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ABSTRACT

The “depth averaged advection dispersion” equation is the goverming equation in
two-dimensional (2D) modelling of contaminant transport in shallow open channel
flows. Isogeometric analysis (IGA) is a good method used for accurate geometrical
modeling and approximation of the solution space. So, the aim of this study 1s to
conduct the IGA of the depth averaged advection dispersion equation. Due to the
non-interpolatory nature of NURBS basis functions the properties of Kronecker
Deltaare not satisfied, thus imposition of the essential BCs needs special treatment.
Therefore, in order to improve the accuracy of the IGA in solution of depth
averaged advection dispersion equation, the essential BCs are imposed in three
weak forms, including: The Least Square Method (L.SM), Lagrange Multiplier
Method (LM) and the Penalty Method (PM). For this purpose, the numerical
modeling is initially developed and the lateral diffusion problem is solved for a
rectangular straight channel and the results of three models are compared with each
other. Results indicate that the I.SM has the best accuracy while the PM has the
poorest. Likewise, despite accurate results, the system of the equation suffers from
dimensional enlargement in LM which requires more calculation time. Moreover,
in the case of skew advection, adapting the LM produces lower RMSE value and
thus more accurate results in contrast to the strong enforced essential BCs in
classical FEA and IGA solutions.

Key words: Isogeometric analysis, advection diffusion equation, river mixing
lagrange multiplier method, least square method, penalty method

INTRODUCTION A previous study developed a 2D model with a modified

governing equation using FEM and solved the depth averaged

Since analytical solutions generate poor results in
terms of accuracy in modeling of the contaminant
transport in open channel flows, several researches have
employed numerical modeling methods as the altemative
solution. The “depth averaged advection dispersion”
equation is the governing equation in two-dimensional (2D)
modelling of contaminant transport in shallow open channel
flows (Fischer et af, 1979; Rutherford, 1994) Numerncal
methods such as Finite Element Method (FEM) are usually
incorporated with other models to approximate the solution
of the contaminant transport problem in large rivers
(Lee and Seo, 2010).
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advection dispersion equation. Lee and Seo (2007)
incorporated a numerical model with FEMto treatthe complex
geometry of the rivers. Their model was based on the
Streamlined Upwind Petrov-Galerkin (SUPG) formulation.
They developed a 2D depth advection dispersion model in the
Han River, Korea. Seo et al. (2008) proposed an FEM model
based on a 2D depth averaged mass transport equation and
utilized a vertical velocity profile and depth averaged velocity
field in order to estimate dispersion coefficient tensors. In all
of the above studies, the basis functions were typically
interpolatory and have drawbacks associated with them.
Interpolatory basis functions suffer from poor representation
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of exact geometry and accuracy of solution (Cottrell et al.,
2009). In order to improve the accuracy of the FEM solution
as well as the stability of the solution scheme, three solutions
can be employed (Cottrell et al., 2009). The first solution 1is
improvement of the finite element spaces. The second solution
1s application of the appropriate vanational methods, such as
a classical “Stabilized method” (Brooks and Hughes, 1982)
The third 1s to mmprove both aforementioned solutions
(Hughes et al., 2005). In respect of the improvement of the
finite element spaces, emploving the recently proposed
methods in which use the NURBS basis functions is
incumbent. In this respect, IGA method is based on NURBS
basis functions; has some similarities with Finite Element
Method (FEM) and incorporates some of the features of
Computer Aided Design (CAD) tools. The IGA 1s a good
method to use for accurate geometrical modeling and
approximation of the solution space (Cottrell et af., 2009). Due
to non-symmetric matrix of the advection problem term, the
best approximation is not achieved. Therefore, Streamwise
Upwind Petrov Galerkin (SUPG) is a useful method to use for
stabilized formulation of IGA in fluid analysis (Hughes et al ,
2005). SUPG is a residual-based modification of the Galerkin
method, thus it is capable of increasing the stability without
degrading accuracy (Brooks and Hughes, 1982). In the present
study the Isogeometric analysis of the depth averaged
advection dispersion equation is conducted by SUPG as one of
the classical stabilized methods.

In comparison with the conventional FEMs, the TIGA
method has several advantages such as simple and systematic
refinement strategies, exact representation of common
engineering shapes, robustness and superior accuracy
(Hughes et al., 2005). Despite its advantages, the [GA suffers
from some weaknesses, the most significant of which
arises from the imposition of essential BCs; where due to
the non-interpolatory nature of NURBS basis functions,
the properties of Kronecker Delta are not satisfied
(Piegl and Tiller, 1997; Cottrell et al., 2009; Shojace et al.,
2012) and this behavior causes a slight smear of the lifting.
This phenomenon implies that the imposition of the essential
BCs needs special treatment. Bazilevs and Hughes (2007)
asserted that problems associated with boundary layer
phenomena, adding terms to the vanational equation to
achieve the weak imposition of BCs will eliminate the
spurious oscillations associated with traditional strongly
imposed conditions. In recent years, a wide range of
techniques have been developed for the implementation of
essential BCs in numerical methods. Fernandez-Mendez
and Huerta (2004) categorized these techniques in two
main categories. The first category includes methods
based on modifications of the weak form, such as LM
(Belytschko ef al, 1994), PM (Zhu and Atluri, 1998) and
Nitsche’s method (Babuska et af, 2003; Griebel and
Schweitzer, 2003) and LSM which 1is applied by
De Luycker et al. (2011) and Mitchell ef al. (2011) for weak
imposition of general inhomogeneous Dirichlet BCs in X-FEM
and [GA, respectively. The second category includes methods
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based on modifications of the interpolation shape functions
{Gosz and Liu, 1996; Huerta and Fernandez-Mendez, 2000).

Thereby, in the present study several weak form
methods are utilized in order to impose essential BCs. The
main contribution of this study is to analyse the depth
averaged advection dispersion equation in order to model
solute transport in open channel flows. In order to improve the
accuracy of the IGA in solution of depth averaged advection
dispersion equation, the essential BCs are imposed in the weak
form by application of the LM, PM and LSM.

MATEMATHICAL MODELLING OF
GOVERNING EQUATION

Governing equation: Fischer ef al. (1979) developed a 2D
theoretical model of shear dispersion in a tensor form which
was applied to skewed shear flows with velocity profiles in
two directions by using Taylor’s method:
dc
nyg}

@+uac+ 80 a{DXX@+DXyE}+i[D E+
(1)

a ax oy x| T ox ay | ay| 7 ax

where, ¢ is the depth-averaged concentration; H is the local
depth of flow; T is the temporal variable; q = (u, v) is the
depth-averaged fluid velocity vector in the x and y directions,
respectively; D the dispersion tensor; £ a bounded problem
domain in the 2D space.

The dispersion tensor D, has the following coefficients
expression (Alavian, 1986):

2y
D, =D, ——+D, 5D, =D
u vV v w (2)
uv u? s
*(DL 7DT)_2 DW:DT_2+DLU_2

where, D;, D, are the longitudinal and transverse dispersion
coefficients, respectively and U = fu? +v* .

In order to implement streamline upwind method, the test
function for the advective term 1s modified with perturbation
to the weighting of the second term. If the weak form of depth
averaged dispersion equatlon ismultiplied by the series of test
functions (Nl, N, ... for m nodes and integrated by parts
in the problem domam 0, leads to:

1

IN [a(;tc) V.(hgC)V.(hD, VC)} 4o+

P {@(hC) V.(hqC) - V(hDVC)}dQ

-]
O

3
- i [ ohC) NV(th)} dQ+ I(hD V). VN dQ

+2Lp

e

{8(hC) V.(h C)} = Ffwlhgo

N*(x) 1s the necessary test function of the SUPG
formulation. The test function can be divided into continucus
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and discontinuous terms as given in Eq. 4 (Piasecki and
Katopodes, 1999; Seo et al., 2008):

N*=N+p
_H&ﬂﬁz@@%@% @
V15U ox  dy

where, N is a continuous NURBS basis function and p is the
contribution of discontinuous streamline upwind.

Overview of the IGA: NURBS basis functions are weighted
functions that originate from B-spline interpolation. The
B-spline functions are defined as a series of non-descending
real numbers called a knot vector. Knot vector is presented by:

§= {8 G ooos Sorpr) (5)

where, £ 1s the i-th knot value, n and p are the number
and the order of basis function defined on the knot
vector, respectively. The half open interval [£, £,,] is called
knot interval. If & = &, then the length of the knot
interval 1s equal to zero. If £, and &, are repeated p+1 times
in knot vector, the resulting knot vector is called open
knot vector. The first order B-spline is defined on the vector
by:

1 if § <8<¢g,

Nio(&) = {0 otherwise ©)

And higher order basis functions are recursively defined
by:

§1+j+17 é

N, (8) = 22N &)+ —

N 1,31
et & (D

i=L2..,p

I=1.2, ... ntptl
where, N, | is i-th basis function with a j order.

The NURBS basis functions are made from B-spline
functions by the following equation:

N, W
OIS W ®

i=1 LP

where, w; is the weight corresponding to ith control point.
Consequently, R, (£) is concurrently applied to form both
the geometry and approximation functions.

X =2 REB,w= 3> R w (9)
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¥l indicates the geometry of problem in multi-dimensional
term.

Weak methods of imposition of essential BCs: In this
section, three different methods of applying uniform
inhomogeneous Dirichlet BCs on the physical boundary of a
problem in which an embedding domain 1s used are presented,
including the LM, the PM and the global LSM.

LM: The LM has been widely used in various approaches to
improve the imposition of essential BCs, such as meshfree
methods (Fernandez-Mendez and Huerta, 2004; Nguyen ef al.,
2008), traditional FEM (Babuska, 1973; Gunzburger and Hou,
1992), extended (Moes et al., 2006; Bechet et al., 2009) and
IGA (Shojaee et al., 2012). It is a popular application because
of its straightforward implementation. LM adds additional
terms for the weak form of equilibrium and the LMs are
approximated by A =N, T with NURBS curves basis functions
N, and the test function v:

IT (01A) = minTT{u+ [y Alv-c)dl (10

Ifthe Eq. 10 is discretized, the following matrix equation

can be written:
K QY& (f
(QT OJ[XHfJ an

where, f is load vector and the additional entries:
Q=-[ ,N'™N.d and f, = — |, NTadl"

where, N are NURBS surface basis functions. Lagrange
multipliers ¥ on the interpolation points are defined within the
BCs. Unlike Direct Method (DM) and Transformation Method
{TM), the LM 1s not based on separation of control points and
1s capable of modeling incomplete Dirichlet boundaries
(Shojaee et al, 2012). If the control points are on essential
boundaries, the interpolation points are the control points and
if'the control points are not located on the essential boundaries,
then the image of the control points on the boundaries are
considered. However, if stability conditions (inf-sup condition)
are satisfied, then selection of the nterpolation points and
the number of the interpolation points can be independent of
place and the number of control points (Babuska, 1973,
Brezzi, 1974). In this study, the system of equations involves
finding the unknown value of concentration and also the value
of Asimultaneously. However, after inputting A, the dimension
of the resulting system of equations is increased and as a
result, the solution of the system of equation will be
time-consuming. Another crucial problem is that the system of
Eqg. 11 and the weak form with LM induce a saddle point
problem that, in turn, induces difficulties in the arbitrary
choice of the interpolation space for ¢ and A On the other
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hand, in order to obtain an acceptable solution, the
discretization of the multiplier A must be accurate enough.
However, if the number of Lagrange multipliers A, istoo large,
the resulting system of equations turns out to be singular. In
fact, to ensure the convergence of the approximation, the
interpolation spaces for the Lagrange multiplier & and for the
principal unknown ¢ must verify the Babuska-Brezzi stability
condition as an inf-sup condition.

PM: Similar to the LM, imposition of BCsc¢=c,on
a boundary T’y yields additional terms for the weak
form of equilibrium in PM. An additional system of equations
1s needed to account for the Dirichlet BC as the following
terms with test function v can be chosen such that v =0 on
the I';:

C:%Bjnl (U—cd)zdf (12)

The discretization of the weak form of Eq. 12 leads to the
following system of equations:

{K+BM,) C = £+pf, (13)
where, Mand f, is defined as Eq. 14:

My ={ NN, drL £ = N u, df (14)

The only important consideration in using PM is the
choice of an appropriate penalty parameter B. To impose the
BC accurately, considering P10 is an appropriate value
(Fernandez-Mendez and Huerta, 2004), thus this value is
applied in this study. Two significant advantages are attributed
to PM in comparison with LM. Firstly, unlike the LM, the
dimension of the system will not increase in the PM and,
secondly, if K is symmetric and [ 1s large encugh, then PM
yields a positive symmetric definite linear system. On the other
hand, PMhas two significant weaknesses (Fernandez-Mendez
and Huerta, 2004). First, the parameter P controls the quality
of ensuring the essential BC and the second is the problems
of 1l conditioning associated with the PM. In simpler terms,
the penalty terms simultaneously affect the diagonal and oft-
diagonal entries of the system stiffness matrix and when the
off-diagonal entries are multiplied by a very large number, the
system stiffness matrix may consequently become il
conditioned. As a consequence of this phenomenon, the
systems of equations become 11l conditioned and applicability
of LM reduces subsequently.

Global Least Square Method (L.SM): [.SM is a good method
for the orthogonal projection and is capable of approximating
the given data from a finite dimensional subspace
appropriately. The L3M approximates the global least-squares
problem using a collection of decoupled local least-squares
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problems which significantly contribute in decreasing the
computational cost. The concept of Global L.SM s to minmimize
the quantity of Eg 15 by finding the parameters of the
boundary control points:

2

ZCDA (XC)qA 76(}{0)

(15)

J:%;\\C(Xc)f(xc)‘f:—z

2%

In Eq. 15, X, denotes a set of collocation points
distributed on the essential boundary I', Hach g, 1s the
parameter of the control points defining I, and @, represents
the NURBS basis functions that are non-zero at X_. In order to
clarify the concept, a case with one collocation point and a
quadratic basis is assumed. In such a case, there are 3 non-zero
D, at X,

Therefore, Eq. 16 will be rewritten as below:

T=219, (X, )a, + @, (Xo)a, + @, (Ko, - T (16)

The partial derivatives of I with respect to g, are given by
Eq. 17

al =
a:[q)l(xc)ch+(D2(Xc)qz+®3(Xc)q3_c(xc)]®1(xc)
1
al =
a:[q%(xc)ql+®2(Xc)q2+®3(Xc)q3_c(xc)]q)2(xc)
2
a8l —
a:[q)l(xc)ch+(D2(Xc)qz+®3(Xc)q3_c(xc)]®3(xc)
3
(17
When the condition:
d_y
dq
the following linear system will come up:
7(:1)1(131 0,9 0,0 SR
e, ©,2, 2,2, q 49 |=
DT, ©,2. DD, . 4G9
_ - (18)
T (X)0,(%,) T, (%), (%)
T (%), (%) T, (X.)®,(X,)
Co(Xo )@, (Xo) C (%), (Xe)

By collecting all the NURBS basis at points X, in a
column vector N(X ), Eq. 19 can be rewritten in a compacted
form as below (the control points displacements in x and y
directions in g, and q,):
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(19)

By repeating the same analysis for other collocation points
X, on the Dirichlet boundary, the linear system Ag-b 1s
obtained. In this linear system, two different values are
assigned to b, one for the x component and the other for the v
component. The dimension of A 1s nyxng, where, n;, denotes
the number of control points defining the Dirichlet boundary.
By calculating the displacements for these boundary control
points, the imposition of the Dirichlet BCs will be treated in
the same way as in standard FEM when solving Kc ={.

ISOGEOMETRIC ANALYSIS OF DEPTH
AVERAGED ADVECTION DISPERSION EQUATION

Line source: Numerical results of implementation of the IGA
are presented in this section. In order to verify the results of
the model with the analytical solution, a rectangular straight
channel measuring 100 m long and 20 m wide was proposed
and the lateral diffusion problem with flow velocity u was
solved for this channel using Eq. 20 (Lee and Seo, 2007,
Fischer et al., 1979):

G y -1
C= 5 [l erf(m)] (20)

Values of different parameters of the simulation are
inspired by the study conducted by Lee and Seo (2007).
Parameters of the simulation are as follows: Continuous
injection concentration, Co = 100 kg m™; injection width
1=10m; flow velocity u=1m sec™' and flow depthh =1 m.
Likewise, the longitudinal and transverse dispersion
coefficients were assumedtobe 1.0m?sec ' and 0.1 mZsec™,
respectively. The root-mean-square error (RMSE) is calculated
by:

RMSE - )

e1y

m

Figure 1 compares the results obtained from the IGA with
the analytical solution. In the case of linear basis function, the
IGA is compared to the analytical solution at points X = 20 m
and 100 m. Figure 1 indicates a considerable convergence rate
between the IGA and the analytical solution. The results
demonstrate the effectiveness of this approach in solving
river mixing problems. However, the RMSE value was
8.22 at D, = 2 and D, = 2 for the quadratic NURBS basis
function. Due to the fact that the essential BC was
imposed strongly in this section and NURBS are not able to
satisfy the Kronecker delta; imposing essential BCs require
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100 e x=20

—— Analytical solution

x =20 (m)
: m x=L100

Q0 4
804
704
60+

504

Clkem )

404
30
20 x = 100 (m)

104

o 2 4 6 8 10 12 14 16 18 20
¥ (m)

Fig. 1: Numericalresults compared with analytical solution at
x =20, 100m

special treatment. Therefore, in the next section, the essential
BCs are imposed in a weak form via application of PM, LM
and I.SM methods in order to achieve higher accuracy. It must
be mentioned that most practical fluids formulations employ
lower-order, typically constant and linear, interpolation of flow
variables (Hughes et al., 2003).

Likewise, the simple 2D problem in the straight channel
with the BC of Eq 20 can be compared with a one
dimensional 1D continuous injection problem (Lee, 2007).

C=C, onT,
C=0 onl, (22)

8_C=0 onl, ul,

If the flow is assumed to be plane, then the transverse
velocity 1s zero. Transverse line source problem is considered
in this study. So, the transverse concentration gradients are so
small that they can be eliminated. In other terms, by assuming
the values of V and D), to be zero, thus the governing Eq. 11s
reduced to Eq. 23:

2
e p, 23
at ox ox

Therefore, the 1D solution can be compared to the
numerical solution in the 2D domain with the same condition
and similar accuracy (Lee, 2007). Sothe numerical solution of
this equation for 2D domains can be compared with the
analytical solution of the 1D equation with the BC of Eq. 25:

C(0,t)=C0,C (=, ) =0 (24)

The analytical solution of Eq. 23 with the BC of Eq. 22
comes up with Eq. 25 (Fischer et al., 1979):
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Cikgm )

® t=10szec

8 t=30sec
» t=50sec
Analytical solution

100

% (crm)

Fig. 2: Comparison of IGA and analytical solution in continuous line source injection at the centre line
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2.5
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Fig. 3: RMSE error for line source at centre line

C*CD erfc x;Ut +ex [Ejerﬁ: x+ Ut (25)
2 b, | P\ bx [aD_

Results of employing the mode] are presented in Fig. 2, 3.
Figure 2 shows the results at t =10, 30, 50 sec. As time goes
by, the numerical solution by IGA produces a wiggled
solution. Although the SUPG method is more accurate when
the Peclet number 1s smaller, there 1s a wiggle in the results of
the IGA. This behavior is similar to the behavior of FEA
which 1s due to the increase in the Peclet number and the
predominance of advection. Likewise, Fig. 3 indicates the
RMSE trend in the center line of the channel. It is clear in
this figure that RMSE has the maximum value of 4.1 in time
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t= 5 sec. This cause of this significant error in the value of the
RMSE 1s due to the sudden injection of the gradient mass into
the flow within the first 5 sec. As time passes, the RMSE
remarkably decreases to the value of 3 intime t =10 and after
that remains approximately stable.

Instantaneous point source: In order to model the
instantaneous pulse injection condition, a M/AJ=100kg m™ ' of
mass was released at (x, y) = (0,10) m. The analytical solution
of the instantaneous mass injection in the 2D space 1s given in
Eq. 26 (Fischer et ai., 1979). Meanwhile, the Heaviside unit
step function can be used to define the impulse function:

C(X,y,t): Mid exp{[(xxl)ut]z}.exp{ [Y*y,]z

4ntfD D, 4D, 4D,

(26)

Figure 4 shows the comparison of the IGA and analytical
results in the pulse injection condition. The results show that
in the initial period immediately after realization of the mass,
the model develops solutions with significant errors. This
behavior is because of the steep gradient of the concentration
curve induced from the spatial Dirac delta source treatment.
However, this behaviour rapidly changes after the tracer cloud
passes through the initial mixing region and the model solution
develops results with higher accuracy and smaller errors
compared to the exact solution. This implies that, except for
the initial mixing region, the model is capable of developing
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Fig. 4: Comparison of IGA and analytical results in the pulse injection condition
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Time (sec) 29
Fig. 5: RMSE for instantaneous point source o
. : 0 1 2 3
a reasonably accurate concentration field for the Time ()

instantaneously released source. Likewise, Fig. 5 displays that
after the mitial 5 sec of releasing the pollution the RMSE
decreases rapidly. The cause of this significant error is also the
steep slope of the initial solution profile. The simulation error,
however, decreases rapidly following dispersion of the tracer
cloud in the advection. This behaviour implies that, except for
the initial period of mass injection, the model is capable of
developing a reasonable concentration field for the point
released source.

Imposition of inhomogeneous BCs: Results of the study of

Lee and Seo (2007) indicated that the RMSE value for
line source injection in quadratic at D, =2 and D,=2 in FEA 1s
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Fig. 6: RMSE error norm for depth averaged

2.754, while, this value 1s 8.22 in IGA. In this section, the
performance of the IGA 1s improved by weak imposition of the
essential BCs via PM, LM and LSM methods. Figure 6
compares the RMSE of PM, LM, DM and LSM versus the size
of the mesh (h). As it can be seen in Fig. 6, the 1.SM has the
highest accuracy among all the methods; LM shows a
satisfactory accuracy but despite its accuracy, after inputting
each &, the dimension of system of equations for LM gets
larger. This is the main weakness of LM where this
phenomenon causes more time-consumption and can be
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Fig. 7: RMSE error norm for P refinement
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Fig. 8: Evolution of the matrix condition number for the PM

burdensome. PM has the lowest accuracy but, in contrast to
LM, the PM does not incur any change in the dimension
of the system of equations. Since IGA 1s able to generate
course-mesh inherently, therefore the applicability of the PM
1s reduced when the coarse discretizations are needed.
Likewise, Fig. 7 shows the variation of RMSE against the
elevation order. It can be nterpreted from Fig. 7 that the
accuracy of the solution using p-refinement strategy trends
remarkably downward by increasing the order of the basis
functions. This phenomenon implies that p-refinement which
always appears with the order elevation, 1s not a useful
strategy in solving the fluid equations. This behavior is in a
good agreement with the results of the study of (Hughes et al.,
2005). The reason for this behavior lies in that the IGA is
fundamentally a higher-order approach and a good behavior 1s
unexpected in unresolved interior and boundary layers. In fact,
the Gibbs phenomena noted for polynomial-based finite
element methods tends to become more pronounced as
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Table 1: Comparison of the RMSE results for modeling lateral diffusion

RMSE FEA LM LSM
Ay=1 2754 2.022 1.962
Ay=0.5 0.756 0.553 0.415

polynomial order is ncreased. This 1s the reason that most
practical  fluids formulations employ lower-order,
typically constant and linear, interpolation of flow variables
(Hughes et al , 2005).

Furthermore, Fig. 7 shows the matrix condition number
for increasing values of the penalty parameter for a distribution
of 50x20, 50x10 and 50x40 elements. Figure 8 indicates that
there is a linear relationship between the increase in the
condition number and the penalty parameter. It is evident {from
Fig. 8 that the ill conditioning of the matrix leads to reduced
applicability of the PM. Figure 8 also indicates that even
denser discretization cannot reduce the condition numbers.
The reason for this phenomenon is obvious in Fig. 8 where all
three graphs coincide with each other and by considering the
increase in the value of P, the condition number will increase
as well.

Table 1 shows the RMSE values for FEA and weak
imposition of essential BCs in IGA within quadratic basis
function Ay=1 and Ay=0.5. Table 1 implies that by weak
imposition of essential BCs using LM and LSM in IGA, the
RMSE values are less than FEA; which decreased from 2.754
inFEA to 2.022 and 1.962 in LM and LSM, respectively. Itis
quite clear that due to not satisfying the Kronecker Delta in
IGA, the essential BCs should be imposed in an appropriate
weak form method. Thus, the LM can be a good method for
imposition of essential BCs in solution of depth averaged
advection dispersion equation. However, the system of
equation will be time-consuming in LM.

Imposition of homogenous essential BC of skew advection:
The longitudinal and transverse directions of the flow direction
do not always coincide with the x and y axes of the Cartesian
coordinate system. As a result of this phenomenon, velocity
and advection borders collide with each other at an angle.
Figure 9 depicts the problem of skewed advection with
unidirectional uniform flow in a 10%10 m* domain. As
shown in Fig. 9, the inflow boundary is defined with
zero concentration and in the remaining two outflow
boundaries, the natural BC of VCn, = 0 is defined. The
mass of M/d = 1000 kg m™ was released at point
(x, v) =(2, 2) m. The analytical solution of the instantaneous
mass injection in the 2D space 1s as follows (Fischer et al,
1979, Lee and Seo, 2010):

. o
Cony.h=—M4_ . {[(X x)eos0 (y—y)sin0-uif’ |

4nt D, D, 4D,

: 2
oxp| [ XSO+ (y— v cos6] }
4D,

T

27)
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Inreal 2D problems, flow direction can skew inany angle.
Thus in order to determine the effect of the difference between
the element and flow direction in the analytical solution, flow
direction 1s varied for 8 = 15° and 45° (Lee and Seo, 2010).

Table 2: Results of the RMSE for imposition of BCs in FEA, IGA and weak
imposition of the LM in IGA

FEA 1GA IGA (LM)
Time (sec) 6=15 a=45 =15 =45 =15 a=45
t=10 5.662 5.243 6.047 5.125 5.095 5.105
t=20 2.015 2.039 2192 2.166 1.914 1.835
t=30 1.086 1.168 1.309 1.403 1.020 1.109
t=40 0.698 0.779 1.028 1.060 0.677 0.701
=50 0.727 0.549 0.928 0.900 0.697 0.521
r4
T, Flow direction
=0 ie T,

L
Mass injection pt.

c=0

2m T,

Fig. 9: Schematic of skewed advection with unidirectional
uniform flow

For this purpose, in this present study the results of 6 = 45°
were compared with the analytical solution att = 10, 30 and
50 sec after mass injection (Fig. 10). Figure 10a indicates the
mitial period of mass transport. As can be seen in this
figure,unlike the exact solution, the arrival time of the core of
the tracer cloud experiences a slight delay which 1s due to the
incapability of the finite difference time integration of the
numerical model in following the instant moment of mass
releasing completely. As time goes by, the trend of the
numerical solution gradually shows convergence to that of the
exact solution (Fig. 10b). Despite the numerical solution trend
showing a successful convergence to the exact solution after
a while, it starts to deviate from the exact solution in the
vicinity of the outflow boundary, where the gradient of
concentration is zero. However, by replacing the outflow
boundary further downstream, this deviation can be reduced
(Fig. 10c).

Since 1n this case, T = 0 and the linear system of Agq=b
will remain unchanged, therefore, in imposition of the LSM,
the results will be the same to the initial attempt. Yet, by
employing the LM, the results are likely to improve and
the RMSE decreases subsequently. Table 2 presents the
comparison of the results of FEM, IGA and weak imposition
of IGA by LM. Tt 1s clear that by imposition of LM the value
of RMSE considerably decreases in compare to FEM and IGA.
This behavior implies that in employing IGA, imposition of
the BCs should be done by an appropriate weak form; and LM
1s a good method for this purpose. A significant advantage of
this behavior is that LM can be useful in the analysis of the
rivers with more complicated geometries, where the control
points are less likely to coincide the geometry of the channels.

10 T g T T 10
@ (b)
91 —— Numerical solution 9-
---------- Exact solution
8 8-
7t 7k
6 6F
> 65} s 5-
4 4-
3t 3-
2 2-
1} 1-
0 2 O % 2

10

Fig. 10(a-c): Concentration (kg m) results for case D = 0.05 m® sec™!, D, =0.01m’sec " (a)t=10, (b)t=45and (c)

t=50sec
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CONCLUSION

In this study, IGA of the depth averaged advection
dispersion equation was conducted in an open channel flow
based on NURBS basis functions with SUPG employed to
stabilize the numerical result For this purpose, the
mathematical formulation of the governing equation was
developed and the Dirichlet BC was imposed strongly in a
rectangular straight channel, the analytical and numerical
results of the mplementation of IGA are compared for
continuous line source and instantaneous point source.
Comparison indicates that despite convergence solution errors,
because of not satisfying the Kronecker Delta, the imposition
of the essential BC needs special treatment. Therefore,
methods LM, PM and LSM were adapted for the weak
imposition of essential BCs in depth averaged advection
dispersion equation of mass transport of an open channel flow.
Results indicate that the I.SM has the best accuracy while the
PM has the poorest. It was found that despite LM is easy to be
adapted and produces accurate results, the system of the
equation suffers from dimensional enlargement and it requires
more calculation time. Moreover, in the case of skew
advection, adapting the LM produces lower RMSE value and
thus more accurate results in contrast to the strong enforced
essential BCs in classical FEA and IGA solutions.
Furthermore, employing the LSM in the homogeneous BC
does not incur any change in the results of the skew advection.
Results imply that IGA is a good solution in depth averaged
dispersion equation, yet since Kronecker Delta isnot satisfied,
the essential BCs should be imposed by an appropriate weak
form and in this respect, LM and LS3M are good methods to be
employed in order to achieve an accurate solution.
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