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In order to predict the output displacement of Giant Magnetostrictive Actuator
(GMA), a dynamic model is established based on J-A model; the algorithm of
modified Particle Swarm Optimization (PSO) 1s employed to identify the
parameters of the proposed model. The calculated outputs using the identified
model is compared with the test curves, with high agreement, the effectiveness of
the proposed model and identification method 1s validated.
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INTRODUCTION

Giant Magnetostrictive Material (GMM) is a smart
material with the properties of generating strains when excited
by applied magnetic field. There are many advantages of
GMM compared with other smart materials: Large elongation
(= 1000 ppm), fast response (< 1 msec) and nanometer solution,
actuators made of GMM (GMA), enjoys a prospect of
applying n extensive fields stretches from active isolation of
precise mechanics (Braghin er af, 2011, 2012), sonar
transducer in high power and precise fluid control n wide
bandwidth (Karunanidhi and Singaperumal, 2010},

However, like piezoelectric and shape memory actuators,
GMA also suffer dominant hysteresis nonlinearity. Therefore,
a thoroughly depict of hysteresis property of GMM considers
the controllability and output precision of GMA. Hysteresis
model of GMA 1s classified into Preisach type models and
physical models, the former 1s approached based on a series of
hysteresis curve tests under fix exciting conditions, thus,
usually fail to describe the rate-dependent property of GMA
while the physical models, such as Jiles- Atherton (J-A) model
in dynamic condition employs the {requency factor into the
dynamic expression, could describe the rate-dependent
properties of GMA much better.

Researches show that parameters of J-A model are very
difficult to be determined, as they are strongly interrelated
nonlinear parameters. In recent studies, many intelligent
optimization algorithms such as Simulated Annealing (SA)
(Hamimid et af, 2012), Genetic Algonthm (GA)
(Chwastek and Szczyglowski, 2006; Zheng et al., 2007) and
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differential evolution (DA) (Toman et af., 2008) are introduced
to identify the J-A model.

In this study, a rate-dependent dynamic model is
established based on J-A model, its parameters are identified
based on modified PSO method, the calculated output
displacement matches well with the test curves, proving the
effectiveness of the proposed method.

MATERIALS AND METHODS

Dynamic model of GMA: The photo of GMA and its
displacement senscr is shown in Fig. 1.

In dynamic condition (above 30 Hz), the J-A model have
to be modified as a dynamic form as the eddy current loss and
anomalous loss 1s counted (Jiles, 1994; Xu et al., 2013):
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Displacement sensor

Fig. 1: GMA and displacement sensor

where, M, and A, denotes the saturation magnetization and
strain, respectively; H denotes the exciting magnetic field, H,
denotes the equivalent field internal the GMM bar; M,
denotes the irreversible magnetization; M, denotes the
reversible magnetization, a is named shape parameter, ¢ 1s the
mean-field parameter, k denotes the domain wall pinning
parameter, ¢ denotes the domain wall flexing parameter. & =1
while H=>0, 8 =- 1 while H <0.

And the above equations could also be unified as a
differential equation:
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where, dM/dH could be calculated through Newton-Raphson
method. The M(H) curves could be integrated by the above
differential equations using a 4th order adaptive-step
Runge-Kutta method.

The magnetostriction property could be described with a
tamous quadratic model (Calkins ef ai., 2000):

3N L
v ®

The element of generating displacement y could be

regarded as a second-order system and described as a transfer
function (Zheng et al., 2007):
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where, Mgnrn Cons Kapne denotes the equivalent mass,
damping and stiffness of GMM bar, respectively. The E*
denotes the Young’s module of GMM.

In dynamic condition, the GMA system should be
regarded as a vibration system, the equivalent mass should not
be regarded as its actual mass, meanwhile, the damping
parameter C and stiffness K 1s not so easy to test, these
parameters are also to be determined.

At last, there are 10 parameters to be determined in the
GMA model which forms avector 8 =[M_ A, ak & c E¥ M,

CGMA KGMA ]T'

Identification based on PSO: In order to establish an
effective parameter model of GMA, the vector 8 should be
recognized precisely, the idea of parameter identification s
employed in this study.

The PSO method has been proposed by Eberhart and
Kennedy (1995) which is derived from the research on birds
feeding behavior. Witha fine global convergence and easiness
to realize, PSO method has been applied extensively in
structure optimization and parameter identification.

In PSO, the potential solutions are represented as a
particle swarm, there are two Vectors attached in every
particle, namely, velomty V, = [v/', v/...v"] and position
vector X, =[x, x'...x"]. D denotes the dimensions of a
solution space. Thus, D=10 in this case. The particles are
firstly initialized randomly and ‘fly’ to search the global
optimization under the following rule:

~ X"+ 0,1, (BestS™ - X'

d1 ¢ §
ViU =wvl +en(p
{ &)

kgel 4 dsl
K =20+ vt

where, v, x* denotes the v and x vector in Step d; 1, and 1,
denotes the random number within [0,1]; ¢, and ¢, denotes the
acceleration coefficients. Then the fitness value in position 3
is calculated as:

T(X)=N/[n+> e k)] (©6)

where, e(k) denotes the error between responses predicted by
identified model and tested by the sensor; 1 is a constant
avoiding zero occurs in denominator; the size of population is
80, the largest iteration step 1s 500.

The fitness value in current state J(X,) is compared with
the particle best value p,, if (X)) is above p, p, is refreshed as
IX).

Then, J(X)) is compared with the global best value BestS,
if J(X)) is above BestS,, BestS, is refreshed as J(X)).
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Parameter identification process based on PSO could be
explained by Fig. 2.

Somemodifications have been exerted in order to increase
the speed and efficiency of optimization.

« A time-varying inertia weight has been introduced.
According to literature (Alfi, 2011), a larger inertia weight
improves the global performance while a smaller one
helps to increase the local search precision. Thus a
time-varying weight is in need to guarantee a quick lock
of the global optimum region at start and a precise search
within the region. The expression of the time-varying
weight 1s exhibited:

Wina — Wiin i (7)

will=w__ —

* An adaptive mutation stage is employed. In previous
evolution algorithms, like genetic algorithm, the mutation
stage helps to increase the diversity of population and
avoid ‘prematurity’. The employment of adaptivemutation
also benefits the global search of PSO (Tsoulos and
Stavrakoudis, 2010). The mutation method in this study 1s
expressed as:

K = ceil [length(B)»rand,] X, = (X m =X <mand,  (8)
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Fig. 2: Identification process of GMA
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Fig. 3: Setup of GMA test system
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where, rand, and rand, is random within the range of [-1,1];
ceil{) denotes the upper integer of a float; length() denotes the
length of vector; X, and X, denotes the upper and lower
limit of the very parameter.

RESULTS

The setup of the GMA test system is shown as Fig. 3. In
the test system, Picoscope2203 acts as signal generator and
A/D acquisition, the reference voltage produced by
Picoscope2203 is amplified by the power amplifier to drive
GMA,; the displacement sensor acquired the position signal
and send 1t back to Picoscope2203.

The optimization range of GMA parameters are set in
Table 1.

With the help of the proposed system, the calculated
displacement curves could be compared with the tested curves,
the comparing result is exhibited as Fig. 4.

Learned from Fig. 4, the displacement output predicts by
the identified model of GMA coincides the test curves very
well along the frequencies from 30-200 Hz.

Along with the increasing of driving frequency, the shape
of hysteresis grows wider. This is due to the eddy current and
abnormal loss is proportional with f and £°°, respectively.

DISCUSSION

This study concerns the dynamic modeling of a giant
magnetostrictive actuator and its parameter identification
method based on PSO. Some of the prior studies concerning

Table 1: Optimization range of GMA parameters

Parameter Range

M, (kAm™) 740-800

2 (ppm) 1000-2000
a(Am™) 3506-10518
c 0-0.3

a -0.1-0
kAm™) 1642-4925
E* (MPa) 30-40

M (kg) 0.08-0.12
C(Ngeem™) 10650-15950
K(kNm™) 2000-3000
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Fig. 4(a-d): Identification result in different frequencies at (a) 30, (b) 60, (c) 100 and (d) 200 Hz

this 1ssue are mainly focus on the dynamic modeling of GMA
with a series of given parameters (Wang and Zhou, 2013;
He et al, 2013; Wenmei ef al, 2012); some of the prior
studies consider only the numerical identification of J-A model
describing the ferromagnetic hysteresis behavior of GMM
(Lederer et al., 1999; Wilson et al., 2001; Kis and Tvanyi,
2004; Toman et al., 2008; Trapanese, 2011); some studies deal
with the quasi-static model of GMA without counting for
the rate-dependent property of GMA (Cao et al, 2006,
Zheng et af., 2007). Compared with these former studies, in
this study, a dynamic model, combined with J-A model,
quadratic model and the wvibration transfer function, is
proposed. The rate-dependent characteristic of GMA is taken
into account. A modified PSO method, with its convergence
speed and global optimization performances improved, is
employed to identify the physical parameters of GMA, with
considerable coincidence of calculated displacement and tested
displacement, the effectiveness of proposed model and
identification method are validated.

CONCLUSION

+  Arate-dependent dynamic hysteresis model based on J-A
model is established in this study considering the eddy
current loss and abnormal loss

+ A modified PSO method is employed to determine the
coupled parameters of GMA, in order to provide an
effective predict of output displacement of the actuator

*  Asystem is established to test the output displacement of
GMA, through experiments in different frequencies, the
effectiveness of the proposed model and the identification
method is validated
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