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ABSTRACT

A Threshold System (T5) isareliability system whose success/failure is a threshold
switching function in the successes/failures of its components. A Coherent System
(C8) 1s one that is both monotone and with relevant components and hence its
success function 1s expressible without any complemented literals. The Coherent
Threshold System (CTS) is consequently described by strictly positive weights and
threshold. It is a useful model for many decision or supply systems and being a
natural generalization of the k-out-of-n system, it 1s typically called the weighted
k-out-of-n system. This study lists fundamental properties of the CTS and presents
two novel methods of deriving its weights and threshold. The first method is called
the unit-gap method and proceeds by writing a set of 2" linear inequalities and then
reducing this set utilizing symmetry and the elimination of dominated inequalities.
The reduced set is then solved subject to the unit-gap restriction. The second
method is called the fair-power method since it insists that the system weights be
representative of component importance or voting power. This is achieved by
making the weight of each component proportional to its Banzhaf index which 1s
the weight of the Boolean derivative or difference of the system success with
respect to the component success. The study further presents the recursive relations
governing the success of the CTS, transforms these relations to the probability
domain and then utilizes them together with appropriate boundary conditions to
derive arecursive algorithm for computing the reliability of the CTS. The algorithm
is given two pictorial interpretations in term of signal flow graphs and probability
maps. An illustrative example demonstrates the implementation of the algorithm
and the optimal order of the components to be followed during the algorithm
implementation. The study is concluded with a general discussion of its findings
compared to those of previcusly-published studies and an overview of potential
future work.

Keywords: Reliability, success, threshold function, coherent, weighted k-out-of-n
systems, Banzhaf voting power, importance measures, recursive
relations and algorithms

INTRODUCTION

A threshold system 1s defined as a system composed of n
statistically independent 2-state components such that the
success or failure of the system is a threshold (linearly
separable) switching function in the successes or failures of the
system components (Ball and Provan, 1988; Rushdi, 1990). By
definition, a switching function S(X)= S(X,, X,, ... ... LX) 1s
a threshold function (Muroga, 1971, 1979, Lee, 1978,
Rushdi, 1990; Crama and Hammer, 2011) if there exists a set
of real numbers W, W,, ... .. W, called weights and T, called
a threshold, such that:
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S(X) =1 iff 37 WX =T )

A threshold function XX) satisfying Eq. 1 will be
denoted by H{n;, X; W; T). In Eq. 1, the magnitudes of the
weights |[W,| were thought to give the relative importance
of the respective values X, in determining the values of the
function (Hurst ef af., 1985; Rushdi, 1990). However, we will
demonstrate herein that this is not necessarily the case.

While a general switching function is characterized by 27
real coefficients (Hurst et al, 1985, Rushdi, 1987d), a
threshold function is characterized by (nt+1) real coefficients
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Fig. 1: A Venn diagram depicting the relationships between symmetric systems, coherent systems, threshold systems and
double-threshold systems and k-to-1-out-of-n systems. The k-out-of-n system 1s a special case of each of these systems

only (Muroga, 1971, 1979, Lee, 1978, Ball and Provan, 1988;
Rushdi, 1990; Crama and Hammer, 2011). The number N, (n)
of threshold functions of n variables grows very fast as n
increases but the number N, (n) of all switching functions
of n variables grows much faster (Hurst ef al., 1985), eg.,
N,(2) = 14 and N,(2) = 16 while N,(6) = 1.5x10" and
N,(6) = 1.8x10". While the class of threshold functions is a
somewhat restricted subset of all switching functions, it is
still large enough to represent many systems of practical
significance.

A normalization criterion usually employed in the
selection of the weights of a threshold function involves the
weight input summation:

FX)=W'X=3" WX 2

and sets to unity the difference or gap G between the minimum
value of F when S(X) =1 and its maximum value when
S(X) = 0. For threshold functions with n<8, this unit-gap
leads to integer values for the weights (Hurst et al, 1985).

A threshold system can be neither symmetric nor coherent
(Rushdi, 1990). However, threshold systems of significant
practical utility are typically coherent. Therefore, we will deal
herein with Coherent Threshold Systems (CTSs). A coherent
system 1s causal (R{0)=0), monotone and of relevant
components (Rushdi, 2010). Amonotone system 1s one whose
reliability function is a non-decreasing function in each
component reliability, 1.e.:

R [1.)-RE|0,) = 8RB/ p, 00, I<m<n (3)

Component number m is relevant to the system if
there exists a valid value for such P that 8R(p)/dp, = 0.0.
Relevancy means that R(p) isnot vacuous in (independent
ofy p,.. If the reliability function R(p)of a coherent system
withequal-reliability components 1s plotted versus p within the
square 0.0<p=<1.0, 0.0<R{(p)=<1.0, then it satisfies R(0.0)=0.0
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and R(1.0) = 1.0 and exhibits an S-shape, 1. ¢, the curve R(p)
versus p is monotonically non-decreasing and if it crosses the
diagonal in (0.0, 1.0) (p versus p), it does so only once and
from below.

A coherent system can also be defined by the nature of its
success function in the switching domain, since such a
function must be a monotone increasing switching function
(Lee, 1978). Such a function S(X) enjoys the properties that:

»  S=0fortheall-Ocell, ie, for x =[00...0]

+ S=1fortheall-1cell ie, for ¥ =[11.....1T

s Hach of the prime implicants of S is a product of
uncomlemeted literals and hence its loop covers the all-1
cell

» TEach of the prime implicates of 5 is a product of
complemented literals and hence its loop covers the all-0
cell

The coherent threshold system is typically referred to in
the literature as the weighted k-out-of-n:G system (Wu and
Chen, 1994; Higashiyama, 2001, Chen and Yang, 2005;
Samaniego and Shaked, 2008; Wei and Zuo, 2008; Ursani,
2014). This means that the weighted k-out-of-n system should
be visualized as a coherent non-symmetric threshold system of
positive weights and a threshold equal to k. If further, all the
weights are equal to 1, the weighted k-out-of-n:G system
reduces to the ordinary k-out-of-n:G system (Rushdi, 19864,
1991, 1993; Rushdi and Al-Hindi, 1993; Rushdi and
Al-Thubaity, 1993; Rushdi and Al-Qasimi, 1994; Kuo and
Zuo, 2003; Rushdi and Alsulami, 2007, Al-Qasimi and
Rushdi, 2008; Amari et al., 2008; Rushdi, 2010). Therefore,
the k-out-of-n:G system can be defined as a threshold system
with a common positive weight for its components and a
threshold equal to k multiplied by this common weight
{Rushdi, 1990, 2010).

Figure 1 presents a Venn diagram depicting the
relationship among symmetric systems, coherent systems,
threshold systems, double-threshold systems (Rushdi, 1990),
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weighted-k-out-of-n  systems, k-to-l-out-of-n systems
(Rushdi, 1987b; Rushdi and Dehlawi, 1987) and k-out-of-n
systems. It is clear from Fig. 1 that a threshold system can be
either symmetric or non-symmetric and can independently
be coherent or non coherent. If it is coherent, itisa CTS
(a weighted k-out-of n system). If further it 1s symmetric, it
reduces to the k-out-of n system which is a special case of
each of the aforementioned systems.

The coherent threshold model can be successfully applied
in the analysis or design of some practical real-life systems
such as furnace systems (Zuo and Wu, 1996; Zuo et al., 1999)
and static synchronous compensators (STATCOM) used in
electric power systems (Lu and Liu, 2006). Itisalsoapplicable
in the analysis and design of fleets of aircrafts (Cochran and
Lewis, 2002), systems of pervasive computing (Hansen and
Bronsted, 2010) and secure secret sharing (Shamir, 1979).

MATERIALS AND METHODS

Fundamental properties of threshold systems: Threshold
switching functions are studied extensively in the literature
(Muroga, 1971; Rushdi, 1990; Crama and Hammer, 2011).
Table 1 reproduces from Rushdi (1990) certain fundamental
properties of threshold systems.

Classification of binary switching functions: Figure 2
displays the 16 binary switching functions:

f(X,.,X,)= auui X v a,X, X \/amil X,va, XX, (4

The figure identifies two non-threshold functions among
them, namely, the odd-parity function (XOR) and the
even-parity function (XNOR). Obviously, neither of these two
functions is linearly separable. Forthe remaining 14 functions,
Fig. 2 lists simplest integer weights and threshold For 12 of
these functions, the desirable unit gap (G = 1) is attainable
while a zero gap (G = 0) is a must for the two constant

functions of 0 and 1. These two functions, when viewed as
system successes correspond to fictitious systems, that are
always failed or always successful, respectively. Though these
two systems are fictitious, they are very useful as boundary
conditions for many recursive algorithms, including the one
presented here. For the 12 unit-gap threshold systems, only
four are coherent (the simplexes X, and X, and the series
system (X, AND X.) and the parallel system (X, OR X2))
while the remaining eight systems are non-coherent.
We will now cite a few practical examples of the above
2 component systems.

Examples of coherent and non-coherent threshold systems
Example 1: An airlines company employs an overbooking
system for its flight reservation. Consider a flight that is
already full, with two passengers X, and X, who have
confirmed reservations and are still expected to come. The
flight director will consider himself successful if neither X, nor
X, shows up, 1.e., his success 1s given by:

S:§1/\§2 (5)

where, we use X, as an indicator variable for the amival of
passenger X;. The success S 1s a non-coherent threshold
function, namely the NOR function.

Example 2: There are only two passengers X, and X, in the
waiting list for a certain flight, with priority given to X,. For
the passenger 3, to succeed in joining the flight; he needs X,
to fail to show up in time while he himself should show up in
time. Success from his point of view 1s:

S=XiAX, (&)

where, the success 35 1s again a non-ccherent threshold
function, namely the X,-INHIBIT-X, function.

Table 1: Threshold systems related to the threshold system with success SX)=HmX, W, T)

System

System success Equation in Rushdi (1990}

Complementary system

System with complementary components

Dual system (complementary system with complementary components)

System with an extra component in series

System with an extra component in parallel

System when component i is failed

System when component i is successful

BX)=HmX-W;-T+0G) Eq.7
SCO-Hm X W,T- " W) Eq.9
§(§)ZH(n;E; W;*T‘FZ?:lW +G) Eq. 12
SGOAX, = Hin+L X, X5 W, W, s T+ W) Eq. 15
Where

Wy =142 [W|+]T| Eq.17
X)X, = Hin+1, X, X ;; W,W,_;T) Eq. 18
Where

W = [T+ 20 W] Eq. 19
8(X|o)=H@ -1 X/ X; W/ WsT) Eg.21
SX|L)=H(n -1 X/ X; W/ W T- W) Eg.22

WWW.ansinet.com

| Volume 15 | Issue 3 | 2015 |



J. Applied Sci,, 15 (3): 431-443, 2015

[)g 0 0 [}g 0 0

aﬂﬂ I
X X, X X
0 0 0 1 1 1 1 0

[}g 0 0 [)go 0

[}g 0 1 [}go 1

AND (X,A3) threshold (Simplex X,) threshold

(Null) threshol d -Tnhibit-X.) threshol d =
0,0 1]; G=0 s [L,-1; f;_ﬂ)G: 1 Complement (X)) threshold (X, NOR X,) threshold
b [0,1;0] G=1 [-1,-1;0], G=1
Xl Xl Xl X1 ]
V] 0 0 1 1 1 1 0

EX‘ 0 1 Ego 1

(-imply-X,) threshold

[1,1;2; G=1 [1,0;1, G=1 [1,-1;0 G=1 (X, exclusive-NOR X))
S;ri,es sgystem NON threshold
ﬂll
X X X, X
0 0 0 1 1 1 1 0
[}g 1 1 Eg 1 1 [}g 1 1 l:;g 1 1
(Simplex X,) threshold (%, OR X;) threshold (identity) threshold (3, Imply-X;) threshold
[0.1;1];G=1 [0,1;1;G=1 [0,0; 0 G=0 [1,1;0F G=1 -
&
X X X %
0 0 0 1 1 1 1 0
[X’ 1 0 E<1 1 0 [}g 1 0 I:X’ 1 0
(X, Inhibit-X,) threshold XOR = exclusive or (X, NAND 30 Threshold -
[1.1;1]; G=1 Not threshold "ML G=1 Compl[elln%r% g_xgijmieshold

Fig. 2: A display of the 16 binary switching functions (X, X,) = a,X: Xz va,X, Xz va, Xi X, va, XX,

Example 3: The flight director considers himself
successful if his flight departs with all available seats
occupied. So far, there are two remaining vacancies with two
passengers X, and X, still expected to come. The director’s
success 1s:

s =X AX, (7

This is a series system, a special case of a CTS.
Alternatively, if there is only one vacancy, with X, and 3, still
expected, then the director’s success is:

S =X,VX, (8)

This 1s a parallel system, again a special case of a CTS.
Generally, 1if there are k remaiming vacancies with n
passengers still expexted to come (O<k<n), then the success to
utilize all seats is the success of a k-out-of-n:G system
(Rushdi, 1993, 2010). The series system in Eq. 7 is one for
which k =n while the parallel system in Eq. 8 is one for which
k=1

WWW.ansinet.com

RESULTS

Derivation of weights and threshold: In this section, we
present two methods for deriving the weights and threshold of
a CTS. The first method is called the unit-gap method while
the second method is called the fair—power method. We stress
herein that the weights and threshold for a given threshold
function or threshold system are not unique.

Unit-gap method: In the umit-gap method, we write 2°
inequalities in the form (W' X =T) for the true vectors of the
function for which f(X) =1 and in the form (WX <T) for
the false vectors X of the function for which £(X)=0. We
reduce the number of inequalities by retaining only dominating
inequalities for the CTS which are the inequalities
corresponding to:

+  The true cell within a prime-implicant loop that is farthest
from the all-one cell (which is necessarily a true cell for
the CTS, through which all the prime-implicant loops pass
(Lee, 1978))

| Volume 15 | Issue 3 | 2015 |
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Fig. 3(a-b): Prime (a) Implicants and (b) Implicates for the function f(X) in Eq. 9

»  The false cell withina prime-implicate loop that is farthest
from the all-zero cell (which is necessarily a false cell for
the CTS, through which all the prime-implicate loops pass
(Lee, 1978))

Note that there is a single dominating inequality per prime
implicant/implicate loop and if this inequality 1s satisfied, all
mequalities pertaming to other cells of the loop are
automatically satisfied. Therefore, the number of inequalities
is reduced from 2" to the sum of the number of prime
implicants and the number of prime implicates. The resulting
set of inequalities 1s then searched for any further dominated
inequality so as to delete it. Now, we change the non-strict
mnequalities of the true dominating cells into equalities
(W'X =T) and replace the strict inequalities of the false
dominating cells into equalities by using a certain gap
(WTX = T—G), where typically G is taken as unity. We then
solve the resulting system of equations. This system is
typically under-determined and allows some arbitrary choices
to be made. Symmetry should be utilized by arbitrarily using
equal weights for variables in which the function f is partially
symmetric.

Example 4: Consider the CTS described by the success
function:

X, X, Ko, X, X)) = XWXV XWX, (9)
Note that f1s partially symmetric in X; and X, since:
X, X X, Xy, X)) = (X, X X, X, Xo) (10)

where, the function f is expressed as a complete sum, 1.e., as
a disjunction of all its prime implicants. Each prime implicant

WWW.ansinet.com

represents a minimal winning coalition, ie., a coalition of
components such that if they are all successful, thenthe system
succeeds and 1f at least one of them fails, then the system fails.
Figure 3 1s a Kamaugh-map representation of the 5-variable
function f while Fig. 4 lists the 2’ = 32 inequalities governing
W and T for the CTS whose success is given by f The
locations of the dominating inequalities among these are
shaded in Fig. 5. For example, the cell farthest from the all-one
cell_in the prime-implicant loop X, is the true cell
X XXX Xs or 10000 and corresponds to the non-strict

mnequality (W,>T). The false cell farthest from the all-zero
cell in the prime-implicate X, 3, X isthe cell XX, X, XeXs
or 01100 and corresponds to the strict inequality (W,+W,<T).
Table 2 lists all the remaining dominating inequalities and
demonstrates that they exhaust all 2° cells of the Kamaugh
map for f, whether they are true cells within prime implicants
or false cells within prime implicates. Table 2 also
demonstrates that there 1s a short cut for wnting the
dominating 1nequalities that can avoid searching for the
farthest cells within loops. The dominating inequality for a
prime-implicant loop involves weights corresponding to the
uncomplemend literals present in the loop expression. For
example, the prime implicant X, X, X, implies inequality
W AW AW, 2T}, On the other hand the dominating
1nequahty for a prime-implicate loop involves Welghts
corresponding to the complemented literals missing in the
loop expression. For example, the prime implicate X, X X
implies the mequality {W,+W,<T}. Since the pertinent
function f is partially symmetric in X; and X, we set W, =W,
and end up with the inequalities in the rightmost column of
Table 2. Here each of the inequalities { W, +W_>T, W,+W_<T}
appears twice and hence the extra instance of each of
them is omitted. Also, we can combine the two inequalities
{W>T-W.} and {T-W.>W,} to obtain {W,>W,} which
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Xl
X [ X
O<T W,<T WAW,=T W,=T WAW, T |WAWAWST| WAHWT W, 2T
W AW, +W,
W,=T WAWRT | WAWAW2T| WAWST | WAHWAWT e | |WWAWRT [ WAWeT
3
WAW,+W, W, W, +W, W AW, +W, | WAHWAW
WAAW. =T W.+W+W. =T 2 3 4 W+W,+W.:T ! 2 * ! 2 2 ! N N W AW, +W. =T
A R +WT R +W_ =T +W, AW T +W,>T o
W A+W,
W,<T WAW=T |WAWAW2T| WAHWT |W+WAWT WAWAWT| WAW,:T
+HW, AW, T

X,

Fig. 4: The 32 inequalities governing W and T for example 4

Fig. 5: Locations of dominating inequalities within the prime implicants (grey) and prime implicates (green) of f in example 4

Table 2: Dominating inequalities for example 4

Dominating inequality

Exhausts

Symmetry of X, and X,

True (On) cells

W, =T Prime implicant X, W, =T

W, +W,; 2T Prime implicant X, 3, W, +W,>T
W, +W, 2T Prime implicant X, 3, W, +W,>T
WAW AW, T Prime implicant X, X; X, W, H2W,=T
False (Off) cells o

W, +W.<T Prime implicate X1 Xs X5 W, +W,<T
W, +W,<T Prime implicate X1 Xz X« W, W, <T
W, +W,<T Prime implicate X3 Xs W, +W,<T
W, +W,<T Prime implicate X: X2 X 2W,<T

means that {2W.<T} dominates §W,+W.<T} and hence, the
latter inequality is deleted. Finally, we satisfy the remaining
non-strict inequalities as equalities, namely:

W, = WAW, = W,2W, = T

{11a)

and satisfy each of the strict inequalities as an equality by

subtracting a unity gap from the right side, namely:
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The two quantities (W,+2W,) and (2W;+1) are each
equal to T and hence, W,

W,HW, = 2W, = T-1

reduced to:

436

1. Equation 11 can be

W, = W,HW, = 142W, = 24+W, =T
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Fig. 6(a-e): Calculation of the Banzhaf indices for the fuction f in Fig. 3 by folding of its Karnaugh map and XORing its entries

X,
% I —x— |
0 3 4 1 4 10 13 12 9 h
5 8 ] 6 15 |[ e | 17 ]| 14
X
|_ i 8 11 12 o 18 17 i J
X
I_ 3 6 [Lzi| 4 |4 13 15 | 12
L X, |
Fig. 7: Pseudo-Boolean function FE(X) = 9X+X +3X,+

3X,+5X,. Together with T 7, a fair-power
reformulation is obtained that recovers the original
function in Fig. 3

Equality of (W +W.) and (2+W.) means that W, = 2 and
hence, T = 1+2W, =5 W, =T =5 W. =T-2 =3 Finally, the
CTS whose success 1s given by fin Eq. 9, has a threshold
T =5and a set of weights W =[51223]".

Fair-power method: This section remedies an earlier
misconception that the weights of the components of a
threshold system represent the relative importance of the
respective components. In fact, a useful measure of
components importance is the Banzhaf index (Banzhaf, 1965,
Dubey and Shapley, 1979, Hammer and Holzman, 1992;
Yamamoto, 2012) which is the weight of the Boolean
derivative (Boolean difference) (Lee, 1978; Muroga, 1979) of
the system success w.r.t., component success:

B, = Weight (38/0X)) (13a)

= Weight (S(X[1,)® (S(X|0,) (13b)

where, S(i |11) and S(}—(|01) are the subfunctions obtained by
restricting the input of S such that X, 1sa 1 ora 0, respectively.

WWW.ansinet.com
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In Eq. 13, the weight of the switching function 35/9X, 1s the
number of its true vectors (Rushdi, 1987a, d), 1.e., the number
of vectors X/X, for which &3/3, = | Note that each asserted
cell (cell of 1 entry) in the map of (dS3/3X)) indicates a
winning coalition in which X, plays a pivotal role (a coalition
that wins (ensures system success) if X, joins it (if 1 1s good)
and loses (allowing system failure) if X;defects from it (if 1 1s

failed)).

Example 4 (Revisited): Figure 6 illustrates a map method for
computing the component importance or the Banzhaf indices
for the function fin Eq. 9. The Karnaugh map for fin Fig. 3 is
folded w.rt., each variable X; so that the cells (X[,) and
S(X|01) coincide as a single cell whose entry is obtained by
XORing the entries of the two original cells (Rushdi, 1986b).
The final sets of indices obtaned:

B=[01335] (14)
can now serve as weights for the system. Figure 7 is a
Karnaugh-map representation of the pseudo-Boolean function:

F, (X)= 9%, +X,+ 3%, +3X, + 5X, (15)
which uses the indices B in Eq. 14 as weights W, If we
associate a threshold T = 7 with these weights, we recover the
function f in Eq. 9.

The above example demonstrates that one can always
reformulate the system representation using a component
importance as its weight. An appropriate threshold is to be
selected (that is not necessarily the original threshold). We call
this reformulation the fair-power representation of the
threshold system. This simple reformulation is not possible
with restricted types of threshold systems such as certain
voting systems in which the threshold and the sum of weights
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(a)

X
0 4 12 8
1 5 13 9 —|
X
r 3 7 15 11 J
X
I— 2 6 14 10
L x—1

2

(b)

L S

2

XIXE

Fig. 8(a-b): (a)Karnaughmap for the pseudo- Boolean function F(x) = 8X,+4X,+2X+X, and (b) Success of the threshold system

F) =9

Table 3: Threshold system H (4; X 8, 4,2, 1; T), ameasure for its components importance and its fair-power reformulation

Banzhaf importance

Original threshold System success

Fair-power solution

T % B, B, B, B, Wr T;
0 1 0 0 0 0 [0000] 0
1 XV 3V XV X, 1 1 1 1 [1111] 1
2 XV VX, 2 2 2 0 [2220] 2
3 XV XY XX, 3 3 1 1 [3311] 2
4 XV X, 4 4 0 0 [4400] 4
5 XV KV 30X, 5 3 1 1 [5311] 4
6 XV KX, 6 2 2 0 [6220] 4
7 XV XXX, 7 1 1 1 [7111] 3
8 X, 8 0 0 0 [8000] 8
9 X, XV X, X X, X, 7 1 1 1 [7111] 8
10 X, XV X, X, 6 2 2 0 [6220] 8
11 X, XV XXX, 5 3 1 1 [5311] 7
12 X, X, 4 4 0 0 [4400] 8
13 XXXV XX, 3 3 1 1 [3311] 7
14 XXX, 2 2 2 0 [2220] 6
15 X,X,X.X, 1 1 1 1 [1111] 4
16 0 0 0 0 0 [0000] 1

are fixed. For such systems, more involved algorithms exist for
computing a vector of weights given a vector of Banzhaf
indices (Aziz ef al., 2007).

Example 5: Consider a 4-component CTS H (4; X, 8,
4,2, 1; T) of weights W =[8 4 2 1]". Figure 8a shows the
pseudo-Boolean function:

F(X)= W' X = 8X, +4X, +2X, + X, (16)

The system is successful for cells in Fig. 8a whose
entry>T. Figure 8b is a Karnargh map for system success
S, (X)) (for a threshold T = 9 and shows that:

$,(X)= XX, vX X, vXX, (17)

Table 3 shows all possible values for H (4; X, 8,42, 1;
T)with the threshold T varying in unit steps from 0-16. For

WWW.ansinet.com
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each possible value of this original threshold T the table
presents (a) A Boolean expression for system success,
(b) Banzhaf importance indices and (¢) A fair-power
representation of the system employing a fair weight W and
a fair threshold T, Note that it is possible to construct such a
fair-power representation for thel7 systems in Table 3. Note
that W is the same for thresholds T and (16-T), 0<T<7.

Recursive relations and algorithm: Reliability analysis of a
CTS is achieved herein by first formulating an expression for
system success in the switching domain and then going to the
probability domain. The Boole-Shannon’s expansion of system
success S(X) about the variable X, is (Rushdi and Goda,
1985):

S(X) = X S(X[0,)v X SIX|L) (18)

where, S(§|0i) and X, SO—{FJ are the two subfunctions of
system success obtained by restricting X, to 0 and 1,
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Fig. 9: Best policy for the signal flow graph drawn on a grid
of thresholds T and weights W to represent nodes of
R (n;p; W, T) when decomposition is with respect to
components of the largest weights first

respectively (Table 1). Since Eq. 18 expresses S(X) in a
disjoint sum-of-products (s-o-p) form, it is readily convertible
(Rushdi, 1983b; Rushdi and Abdulghani, 1993; Rushdi and
Ba-Rukab, 2004) into the following algebraic rehiability
expression:

R (n; p; W;T) = q, Rn—Lp/ps W/ W3 T) 19
+p1R(nfl;fJ/pi;W/'Wi;T7VV1)
The recursive relation Eg. 19 1s valid for n=0. It

must be augmented by the nonrecurssive boundary
conditions:

1if T=0

0if T=0 (20)

R(O;;;T)—I{OzT}_{

The decomposition or recursion tree for the computation
of R (n; p; W; T) via Eq. 19 and 20 is a complete binary tree
of (2°-1) nodes. Application of Eq. 19 contributes (2*'-1)
non-leaf nodes to this tree while execution of Eq. 20 adds 2!
leaves to it. Therefore, the temporal complexity of the present
algorithm is exponential. To improve the efficiency of this
algorithm, techniques for pruning the decomposition tree
(Rushdi, 1990) must be introduced. For example, the recursion
can be terminated at the level n =1 (instead of the level n = 0)
by using:

R{Lp; Wy T)=p I{W:Ti+q I{0=T; (1)
Similarly, the recursion can be terminated at any node of
n>2 if it has a known reliability. For a CTS; the component

weights are strictly positive and the boundary conditions
Eq. 20 are replaced by:

R(mpW,T)=1 if 0=T (22a)
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R(np, W, T)=0 if > W<T (22b)

So that, the decomposition tree is no longer a complete
binary tree, though it still remains a strictly binary tree. If the
CT3 is also symmetric, the algorithm of Eq. 19 and 22 reduces
to the quadratic-time algorithm given in (Rushdi, 1986b, 1991,
1993, 2010) for the k-out-of-n system.

Example 4 (revisited): Consider the CTS system H (5; P; 3,
1,2, 2, 3; 5). Its reliability can be obtained by the recursive
relations (Eq. 19) subject to the boundary conditions (Eq. 22).
The best policy to implement these is to decompose the system
success with respect to the component success of the largest
weight first. The policy 1s demonstrated by the (Mason) Signal
Flow Graph of Fig. 9, where black nodes are source nodes of
value 1 and white ones are source nodes of value 0. Of course,
these white nodes might be deleted, but they are retained to
express boundary conditions explicitly. Note, that the black
nodes are clustered together while the white nodes are
clustered together, a feature always manifested in similar
SFG’s for coherent systems (Rushdi, 1986b, 1990, 1991, 1993,
Rushdi and Al-Hindi, 1993; Rushdi and Al-Thubaity, 1993;
Rushdi and Al-Qasimi, 1994; Kuo and Zuo, 2003; Rushdi and
Alsulami, 2007; Al-Qasimi and Rushdi, 2008; Rushdi, 2010)
and always missing in similar SFG’s for non-coherent systems
(Rushdi, 1987b; Rushdi and Dehlawi, 1987). The system
reliability obtained from Fig. 9 1s:

RGP 5 L2 2,35 =p +qp,Ps + qPq,Ps + 4P, PP s
(23)

Figure 10 is a probability map interpretation of Eq. 23.
This map (Rushdi, 1983b) resembles a Kamaugh map with
disjoint loops and with its map variables being the algebraic
variables rather than the switching ones. Figure 11
demonstrates the worst policy of impleming recursion with
respect to component successes of the smallest weights first.
It produces the reliability expression.

RGP 5 L2 2,3,5) = p,p,g,d,Ps + PP.%:%, s + PPoPd.ds
+P9:P:%9s + P19:9:9%9s + Pi9:9:9:Ps
+ Q0P Ps + P,d,%5P,0s + P, PPeds
+P,PsPs + PP, As PG5 + PPy
+ QPsPPs + P2 PyLPs + 4P Ps
(24)

Which is interpreted by the probability map in Fig. 12.
Correctness of the symbolic reliability expressions in Eq. 23

and 24 can be easily checked via the techniques by
Rushdi (1983a).
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Fig. 10: System reliability obtained by the best strategy of Fig. 9, when expressed on a probability map (Karnaugh map with
disjoint loops)
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Fig. 11: Worst policy for the signal flow graph drawn on a grid of thresholds T and weights W to represent nodes of
R(n; p; W, T) when decomposition is with respect to components of the smallest weights first

DISCUSSION reducing this set utilizing symmetry and the elimination of

dominated inequalities. The reduced set is then solved subject

There are very few previously published studies on  to the unit-gap restriction. The second method is called the
threshold systems such as the works of Ball and Provan (1988)  fair-power method since it insists that the system weights be
and Rushdi (1990). This study differs significantly in scope  representative of component importance or voting power.

and findings from these previously published studies. This is achieved by making the weight of each component
This study concentrates on a wide class of threshold  proportional to its Banzhaf index which is the weight of the
systems called Coherent Threshold Systems (CTSs). Boolean derivative or difference of the system success with

It lists the fundamental properties and cites some  respect to the component success. This study also employs a
examples of threshold systems. It also surveys the 16  well-known paradigm of first formulating a reliability problem
two-component systems. Out of these, two systems are not  inthe switching (Boolean) domain and then manipulating it in
threshold, two are fictitious, four are coherent threshold and  this domain before transforming it to the probability domain
eight are non-coherent threshold. The study also presents two {Rushdi, 1983b, 1984; Rushdi and Goda, 1985; Rushdi, 1987¢,
methods for deriving the weights and threshold of a general 1988, 1993; Rushdi and Ba-Rukab, 2004, 2005). This is
CTS. The first method is called the unit-gap method and  accomplished by introducing the recursiverelations governing
proceeds by writing a set of 27 linear inequalities and then  the success ofthe CTS, transforming these relations to the
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Fig. 12: System rehability obtained by the worst strategy of Fig. 11, when expressed on a probability map (Kamaugh map with

digjoint loops)

probability domain and then utilizing them together with
appropriate boundary conditions to derive a recursive
algorithm for computing the reliability of the CTS. The
algorithm is given two pictorial interpretations in terms of
signal flow graphs and probability maps. An illustrative
example demonstrates the implementation of the algorithm and
the optimal order of the components to be followed during the
algorithm implementation. Results of this example satisfy all
requirements for a valid symbolic rehability expression
(Rushdi, 1983a).

In contrast with previously-published studies, this study
has many pedagogical features and tutorial elements on
threshold functions, their properties, two-dimensional
recursive relations and the utilization of signal flow graphs and
probability maps. The study has many novel contributions and
findings including:
¢ A method for obtaiming threshold and weights of a CTS
by solving systems of linear inequalities with dominated
nequalities deleted
A method of representing a CTS by fair- power weights
and threshold
A comparison of ways for implementing recursicn, in
which decomposition with respectto a component success
of a greater weight is found to result in more compact
reliability expressions

CONCLUSION

This study deals with Coherent Threshold System (CT Ss)
which are reliability systems that are synonymous with
weighted k-out-of-n systems. The name difference reflects a
paradigm shift. The CTSs name is a manifestation of the
forceful paradigm of formulating a reliability problem in the
switching (Boolean) domain, manipulating it therein and then
transforming it back to the probability domain. By contrast, the
alternative name of a weighted k-out-n system reflects total
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adherence to the probability domain without any utilization of
the switching {Boolean) domain. As this study has repeatedly
found and stressed, work in the switching (Boolean) domain
offers many advantages including easy formulation, insightful
conceptualization and powerful manipulation tools including
heuristics and algorithms.

Immediate extension of the current study include
double-threshold systems and non-coherent threshold systems
{Rushdi, 1990). Investigation of possible application of the
improved-disjoint-products (IMPD) method by Rushdi (1993)
to a threshold system 1s very promising, especially when
combined with the work by Higashiyama (2001),
Higashiyama et al. (2009) and Higashivama and Rumchev
{2011, 2012). A special effort 1s also needed for the study of
methods for solving linear inequalities (Ho and Kashvap,
1965; Mengert, 1970, Nagaraja and Krishna, 1974; Censor and
Elfving, 1982; Yang and Murty, 1992). Another prospective
direction for future work is to study the shellability aspects of
threshold functions (which are known to be shellable (Ball and
Provan, 1988; Crama and Hammer, 2011)).
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