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Abstract
Background and Objective: By increasing the penetration level of renewable energies on the generation side and the emergence of new
variable load on the demand side, stochastic analysis of the conventional security constrained unit commitment problem has become
more important for the secure optimal operation of the electricity market. Today, the increasing utilization of plug-in electric vehicles,
which consume electricity rather than fossil fuel for driving, offers new opportunities and challenges to the operation of electric power
system. By appropriate managing and day-ahead scheduling of these types of vehicles, challenges can be replaced by opportunities for
the power system operation and planning. Methodology: In this study, a new method is proposed for stochastic security-constrained
unit commitment problem in the presence of wind power generations and plug-in electric vehicles. The method enjoys the advantages
of conventional scenario-based approaches and mitigates their barriers by using interior point optimization techniques. The proposed
algorithm is implemented on two standard networks: A 6-bus test system and a large-scale 118-bus system. Results: This study
demonstrate the accuracy and efficiency of the proposed method, especially in large-scale power systems with different types of
uncertainties. Conclusion: By increasing the speed of simulation, more uncertainties can be modeled and therefore, more realistic and
accurate results can be obtained.
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INTRODUCTION

Independent  System   Operators   (ISO)  accomplish
Security-Constrained Unit Commitment (SCUC) in order to
design economic and secure generation schedules for the
daily electricity market. They apply the comprehensive market
information provided by participants, like performance of
generating units, generation offer and demand order,
capability of transmission lines and so on1. The SCUC provides
an economically workable unit commitment which is
practically acceptable. The corresponding market participants
are provided by SCUC-based generation dispatch. Commonly,
a satisfactory SCUC solution could be achieved as long as daily
market is proper and robust1. 
A large volume of literature is devoted to SCUS solving
methods. In Wang et al.2 and Fu et al.3, Augmented Lagrangian
Relaxation (ALR) method and an algorithm according to
Bender's Decomposition (BD) technique have been proposed,
respectively. Constraint reduction and computation speed
increase were investigated4. Non-convex SCUC and a new
method based on quadratic programming were proposed5.
Effectiveness  of  two  algorithms  extensively  applied  in
SCUC, i.e., Mixed-Integer Programing (MIP) and Lagrangian
Relaxation (LR), were evaluated6.
In recent years, uncertainties of the components of power

systems have increased drastically. Two most important
sources of power system uncertainties are wind generations
and price-based loads. Wind energy usage has grown
increasingly in power systems in recent years. However,
inherent probabilistic and non-dispatchable characteristics of
wind energy could lead to problem in power system features
such as frequency, voltage and generation sufficiency. In
addition, price-based load is considered another uncertain
parameter  in  power  system  operation  and planning.
Therefore, regarding  Stochastic  SCUC as a tool for optimizing
power system operation is completely inevitable7.

Stochastic SCUC problem which is closer to the real
performance of large power systems than deterministic SCUC
has attracted great interest of researchers. Distribution
generations widely utilized in power systems were taken into
consideration for SCUC8. Scenario-based methods are widely
applied to solve SCUC with uncertainties; however, they result
in escalating the computational burden. In Mehrtash et al.9,
stochastic SCUC was solved according to point estimation
method and BD, including significant reduction in the No. of
scenarios and calculation time.
Plug-in Electric Vehicles (PEVs) are considered hourly

spread   and    mobile    demand     in     power     systems.   The

accumulated   storage    ability    of    PEVs   could   alter  hourly
generation portfolio and decrease the performance costs of
the grid10. 

Due to the importance of PEV concept and application, a
large  number  of  recent studies have concentrated on their
related subjects. In Tomic and Kempton11, the economic
capability of PEVs for contributing to regulation services was
evaluated. The integration of PEV in power systems was
considered12 and their electricity market problem was
investigated13.

Similar to wind generation, PEV is an uncertain source for
grid. Therefore, its random behavior is investigated in different
power system problems, especially Stochastic SCUC. The PEVs
random behavior in conjunction with stochastic characteristic
of wind energy was evaluated in stochastic SCUC14. A
cooperation model and constraints of PEVs and wind
generation in the presence of battery storage were
proposed15. In the last reference, the model included the
distribution pattern of user trips and evaluated the dynamic
process of stored energy. In Krad and Gao16, the capability of
PEVs in providing contingency reserves was investigated.
Power system operation and control from the aspect of being
influenced by contributing battery-based energy storage
transportation by railway transportation network was
studied17. 

New Interior Point Optimization Techniques (IPOPT) are
capable to solve large-scale Mixed-Integer Non-Linear
Programing (MINLP) problems18. In this study, a new method
is proposed for Stochastic SCUC problem in the presence of
wind power generations and PEVs. This method enjoys the
advantages of conventional scenario-based approaches and
mitigates their barriers using IPOPT techniques. Instead of
linearizing, in the proposed method, non-linear problem is
solved via IPOPT techniques. Moreover, since the number of
Benders's cuts is reduced, the number of master problem
solving iterations in BD is lessened and the simulation time is
decreased considerably.
The rest of this study is organized as follows: Interior point

method  is  presented  in  Section  2.  Problem  formulation
and solution methodology are presented in Sections 3 and 4,
respectively.  The  result  of  the   case   studies   is  given in
Section 5. Finally, the conclusion is presented in Section 6.

MATERIALS AND METHODS

Interior point method: Advantages  of  IPOPT  for  solving
large-scale problems will be more understandable when it is
compared  with   Simplex   method.   Simplex,   introduced  by
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Dantzig19, is a method for solving Linear Programing (LP).
Algorithms based on Simplex method search vertices of the
feasible region; therefore, for large-scale problems, in which
the number of vertices is high, the solution time is
considerable. As a result, Simplex is categorized among
exponential time algorithms. In other words, time needed by
Simplex for solving an LP problem is an exponential function
of the problem scale20. 
Interior point approach was proposed by Karmarkar21. Its

algorithm's search path is inside the feasible region; in fact,
central points should be investigated (Fig. 1). Thus, the
problem scale is not too critical and it can be considered
among polynomial time algorithms20.  A complete comparison
between Simplex and IPOPT was proposed22.
At  first,  interior  point  approach  was proposed only for

LP  problems.  However, the idea of using this method for
Non-Linear Programing (NLP) became popular immediately.
Recently, COUENNE,  which is a new algorithm based on
IPOPT, has been proposed by Belotti  et al.23. The COUENNE  
is an open-source solver for non-convex MINLPs18. In order to
overcome MINLP challenges, COUENNE   uses disjunctive cuts
and a tight branch-and-bound approach24. This solver was
implemented in General Algebraic Modeling System (GAMS)
as  a  non-commercial solver. In this study,  GAMS/COUENNE 
is used to solve Stochastic SCUC as an MINLP problem.

Stochastic  SCUC  problem  formulation:  Concepts  of
corrective and preventive actions and definition of Stochastic
SCUC problem have been mentioned in author’s previous
study9. In this section, only the formulation of the problem is
discussed.

Objective function: Objective function, Eq. 1 consists of
generation  cost,  startup  and  shutdown  costs  of thermal
and  hydro  units,  operation  cost  of PEV fleets, availability
cost  for  providing   spinning   reserve   in   scenarios and
expected  cost  of   corrective   actions   in  scenarios for
mitigating uncertainties.
Availability cost is the payment to generators that

provides reserves as a corrective action in response to
uncertainties. The providing reserve of generators is limited by
their ramp up/down capability25. The availability cost is
considered one-third of the marginal cost of a generator.
Thermal units are formulated as non-quick start units;
therefore, their scenario commitment status is similar to the
base case. Thus, the startup/shutdown costs should not be
introduced in the scenarios14.

Fig. 1: Search path of IPOPT method
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Constraints for the base case: In this stage, the values related
to the wind, load, PEV, etc. are fixed to their forecasted values.
Thus, these formulas are deterministic.
The  system  power  balance  constraint  is  presented in

Eq. 2. A detailed formulation of thermal and hydro units
constraints is available25,26. The base case PEV fleet constraints
are mentioned in Eq. 3-10. The net hourly absorbed/delivered
energy from/to grid by PEV battery is given in Eq. 3. The
charging efficiency, 0v, is defined as the ratio of the energy
stored in the PEV battery to the energy drawn from the grid.
Equation 4 represents the hourly charge/discharge/idle status
of fleets. Obviously, these status are mutually exclusive.
Charge/discharge power limitations are given in Eq. 5 and 6.
Equation 7 represents the hourly energy balance in PEV
batteries. Parameter Nv,t denotes connectivity status of PEV
fleet  to  the  grid.  When  PEV  fleet is connected to the grid ,
Nv,t = 1, it is in the either charge or discharge or idle mode.
Once PEV fleet is decoupled from the grid,  Nv,t = 0, the
charge/discharge power will be zero according to Eq. 4-614.
The capacity  limitation  of the PEV batteries is mentioned in
Eq. 8 and 9. The cost function of the PEV batteries, which is
considered as a non-linear function, is given in Eq. 10. The cost
function  parameters  depend on the  depth  of   discharge and
cycles to failure  of the battery. A complete discussion about
PEV battery technologies can be find27. Network constraint
based on DC power flow is shown in Eq. 11 and 12:
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Constraints for each scenario: At this stage, which is the
stochastic part of the formulation, the values related to wind,
load, PEV, etc. are derived from Monte Carlo scenarios. The
initial scenarios are generated and then reduced to final
scenarios via scenario reduction techniques. Afterwards, the
final scenarios are used in the following formulation.
The system's power balance constraint for each scenario

is given in Eq. 13. Scenario constraint related to the thermal
and hydro units is mentioned28. The PEV scenario constraint is
formulated in Eq. 14-21. The equations are similar to those
described in the base case section, with the only difference
that the deterministic forecasted values for wind, load, PEV,
etc.  are  replaced  by their value obtained from the final
Monte Carlo scenarios. Parameter ,  one of the uncertains

vNE

inputs,  denotes  ratio  of  the number  of  PEVs  in  scenarios to
the number of base case PEVs. The  corrective   action   for  the

scenarios is enforced by Eq. 22, while the hourly cost of
corrective action, , is included in the objectiver maxF ( )c,i i,t

function14. Equation 22 shows the correlation between
generation of a unit in the base case, Pi,t  and its generation in
scenarios, . Network constraint based on DC power flowsPi,t
for each scenario is presented in Eq. 23 and 24: 
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Solution  methodology:  The   scenario-based   Stochastic
SCUC problem in the presence of PEVs, modeled in Eq. 1-24, is
a non-linear,  non-convex,  large-scale   and   polynomial-time
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Fig. 2: Flowchart of the proposed method

hard    (NP-hard)    problem.    Solving    such    a   problem  for
large-scale power systems would be intractable without
decomposition9. 

The  flowchart  of  the proposed  method  is  shown  in 
Fig. 2. According to the flowchart, Stochastic SCUC problem is
solved at three stages.
At the first stage, Monte Carlo scenarios are generated

and reduced to the final scenarios. Due to the high simulation
time of Stochastic SCUC problem, scenario reduction must be
done before solving the main problem26.
Afterwards, BD is used for solving the problem14.

Although,  some new IPOPT solvers, such as COUENNE, are
able to solve this problem without BD, it can be concluded
from the simulation of the sample case studies that the
simulation time decreases significantly using BD.
At the second stage, a deterministic SCUC problem,

master problem, is solved using IPOPT.
At the third stage, the results of the master problem

should  be  evaluated  in  the  scenario  security check
subproblem for each final scenario. Every violation will be
referred to the master problem, second stage, for adding new
constraints based on the generated Bender’s cuts. Finally, all
the constraints are met in all final scenarios.
This algorithm has two main improvement compared to

the previous algorithms proposed for Stochastic SCUC
problem14. First, the master problem is solved as an MINLP by

IPOPT, instead of a, MIP, by Simplex based methods. As
mentioned in Section 2, interior point solvers, such as
COUENNE, include better features to handle large-scale
problems. The ability of these solvers for solving MINLPs is
illustrated in the next section by a case study simulation.
Second, due to the ability of the IPOPT solvers, UC and
network evaluation check are solved at a single stage.
However, in previous algorithms, UC  is solved at stage one
and the network evaluation check is solved as a BD
subproblem at stage two. Combination of the UC and network
evaluation check at a single stage can improve the simulation
time, due to a considerable amount of the total simulation
time belongs to master problem. Reducing the subproblem
stages leads to fewer benders' cuts; therefore, fewer iterations
of master problem solving are needed. This improvement can
be concluded from the simulation results of the case studies
in the next section. 

RESULTS AND DISCUSSION

In this section, two case studies, a 6-bus test system and
a 118-bus power system, are studied to demonstrate the
validity of the proposed method for Stochastic SCUC problem
in the presence of PEVs. The proficiency of the proposed
algorithm with IPOPT is illustrated in comparison to the
conventional Simplex-based methods.
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Fig. 3: One-line diagram of 6-bus test system

Table 1: Thermal unit characteristic
Unit a ($/MW2) b ($/MW) c ($/h) Pmin (MW) Pmax  (MW) SU ($) SD ($) Min.Up (h) MinDn. (h)
G1 0.099 6.589 211.4 100 320 100 50 4 3
G2 0.203 7.629 217.4 10 160 200 40 3 2
G3 0.494 10.070 102.8 10 100 80 10 1 1

Table 2: Transmission line characteristics
Line ID From bus To bus Impedance (P.U.) Capacity (MW)
1 1 2 0.170 65
2 1 4 0.258 80
3 2 4 0.197 64
4 5 6 0.140 77
5 3 6 0.018 75
6 2 3 0.037 80
7 4 5 0.037 65

6-bus system: First, the proposed method is implemented on
the 6-bus test system shown in Fig. 3. The system includes
three thermal generators, one wind farm, seven transmission
lines, three load points and five PEV fleets. The loads located
on buses 3, 4 and 5 consume 20, 40 and 40% of the total load,
respectively.
The parameters of the thermal units and transmission

lines are shown in Table 1 and 2, respectively. Table 3 shows
the hourly forecasted load and wind power generation of the
system. In order to show the capability of the proposed
method at high volatility of power generation, the penetration
level of the wind power (ratio of the wind power generation
to the total generation) is increased to 40% at some hours. As
a result, a large amount of generation is probabilistic at those
hours. The hourly penetration level of the wind power is given
in Fig. 4.
The PEV fleet characteristics and their travel pattern are

presented  in  Table  4  and  5,  respectively. Charging
efficiency of each fleet, which is the ratio of energy stored in
the battery to the energy drawn from the grid, is assumed
85%14.  The  annular  driving  distance  by  a  PEV  fleet  is
12000 mile and its average per day is 32.88 mile29,30. The
energy  required  by  a  single  PEV  is about 9 kWh/day with
the  average  3.65  mile/kWh11.  Therefore,  the  hourly  energy 

Table 3: Hourly forecasted load and wind power for 6-bus system
Hours Pload (MW) Pwind (MW)
1 197.27 44
2 211.81 70.2
3 211.20 76
4 213.05 82
5 215.15 84
6 220.03 84
7 246.05 100
8 261.36 100
9 255.20 78
10 253.08 64
11 295.75 100
12 295.29 92
13 293.56 84
14 291.24 80
15 294.17 78
16 259.01 32
17 234.00 4
18 222.06 8
19 230.37 10
20 213.61 5
21 218.97 6
22 254.82 56
23 254.74 82
24 223.87 52

required by fleet one to  five  is  7.65,  9.00,  2.25,  7.20  and 
4.50 MWh, respectively14. 

Four cases are studied on the 6-bus test system:

C Deterministic SCUC with Simplex (conventional method)
C Deterministic SCUC with IPOPT (proposed method)
C Stochastic SCUC with Simplex (conventional method)
C Stochastic SCUC with IPOPT (proposed method)

Case 1: In this case, the uncertainties are modeled with their
forecasted  values. Due to the ignorance of the uncertainties,
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Fig. 5: Generation scheduling of thermal units in case 1

Table 4: PEV fleet characteristics for 6-bus system
PEV fleet No. Min cap. (MWh) Max cap. (MWh) Min charge/Discharge (MW) Max charge/Discharge (MW) a ($/MW2) b ($/MW) c ($/h)
1 13.152 65.76 7.3/6.2 24.8/21.08 0.17 8.21 0
2 10.96 54.8 7.3/6.2 14.58/12.4 0.20 8.21 0
3 5.48 27.4 7.3/6.2 7.29/6.2 0.41 8.21 0
4 8.768 43.84 7.3/6.2 11.67/9.92 0.25 8.21 0
5 10.96 54.8 7.3/6.2 14.58/12.4 0.20 8.21 0

Table 5: PEV fleet travel characteristics for 6-bus system
1st trip departure 1st trip arrival 2nd trip departure 2nd trip arrival
------------------------------- ------------------------------ ------------------------------ -------------------------------

PEV fleet No. No. of PEVs Time Bus Time Bus Time Bus Time Bus
1 3.400 6:00 5 8:00 1 17:00 1 19:00 5
2 2.000 7:00 4 8:00 2 16:00 2 17:00 4
3 1.000 5:00 4 7:00 2 16:00 2 18:00 4
4 1.600 5:00 6 6:00 3 17:00 3 18:00 6
5 2.000 7:00 5 9:00 3 18:00 3 20:00 5

there is no need to generate either Monte Carlo scenarios or
scenario security check subproblem. The deterministic SCUC
problem is solved as an MIP problem using CPLEX solver of
GAMS18. Quadratic cost functions are linearized in order to
solve the problem using a Simplex solver, i.e., CPLEX. The BD

is used to decompose the problem into a master UC problem
and a network security check subproblem as explained14. The
operation cost is 97091.741 $. Generation scheduling of
thermal units and power dispatch of PEVs is demonstrated in
Fig. 5 and Table 6, respectively.
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Fig. 6: Generation scheduling of thermal units in case 2

Table 6: Power dispatch of PEVs in case 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
-15.47 -6.63 -7.78 -8.63 -10.77 0 0 -4.07 -1.30 0 0 0 0 0 0 2.06 0 0 0.67 0 0 0 0 0
-12.89 -4.56 -5.52 -6.25 -8.05 -4.22 0 -2.38 -0.07 0 0 0 0 0.32 1.06 0 3.79 0.83 1.82 0 0.57 0 0 0
-6.44 -2.42 -2.90 -3.24 0 0 -1.84 -1.36 -0.21 0 0 0 0 0 0.30 0 0 0.17 0.65 0 0.06 0 0 0
-10.31 -3.85 -4.62 -5.20 0 -3.57 -2.90 -2.11 -0.21 0 0 0 0 0 0.61 2.20 0 0.43 1.22 0 0.23 0 0 0
-12.89 -4.78 -5.74 -6.46 -8.30 -4.43 0 0 -0.26 0 0 0 0 0.06 0.81 2.71 3.56 0 0 0 0.33 0 0 0

Table 7: Power dispatch of PEVs in case 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
-15.47 -6.65 -7.86 -8.70 -10.82 0 0 -4.02 -1.26 0 0 0 0 0 0 2.10 0 0 0.74 0 0 0 0 0
-12.89 -4.32 -5.39 -6.10 -7.91 -7.78 0 -2.12 0 0 0 0 0.30 0.57 1.31 0 4.08 1.21 2.14 0.12 0.84 0 0 0
-6.44 -2.43 -2.95 -3.28 0 0 -1.80 -1.35 -0.18 0 0 0 0 0 0.28 0 0 0.19 0.67 0 0.06 0 0 0
-10.31 -3.66 -4.50 -5.07 0 -6.40 -2.63 -1.89 -0.07 0 0 0 0 0.23 0.87 2.42 0 0.70 1.49 0 0.45 0 0 0
-12.89 -4.49 -5.52 -6.25 -8.06 -7.92 0 0 0 0 0 0 0.13 0.39 1.15 3.13 3.91 0 0 0 0.68 0 0 0

Table 8: Probability of final scenarios
Scenario 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Probability 0.053 0.002 0.080 0.001 0.003 0.075 0.003 0.031 0.030 0.003 0.005 0.003 0.089 0.595 0.027

Case 2: In this case, the deterministic SCUC problem is solved
as an MINLP problem using COUENNE solver of GAMS18. As
mentioned in Section 2, due to the capability of this solver,
there is no need to either linearize or decompose the problem.
The operation cost is 97067.693 $. Power dispatch of PEVs and
generation scheduling of thermal units are given in Table 7
and Fig. 6, respectively.
As given in Fig. 5 and 6, using the proposed method, the

third thermal unit schedule at h 6 is on, while it is off in case 1.
Moreover, the total operation cost is decreased by 24.048 $,
which is an improvement in the schedule that leads to less
operation cost. This decrease in the operation cost is the result
of solving the problem as an MINLP without accepting the
errors of linearizing the cost functions.

Case 3: For considering uncertainties, wind power generation,
load points and No. of PEVs in fleets are modeled by normal
distribution functions. Their mean is set to their forecasted
values and their standard deviations are assumed as 10, 5 and

10% of the forecasted values, respectively. Stochastic SCUC
problem is solved as an MIP problem using CPLEX solver of
GAMS. Quadratic cost functions are linearized in order to solve
the problem using Simplex solver, i.e., CPLEX. The BD is used
to decompose the problem into a master UC problem and two
subproblems, a network security check subproblem and a
scenario security check subproblem14. To run the Monte Carlo
simulation, initially, 10000 random scenarios are generated
and then, they are reduced to 15 final scenarios using the fast
backward/forward technique of SCENRED library of GAMS
software GAMS/SCENRED (http://www.gams.com/). The
probability of each final scenario is given in Table 8. The total
operation cost is 93311.122 $. Generation scheduling of
thermal units and power dispatch of PEVs are shown in Fig. 7
and Table 9, respectively.

Case 4: In this case, Stochastic SCUC problem is solved as an
MINLP problem using COUENNE solver of GAMS. As
mentioned  in  Section  2,  due  to the capability of this solver,
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Fig. 7: Generation scheduling of thermal units in case 3

Fig. 8: Generation scheduling of thermal units in case 4

Table 9: Power dispatch of PEVs in case 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
-15.47 -7.84 -6.12 -6.77 -8.09 0 0 -5.42 -2.51 0 0 0 0 0 0 0.66 0 0 0 0 0 0 0 0
-12.89 -5.07 -3.6 -4.16 -5.28 -5.04 0 -3.01 -0.54 0 0 0 0 0 0.23 0 3.12 0.13 1.23 0 0 0 0 0
-6.44 -2.62 -1.91 -2.18 0 0 -2.33 -1.62 -0.41 0 0 0 0 0 0 0 0 0 0.42 0 0 0 0 0
-10.31 -4.05 -2.88 -3.33 0 -4.03 -3.57 -2.41 -0.43 0 0 0 0 0 0.18 1.95 0 0.1 0.98 0 0 0 0 0
-12.89 -5.52 -4.06 -4.62 -5.74 -5.5 0 0 -1.01 0 0 0 0 0 0 1.9 2.59 0 0 0 0 0 0 0

Table 10: Power dispatch of PEVs in case 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
-15.47 -7.52 -8.8 -6.34 -7.8 0 0 -4.92 -2.06 0 0 0 0 0 0 1.25 0 0 0 0 0 0 0 0
-12.89 -5.04 -6.13 -4.02 -5.28 -4.96 0 -2.83 -0.4 0 0 0 0 0 0.52 0 3.43 0.52 1.6 0 0.3 0 0 0
-6.44 -2.55 -3.09 -2.07 0 0 -2.14 -1.48 -0.29 0 0 0 0 0 0.14 0 0 0.11 0.64 0 0 0 0 0
-10.31 -4.04 -4.91 -3.21 0 -3.96 -3.37 -2.27 -0.33 0 0 0 0 0 0.41 2.11 0 0.39 1.23 0 0.23 0 0 0
-12.89 -5.34 -6.44 -4.35 -5.58 -5.26 0 0 -0.7 0 0 0 0 0 0.17 2.29 3.08 0 0 0 0 0 0 0

Table 11: Total operation cost and simulation time for all cases
Parameters Case Solution method Total operation cost ($) Total simulation time (sec)
Base case (Deterministic) 1 Simplex 97091.741 100

2 IPOPT 97067.693 55
Stochastic analysis 3 Simplex 93311.122 2235

4 IPOPT 93282.094 1810

there is no need to linearize the problem. The problem is
solved using BD based on the proposed algorithm as shown
in Fig. 2. The operation cost is 93282.094 $. Power dispatch of
PEVs and generation scheduling of thermal units are given in

Table 10 and Fig. 8, respectively. The operation cost and
simulation time of all the four cases are presented in Table 11.
By comparing Fig. 7 and 8, we understand that, in contrast

to  case  3,  in  case  4,  the  third  thermal  unit  is   off   at  3 h. 
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Table 12: Wind farms hourly generation power for 118-bus system
Wind power (MW) Wind power (MW)
------------------------------------------------------------------------------ ----------------------------------------------------------------------------

Hours W1(bus 36) W2 (bus 77) W3 (bus 69) Hours W1(bus 36) W2 (bus 77) W3 (bus 69)
1 177.25 210.91 207.02 13 114.18 92.767 107.20
2 171.03 206.65 211.71 14 109.21 93.605 101.49
3 157.58 197.16 210.79 15 106.82 83.711 101.26
4 145.43 189.44 204.20 16 111.48 85.596 106.67
5 142.40 175.42 200.00 17 102.70 85.328 112.46
6 137.77 143.91 198.43 18 90.549 77.945 120.81
7 119.20 111.31 181.72 19 99.545 76.884 122.88
8 109.45 80.783 147.92 20 120.28 91.872 130.31
9 115.52 58.678 120.91 21 126.64 116.290 160.06
10 116.31 60.474 113.06 22 136.70 123.330 181.18
11 116.79 82.159 115.21 23 160.15 116.350 194.02
12 114.89 90.131 113.64 24 175.23 102.620 202.23

Table 13: PEV fleet characteristics for 118-bus system
PEV fleet Min energy (MWh) Max energy (MWh) Charge/Discharge min (kW) Charge/Discharge max (MW) a ($/MW2) b ($/MW) c  ($/h)
1 131.52 986.4 7.3/6.2 248.0/210.8 0.57 27.35 0
2 109.60 822 7.3/6.2 145.8/124 0.68 27.35 0
3 54.80 411 7.3/6.2 72.9/62 1.36 27.35 0
4 87.68 657.6 7.3/6.2 116.7/99.2 0.85 27.35 0
5 109.60 822 7.3/6.2 145.8/124 0.68 27.35 0

Table 14: Total operation cost and simulation time for all cases of 118-bus system
Parameters Case Solution method Total operation cost ($) Total simulation time (min)
Base case (Deterministic) 1 Simplex 1,323,900 170

2 IPOPT 1,323,780 113
Stochastic analysis 3 Simplex 1,300,850 3490

4 IPOPT 1,299,100 2262

Moreover,  the  total   operation   cost   is   decreased  by
29.028 $. Therefore, as shown in Table 11, it can be concluded
that  solving  Stochastic  SCUC  problem as an MINLP with
IPOPT leads to  less  final  operation cost due to the elimination 
of  linearizing  errors.  Besides,  the simulation time  decreases 
due  to  mitigating  the iterations of master UC problem by
decreasing the number of the required Benders' cuts. 

118-bus system: For scenario-based Stochastic SCUC problem
in large-scale power systems, the computational burden is
drastically intensified and efficient reduction of CPU time is
necessary. Moreover, the advantage of the proposed method
in a large-scale power system with numerous uncertainties
can be better comprehended.
In the second part of the case studies, the proposed

method  is   implemented   on   a   118-bus    test  system,
which  includes   54   thermal   generators,   9  transformers,
186 transmission lines and 91 load points. The system is
modified  by  adding  three  wind  farms and five PEV fleets.
The location and the hourly generation of the three wind
farms  are  given  in  Table  12.  Totally,  100000 PEVs are
divided  into  5  fleets.  The  number  of  PEVs  in fleet 1
through 5 is 34000, 20000, 10000, 16000 and 20000,
respectively14. The fleet characteristics are shown in Table 13.

The PEVs' travel characteristics are similar to those in the
previous case study (Table 5). 
Four cases are implemented on this system and the

results are given in Table 14. As shown in this table, the
proposed method based on IPOPT reduces both operation
cost and simulation time for the Stochastic SCUC of such
large-scale power systems.

CONCLUSION

In this study, a new method based on interior point
optimization has been proposed for scenario-based Stochastic
SCUC in the presence of PEVs. Whereas, the proposed method
enjoys the advantages of the scenario-based method, it also
mitigates the obstacles of this method, e.g., time consuming
simulation due to computational burden and linearizing
errors. By increasing the speed of simulation, more
uncertainties can be modeled and, therefore, more realistic
and accurate results can be obtained. The proposed algorithm
has been implemented on two standard networks: A 6-bus
test system and a large-scale 118-bus system. These case
studies   demonstrate   the   accuracy   and   efficiency   of  the
proposed method especially in the large-scale power systems
with different type of uncertainties.
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APENDIX NOMENCLATURE
Variables
j, o = Index of buses

= Operation cost of PEV fleet(.)
(.)C

= Available energy in batteries of PEV fleet v at time t(.)
v,tE

= Net discharge energy of PEV fleet v at time tnet
v,tE

= Production/availability cost function of a thermal unitr
c,(.) c,(.)F ,F
i = Denotes a thermal unit

= Unit statue indicator, 1 means on and 0 means off(.)
(.)I

= Indicator of PEV fleet in charging mode(.)
c,(.)I

= Indicator of PEV fleet in discharging mode(.)
dc,(.)I

= Indicator of PEV fleet in idle mode(.)
i, (.)I
k = Denotes a hydro unit
l = Index of transmission line

= Generation of a unit(.)
(.)P

= Charge/discharge power of PEV fleet(.) (.)
c,(.) dc,(.)P ,P

= Real power flow on line l at hour t(.)
l,tPL

s = Denotes a scenario
= Shutdown cost of a unit(.)

(.)SD
= Startup cost of a unit(.)

(.)SU
t = Hour index
v = Denotes a PEV fleet
w = Denotes a wind unit

= Bus angle(.)
(.)

= Maximum permissible power adjustment of a unitmax
(.)

Constants
a, b, c = Cost function coefficients

= Energy for PEV v to drive at time t in scenario ss
v,tDR

= Min/max energy stored in batteries of PEV fleet vmin max
v vE ,E

= Initial and terminal stored energy in PEV fleet vv vE0 ,ET
Nv,t = Statue of grid connection of fleet v at time t

= Ratio of the number of PEVs in fleet v in scenario s to thes
vNE

number of base case PEVs
NT = No. of hours under study
Pb = Probability of the base case solution
Ps = Probability of scenario s

= Min/max generation capacitymin max
(.) (.)P ,P

= Min/max charging capacity of PEV fleet vmin max
c,v c,vP ,P

= Min/max discharging capacity of PEV fleet vmin max
dc,v dc,vP ,P

= Total system demand(.)
D,(.)P

= Maximum capacity of line lmax
lPL

Xj,o = Inductance of a line between buses j and o
0v = Cycle charging efficiency of PEV fleet
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