Step 4. For aparticular point
P[i], P[O] represents the base point of the key partition J.

For a particular P and k, each partition k® is associated
with a particular precomputed point P, to maintain the
significance of each partition (Step 5). For a particular P and
k, parallel scalar multiplications start in Step 6. Anindividual
processor processes each partition independently. The points
resulting from each execution of the binary scalar
multiplication method (Hankerson et al., 2004) are
accumulatedin point R (Step 6.1.1.2), which requires (u-1) the
addition of extra points.

Example: Let, k = (1000 0101 1100 0011), = (34243),,
m = 16 u = 2. The key partitions are k© = 1100 0011 and
k® = 1000 0101. The scalar multiplication of these partitions
is then computed in paralel for two consecutive requests,
using the same key for simplicity and two different points
(P[0] and P[1]), as:

Stage 1. Concurrent precomputations stage.
Processor ,:  Precompute Py[0]
Processor ;:  Precompute Py[1]
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Stage 2: Processing stage

» Processing the 1st request (kP,)

Processor o: Syprq = (2(2(2(2(2(2(2(1)-P[O]+(1)-
P{0])+(0)P[0])+(Q)P{0])+(0)P[0])+(0)
P{0])+(1)P{0])+(1)P{0]) = 195 P[]

Processor ;. Sipq = (2(2(2(2(2(2(2(1)-P[0)+
(0)Pg[0])+(0)P[0]) +(0)Pg[0]) +
(0)P[0])+(1)P5[0])+(0)PE[0])+(1) P
[0]) = 34048 Py-[0]

Accordingly, kP[0] is computed as:
KP[O] = sypq+Supg = 195P[0]+34048P[0] = 34243P[0]

» Processing the 2nd request (kP[1])

Processor o: Sypry = (2(2(2(2(2(2(2(1)-P[1]+(1)-
P[1])+(0)P[1])+(0)P[1])+(0)P[1])+(0)
PI1)+(2)P[1])+(D)P[1]) = 195 P1]

Processor ;. Sipy = (2(2(2(2(2(2(2(1)-Pg[ 1]+
(0)Pg[1])+(0)Pg[1])+(0)Pg[1]) +
(0)Pg[1])+(1)Pg[1])+(0) Pg[1])+(1)
Pg[1]) = 34048 P-[1]

Accordingly, kP[1] is computed as:
KP[1] = sy ppay*+Sppy = 195P[1]+34048P[ 1] = 34243P[1]
PERFORMANCE ANALYSIS

The average time the proposed method takes to compute
kP, depending on the number of consecutive requests, denoted
here by rs, equals:

Time complexity = [~ |((v(u—1)DBL))+r (vDBL +| ¥ +u—1|ADD
u ( ) 2
™

The number of precomputed points to be stored for each
of theu generic pointsequals(u-1). Each partition requiresone
storage element, as in the binary method. Accordingly, the
number of storage elements required for the proposed method
equals u(u-1)+u = u? storage elements. However, spaceis not
a limiting factor here, as the target is high-performance end
servers that use parallel processors.

The performance analysis results in (Al-Somani, 2010)
show that the best performance is achieved when eight
processors are used. Accordingly, the methods in
(Al-Somani and Ibrahim, 2009; Al-Somani et al., 2014) are
compared with the method proposed in this study when eight
processors (u = 8) are deployed using different values of m.
For simplicity, itisassumed herethat the required computation
time for point addition is twice that required for point
doubling. Table 1 shows the comparison results, in terms of
point doublings, with up to 32 consecutive requests. Figure 1
depicts the results when m = 256 bits.
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Table 1: Results of the proposed method with m = 128, 160, 200, 256 and u = 8

Tota (DBLS)

r=2 r=4 r=8 r=16 r=32
m * * % NBN * * % Na,v * ** NaN * * % NeW * * % Na,v
128 268 190 120.00 536 380 240.0 1072 760 480 2144 1520 960 4288 3040 1920
160 332 230 143.00 664 460 286.0 1328 920 572 2656 1840 1144 5312 3680 2288
200 412 280 171.75 824 560 3435 1648 1120 687 3296 2240 1374 6592 4480 2748
256 530 350 212.00 1060 700 424.0 2120 1400 848 4240 2800 1696 8480 5600 3392
*Al-Somani and |brahim (2009) and ** Al-Somani et al. (2014)
Table 2: AT? comparison results over GF (2'%%)
AT?
Area (dices) Time (psec) r=1 r=2 r=4 r=8 r=16 r=32 References
15020 36.77 2.03E+07 8.12E+07 3.25E+08 1.30E+09 5.20E+09 2.08E+10 Chelton and Benaissa (2006)
15368 33.05 1.68E+07 6.71E+07 2.69E+08 1.07E+09 4.30E+09 1.72E+10 Chelton and Benaissa (2008)
4080 20.56 1.72E+06 6.90E+06 2.76E+07 1.10E+08 4.42E+08 1.77E+09 Ansari and Hasan (2008)
20807 7.72 1.24E+06 4.96E+06 1.98E+07 7.94E+07 3.17E+08 1.27E+09 Zhang et al. (2010)
22936 5.48 6.89E+05 2.76E+06 1.10E+07 4.41E+07 1.76E+08 7.05E+08 Sutter et al. (2013)
62073 2.75 4.68E+05 1.87E+06  7.49E+06  3.00E+07  120E+08  4.80E+08  New (proposed here)
A: Area, T: Time
90009 O Al-Somani and Ibrahim (2009) 2.00B+09 Ansari and Hasan (2008)
8000 4 B Al-Somani et al. (2014) | emeemena- Zhang et al. (2010)
B New 180E+09{ — — — - Sutter et al. (2013)
7000 - ——— New (proposed here)
” 1.60E+09
7 6000
2 5000 - 1.40E+09
8
»5 4000 1 1.20E+09
S 3000 A o
£ 1.00E+09
2000 4 <
1000 ’_’_h 8.00E+08 -
0 JZI:-_J]:h ]
2 4 8 | 16 | 6.00E+08
No. of request (r) 4.00E+08
Fig. 1. Implementation results withm =256 and u =8 2.00E+08
0.00E+00

RESULTS

The lower bound on the areatime cost of a given
design is usually used as a performance metric AT, O<a<1,
where the choice of o determines the relative importance of
area and time (Thompson, 1980). Such lower bounds have
been obtained for several problems, e.g., discrete Fourier
transform, matrix multiplication, binary addition and others
(Thompson, 1980). Once the lower bound on the chosen
performance metric is known, designers attempt to devise
algorithms and designs that are optimal for a range of
area and time values. Even though a design might be
optimal for area (A) and time (T) values within a certain
range, it is nevertheless of interest to obtain designs for the
minimum time, i.e., maximum speed performance and area
values.

In this study, we are interested in high performance
implementations. Accordingly, to make a more meaningful
comparison between the proposed method and recent fast
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No. of request (r)

Fig. 2: Resultswithm=256andu=8

implementations (Chelton and Benaissa, 2006; Ansari and
Hasan, 2008; Chelton and Benaissa, 2008; Zhang et al., 2010;
Sutter et al., 2013), the AT® measure is evaluated. The
proposed method was modeled using VHDL and synthesized
on a Xilinx Vertex 7 FPGA (xc7v2000t-2flg1925) over
GF (2'%%) with Gaussian Normal Basis (Ash et al., 1989) and
Lopez-Dahab coordinates (Lopez and Dahab, 1998). The
proposed ECC cryptoprocessors consists of eight scalar
multiplication processors. The synthesis report showsthat the
number of dices is 62073 and the maximum frequency is
297.461 MHZ. Table 2 shows the AT? comparison results for
the proposed method and recent fast implementations with up
to 32 consecutive requests. Figure 2 depicts the results of the
four fastest implementations.
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DISCUSSION

Table 1 shows the comparison results for the proposed
method and the postcomputation methods (Al-Somani and
Ibrahim, 2009; Al-Somani et al., 2014). The results clearly
show that the proposed method outperforms the
postcomputation methods (Al-Somani and Ibrahim, 2009;
Al-Somani et al., 2014) when the number of consecutive
requests is two or more. The results also show that the
proposed method performsbetter asthe number of consecutive
requestsincreases. Moreover, the proposed method isscalable
for any number of parallel processorsand isnot limited to just
eight, asin (Al-Somani and I brahim, 2009).

Table 2 shows the AT? comparison results for the
proposed method and recent fast implementations (Chelton
and Benaissa, 2006; Ansari and Hasan, 2008; Chelton and
Benaissa, 2008; Zhang et al., 2010; Sutter et al., 2013). The
results clearly show that the AT? performance metric of the
proposed implementation outperforms the previous
implementationsintheliterature (Chelton and Benai ssa, 2006;
Ansari and Hasan, 2008; Chelton and Benaissa, 2008;
Zhang et al., 2010; Sutter et al., 2013). Accordingly, the
proposed method is highly suited for usein high-performance
end serversthat use paralel eliptic curve processors.

CONCLUSION

Postcomputations have recently been proposed in which
the precomputation overheads are replaced by
postcomputations that can be paralelized. An efficient
precomputation-based generic-point parallel scalar
multiplication method ispresented in thisstudy. The proposed
method accepts a set of generic points and performs their
precomputations concurrently using an equivalent set of
elliptic curve cryptoprocessors. Then, paralel scalar
multiplications are performed sequentially for each of these
generic points. The new method outperforms the existing
postcomputation-based methods and is scalable for any
number of parallel processors. Furthermore, the proposed
method was implemented on an FPGA and the AT?
performance metric of the proposed method outperformed the
recent fast implementationsin the literature.
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