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Abstract
Objective: With the increasing importance of imports as one of the important factors of economic growth, the current study proposed
techniques of more reliable and predictable Malaysian imports of crude material in the future. Specifically,  this  study proposes composite
models for probabilistic imports of crude material forecasting in Malaysia.  Methodology:   In this study, the proposed composite models
(With regression processing of heteroscedasticity), (With regression processing of heteroscedasticity and autocorrelation) were employed
to extract information that assists in increasing accurate forecasting of the size of the Malaysian imports as well as forecasting engines
and compare it with other commonly used models including regression models and ARIMA models. Results:  The forecasting results of
the study showed that the composite model (With regression processing of heteroscedasticity) approach provides more probabilistic
information for improving forecasting of Malaysian imports of crude material. Conclusion: The results also showed two sets of benefits:
The main benefit is that the composite model (Without regression processing) is capable of solving the problem of autocorrelation in
residuals but it was unable to solve heteroscedasticity in the residuals. The second benefit is processing the problem of autocorrelation
in the composite model in a case when it is not processed in the regression model. However, in the case of the emerging problem of the
heteroscedasticity, it can be processed in the regression model prior to the composite model formation.
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INTRODUCTION

To crystallize the problem of searching or finding a robust
model that can increase the accuracy of the predictability of
the size of imports in Malaysia in the future as well as
forecasting engines, the absence of a robust model may affect
planning the imports in the future. Forecasting future values
of economic variables are some of the most critical tasks of a
country.

Several studies have been conducted for developing a
model to predict the Malaysia imports using a variety of
statistics methods1-7. These studies used an Ordinary Least
Square (OLS) regression method in which the response
variable is the value of imports and the explanatory variables
are sets of variables. Osman8  carried out a study that aimed to
determine the best fitted model among the methods of
exponential  smoothing.   Shabri  et  al.9  also developed a
model for prediction of yields of rice imports in Malaysia using
three methods of predictable of Artificial Neural Network
(ANN), the statistical the autoregressive integrated moving
average and the double exponential smoothing.

The overall purpose of this study was to propose robust
composite models to forecasting the values of imports in
Malaysia and the proposed approaches were compared
empirically with each other and with other used methods in
terms of the measurement criteria on the forecasting
performance.

MATERIALS AND METHODS

Materials: This section describes the case study that
demonstrates the effectiveness of the proposed approach
through comparisons with other models. This case study is
described in the following two sub-sections:

Data collection: The study used data on imports of (CM) in
Malaysia to demonstrate the effectiveness and reliability of the
proposed forecasting approach. The data covered a period of
23 years, starting  from  the  1st  quarter  of  1991  until  the 3rd

quarter in 2013 as shown in Fig. 1 and Table 1 along with data
definitions and sources.

Evaluation indices for forecasting performance: For
evaluation of the proposed approaches and other models, the
current study used test significance of parameters and two
statistical indices as a means to measuring the forecasting
accuracy. The first statistical indices are known as Theil’s
inequality coefficients in which small values are indicative of
the high forecast performance. This coefficient is also confined
to the interval between 0 and 1 and its values of 0 and 1
indicate a perfect predictor and a perfect inequality,
respectively. The coefficient illustrated as follows:
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where,  yt   is  the  real  data  for  a  time  period  t,  ŷt  the
predicted value at the same time point and n is a number of
periods10.

The second one is known as the predicted R-square,
which has an indication of how well the model is capable of
predicting responses to new observations. The higher value of
predicted R2 indicates that the developed model is more
capable of prediction. It ranges between 0 and 1 and is
calculated. If R2 (Pred) = 0, the predictive performance is
badness, if U =  1, there is a perfect fit11. The formula is:
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Methods:  This  section  introduces  the  proposed methods
and  the  individual  methods,  including  the   multiple linear 

Fig. 1: Time series of imports of crude material, for the period, Q11991-Q32013
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Fig. 2: Overall for forecasting models

Table 1: Data definition and sources
Variable Definition Source
Value of imports of (CM) Value of imports of  (CM) from Malaysia, unit (Million RM) Department of Statistics Malaysia
Value of exports of (CM) Value of export of (CM) from Malaysia, unit (Million RM) Department of Statistics Malaysia
PPI for the domestic economic The PPI (producer price index) for the domestic economic is a Department of Statistics Malaysia

composite index based on the price data derived from that of
local production and import price indices of (CM), 2005 =  100

GDP Gross domestic product, 2005 = 100 Department of Statistics Malaysia
Exchange rate Exchange rate, against the USD Bank Negara Malaysia
Tariff tax The average of tariff tax on imports of (CM) Royal Malaysian customs department
Sales tax The average sales tax of imports of (CM) Royal Malaysian customs department

regression, the ARIMA  models and the composite model.
Then, it provides a description of the operating process of the
proposed composite models. Moreover, the forecasting
models and proposed approaches in this study are presented
in Fig.  2 where, the proposed models are shown by the red
squares and those identified models are marked by the white
squares in the case study of (C.M).

Multiple  linear  regression  method:   Multiple linear
regression is a generalization of linear regression that takes
into account more than one independent variable. On
practice, the most commonly used model is the general
multiple regression model that has multiple explanatory
variables.   Nevertheless,   OLS   estimation   of regression
weights in multiple regressions can be influenced by the
emergence of outliers, non-normality, heteroscedasticity and
multicollinearity. The model of multiple linear regression can
be represented as follows:

Y  =  β0+β1X1t+β2X2t+......+βkXkt+Et

where,  Y  is the development trend of profession (expressed
by demand generally), X1t+X2t,......, Xpkt  are the influence factors
of profession development trend (explanatory variables);  $0, 
$1, $2, ..... , $k  are  the  regression  coefficients, Et is the random
error, its mean is zero and constant variance F  and Et  is also
assumed to be uncorrelated12,13.

ARIMA (p, d, q)  model:  It means an autoregressive integrated
moving  average  model.  The  ARIMA  process consists of
three processes: AR(p)  process  that  accounts  for the
memory past event, an integrated process I(d) that accounts
for  making  the  data  stationary  and  MA(q)  that  accounts
for a  finite  sum  of  forecasting  error terms. Seasonal and
non-seasonal ARIMA models:  The  general  non-seasonal 
model is known ARIMA (p, d, q) and the general seasonal
model  is  known as ARIMA (p, d, q) (P, D, Q)s. Where (p, d, q)
represents the non-seasonal part of the model and (P, D, Q)s
represents the seasonal part of the model, when s is the
number of periods per season. In this model, seasonal
differencing  of   appropriate   order14   is  used  to  remove
non-stationary from the series. A first order seasonal difference
is the difference between an observation and the
corresponding observation from the previous year. For
monthly  time  series  S  =  12   and  for  quarterly  time series
S = 4.  This   model    is   generally   termed   as   the   SARIMA
(p, d, q) (P, D, Q)s.  An ARIMA model can be defined as:

t 1 t-1 p t-p t 1 t-1 q 1-qy = y + ...... + y + ε + θ ε + ...... + θ εr r

Model coefficients  ø1, .... øp for AR (p) and θ1,......θq for
MA(p). If we write the model in the equation above using the
backshift operations, the model is given by Ali15:
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where, C is the constant term,  øi = jth is the autoregressive
parameter, 2i = jth is the moving average parameter, et  is the
error at time t and Bk = kth is the order backward shift
operator. Seasonal ARIMA (P, D, Q) parameters may also be
identified for specific time series data. These are the seasonal
autoregressive (P), the seasonal differencing (D) and the
seasonal moving average (Q). The general expression of the
seasonal ARIMA model (p, d, q) (P, D, Q) is given by the
following:

øAR (B) øSAR (Bs) (1-B)d (1-Bs)D yt = θMA (B)θSMA (Bs).et

where, S is No. of periods in season,  øAR  is non-seasonal
autoregressive parameter and 2AM is non-seasonal. The
moving average  parameter is the seasonal moving average
parameter.

Composite model: The composite model refers to a
combination of forecasts from regression and ARIMA models
together. The advantage  of  the  composite  model  is that, in
the most cases, it outperforms any of the individual forecasts.
The composite model (Combining-regression and ARIMA
models) has been well documented in previous research16. It
can also be explained as follows: Suppose that we forecasted
the variable yt, this would include those independent variables
as follows:

Yt = β0+β1X1+β2X2+..... +βpXp+gt

This equation  has  an  additive  error  term  that  accounts
for unexplained variance in, that is, it accounts for that part of
the variance of which is not explained by X1,  X2, ....., Xp. The
equation above can be estimated using a regression analysis
as one source of forecast error would come from the additive
noise term whose future values cannot be predicted. One
effective application of time series analysis is constructing an
ARIMA model for the residual series  of this regression. This is
followed by substituting the ARIMA model for the implicit
error term in the original regression equation. It would also
enable us to forecast the error term  using the ARIMA model.
The ARIMA model provides some information about what
future values of are likely to be. For instance, it helps to
“Explain”  the  unexplained  variance  in  the regression
equation. The combined regression- time series model is:

Yt = β0+β1X1+β2X2+..... +βp Xp+øG1(B)θ(B)ηt

where, Yt is dependent variable, X1,  X2, ....., Xp are independent
variables, β0, β1β2,......., βp  are regression parameters, ø, 2  are
AR and MA parameters and 0t  is error random variable.

RESULTS

In this study, all the different models were compared and
the general steps followed in conducting a comparison
among the models in the present study were testing the
significance of the estimated parameters and measuring the
forecasting error.

First step: Testing the significance of the estimated
parameters: This stage focused on testing the significance of
the estimated coefficients of Malaysia‘s imports of (CM)
models and results showed that they are significant at
difference levels. Table 2-8 present the  for the estimated 
coefficients  of  all  Malaysia’s  imports  of   (MC). The p-values
for the estimated coefficients of ARIMA models, regression
model (With processing of heteroscedasticity) and the
composite model (With R.P  of heteroscedasticity)  is  less  than 
0.05, thus indicating that they are highly significant. However,
the p-value for at least one of the estimated coefficient of the
regression model (Without processing), regression model
(With processing of heteroscedasticity and autocorrelation),
composite model (Without  R.P), composite model (With R.P
of heteroscedasticity and autocorrelation) was higher than
0.05. This value indicates that they are not significant at a level
of 0.05. Therefore, we had to drop or exclude them from the
next phase.

Second step: Measuring  the  forecast  error:  Table 9 shows
the results concerning the comparative forecasting
performance of the different investigated models obtained
from the first phase of  ARIMA  models,  regression model
(With processing of heteroscedasticity) and the composite
model (With R.P of heteroscedasticity) are presented. These
results include U-tial test and predicted-R2. The results
obtained  from   the   robustness   evaluation   of   the  different 
 
Table 2: Test of significance for estimated parameters of regression model

(Without processing)
Standard Significance

Model Parameters Estimate error t-value value
Regression model β0 -1047.5 150.9 -6.94 0.000
without processing β2 6.947 3.708 1.87 0.064

β3 0.021 0.002 14.00 0.000
β4 0.254 0.083 3.06 0.003
β6 -65763 20032 -3.28 0.001

Source: Own data calculations
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Table 3: Test of significance for estimated parameters of regression model (With processing of heteroscedasticity)
Model Parameters Estimate Standard error t-value Significance  value
Regression model β0 10.174 3.745 2.716 0.008
(With processing of β2 -969.16 140.663 -6.890 0.000
heteroscedasticity) β3 0.0205 0.001 13.938 0.000

β4 0.153 0.070 2.189 0.031
β6 -61327 19529 -3.140 0.002

Source: Own data calculations

Table 4: Test of significance for estimated parameters of regression model (With processing of heteroscedasticity and autocorrelation)
Model Parameters Estimate Standard error t-value Significance value
Regression model β0 5.61 3.071 1.826 0.071
(With processing of β2 -954.710 164.700 -5.800 0.000
heteroscedasticity β3 0.021 0.002 12.700 0.000
and autocorrelation) β4 0.209 0.074 2.840 0.006

β6 -56271.0 22520 -2.500 0.014
Source: Own data calculations

Table 5: Test of sgnificance for estimated parameters of ARIMA models
Standard Significance

Model Parameters Estimate error t-value value
ARIMA models Seasonal θ1 -0.535 0.091 -5.907 0.000
(0, 1, 0) (1, 1, 0)
Source: Own data calculations

Fig. 3: Comparison of forecasting performance of different
models

methods are shown in Fig. 3  where, the forecasting
performances of these different models are further compared
and where each bar is indicative of the number of best
forecast yielded by the corresponding model in terms of a
specified accuracy measure.

After the proposed approaches were illustrated through
the experiments, we conducted more analyses of the relevant
issues in the following section.

DISCUSSION

This section  discusses  the  forecasting performance of
the proposed approaches in more details. Such performance
was initially analyzed based on the results obtained from the
previously mentioned experiments in last section and then,
deep insights into the performance were provided using the
composite model.

Experimental design and methodologies used were
intended to make the experimental forecasts of imports of
(CM). This was followed by assessing or evaluating the
forecasting performances by testing the significance of the
estimated parameters and two main measurements criteria.

The results in Table 9 show  that  the  U-tial  and
predicted-R2  values  of  composite  model   (With   R.P  of
heteroscedasticity) are 0.0048 and 0.9224 for time series of
imports of (CM), respectively. While the first value is evidently
lower than that of other methods, the second value is higher
than that of other methods. In comparing  among  all  models
of the current study, the performance  of  the  composite
model (With R.P of heteroscedasticity)  was  the  best  as 
indicated by its better fit, while in an earlier study, it was found
that the best performance was achieved by the  composite
model (With R.P)11. The reason for this is that this earlier
study12 aimed to compare between  the  composite model 
(Without R.P) and the composite model (With R.P). However,
the composite model (Without R.P) is able to solve the
problem of  autocorrelation in results and it can also increase
the accuracy in  forecasting.   This  finding  is  in  agreement
with findings  of  some  previous  studies16-21.  Because  these 
studies  have   indicated  that  the  composite  model (Without
R.P) contributes to the increased forecasting accuracy.
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Table 6: Test of significance for estimated parameters of composite model (Without R.P)
Model Parameters Estimate Standard error t-value Significance value
Composite model β0 -1047.5 150.9 -6.94 0.000
(without R.P) β2 6.947 3.708 1.87 0.064

β3 0.021 0.002 14.00 0.000
β4 0.254 0.083 3.06 0.003
β6 -65763 20032 -3.28 0.001
MA, θ1 -0.364 0.108 -3.359 0.001
AR, seasonal, Ø1 -0.304 0.149 -2.042 0.044
MA, seasonal, θ2 0.576 0.139 4.142 0.000

Source: Own data calculations

Table 7: Test of significance for estimated parameters of composite model (With R.P of heteroscedasticity)
Model Parameters Estimate Standard error t-value Significance value
Composite model β0 10.174 3.745 2.716 0.008
(With R.P of β2 -969.16 140.663 -6.890 0.000
heteroscedasticity) β3 0.0205 0.001 13.938 0.000

β4 0.153 0.070 2.189 0.031
β6 -61327 19529 -3.140 0.002
AR, Ø1 0.393 0.124 3.182 0.002
MA, θ1 0.994 0.477 2.083 0.040
MA, seasonal, θ2 0.776 0.087 8.918 0.000

Source: Own data calculations

Table 8: Test of significance for estimated parameters of composite model (With R.P of heteroscedasticity and autocorrelation)
Model Parameters Estimate Standard error t-value Significance value
Composite model β0 5.61 3.071 1.826 0.071
(With R.P of β2 -954.710 164.700 -5.800 0.000
heteroscedasticity β3 0.021 0.002 12.700 0.000
and autocorrelation) β4 0.209 0.074 2.840 0.006

β6 -56271 22520 -2.500 0.014
MA, θ1 -0.240 0.108 -2.216 0.029
MA, seasonal, θ2 0.797 0.078 10.243 0.000

Source: Own data calculations

Table 9: Statistical measures of forecast error for the Malaysia imports of (CM) models
ARIMA Regression model (With processing of heteroscedasticity) Composite model (With R.P of heteroscedasticity)

U-tial 0.0121 0.0055 0.0048
Predicted-R2 0.9215 0.9115 0.9224
Source: Own data calculations

From Table 2-9, the results underlie several interesting
conclusions. First, it can be concluded that the composite
model (Without R.P) is able to solve the problem of
autocorrelation   in   residuals   but   it   cannot solve
heteroscedasticity in the results. Secondly, when this method
is used as in the case of the emerging problem of
autocorrelation, such problem cannot be processed in the
regression model but it can be processed only through the
composite model. However, in case of the emergence of the
heteroscedasticity problem, it is possible to be processed in
the regression model prior to construction of the composite
model.

CONCLUSION AND FUTURE RECOMMENDATIONS

This study, on the basis of composite model, also
proposed two approaches called composite model (With R.P

of  heteroscedasticity)   and   composite   model   (With   R.P  of
heteroscedasticity and autocorrelation) for imports of (CM) in
Malaysia. Empirical illustration and comparison of these
approaches  to  other methods were made based on time
series of (CM) at Malaysia. Finally, some  relevant issues are
discussed and conclusions are drawn.

The study contributes to previous research in that it
presents the first work using the composite model (With R.P of
heteroscedasticity) and (With R.P of heteroscedasticity and
autocorrelation) in this research area. Such composite models
are proved to be robust forecasting methods aiming at
improving or increasing the  accuracy  of  the  predictability  of
the value of imports of (CM) and forecasting engines in the
context of Malaysia. In this study, it was observed that when
such methods were applied, the followings should be
considered especially in the case of the emergence of the
problem  of   autocorrelation.   First,   this   problem  cannot  be
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processing in the regression model but only by employing the
composite  model   (Without   R.P).   However,   such  emerging
problem of heteroscedasticity is processed in the regression
model prior to forming the composite model.

Therefore, future studies would gain better benefits by
focusing the investigation on the application of other
methods to imports of crude material in forecasting by
utilizing data from a wider sample of imports in the context of
Malaysia and comparison of them to the composite model.

ACKNOWLEDGMENTS

The authors are grateful to the Faculty of Science and
Technology, University Science Islam Malaysia (USIM) in
providing the facilities to carry out the research. They also
thank and appreciate the efforts by the Journal editors and
reviewers in advance.

REFERENCES

1. Alias, M.H., 1978. A demand equation for West Malaysian
imports. Akademika, 12: 53-64.

2. Semudram, M., 1982. A macromodel of the Malaysian
economy: 1959-77. Dev. Econ., 20: 154-172.

3. Abu Bakar, N., 2000. Time series estimation of Malaysia’s
export and import demand: A dynamic old method. Analisis,
7: 61-77.

4. Tang, T.C. and M. Nair, 2002. A cointegration analysis of
Malaysian import demand function: reassessment from the
bounds test. Applied Econ. Lett., 9: 293-296.

5. Applanaidu,  S.D.A.P.,  F.M.  Arshad,  M.N.  Shamsudin  and
A.A. Abdel Hameed, 2011. An econometric analysis of the link
between biodiesel demand and Malaysian palm oil market.
Int. J. Bus. Manage., 6: 35-45.

6. Prambudia, Y. and M. Nakano, 2012. Exploring Malaysia’s
transformation to net oil importer and oil import
dependence. Energies, 5: 2989-3018.

7. Mohamad, J., 2012. The impact of tariff reductions on real
imports in  Malaysia  from  1980-2010:  An  empirical  study.
J. Graduate School Asia-Pac. Stud., 24: 181-199.

8. Osman, L.I.B., 2012. Best fitted model to forecast the trade
balance of Malaysia. Faculty of Computer Science and
Mathematics, Shah Alam, Selangor. http://www.
termpaperwarehouse. com/essay-on/Best-Fitted-Model-To-
Forecast-The/103307

9. Shabri, A., R. Samsudin and Z. Ismail, 2009. Forecasting of the
rice yields time series forecasting using artificial neural
network and statistical model. J. Applied Sci., 9: 4168-4173.

10. Stekler, H.O., 1968. Forecasting with econometric models: An
evaluation. Econometrica, 36: 437-463.

11. Milad,   M.A.H.,    R.I.    Ibrahim    and    S.    Marappan,   2015.
A comparison among two composite models (without
regression processing) and (with regression processing),
applied    on    Malaysian    imports.     Applied      Math.   Sci.,
9: 5757-5767.

12. Milad, M.A.H., R.I. Ibrahim and S. Marappan, 2015. Regression
analysis to forecast Malaysia's imports of crude material. Int.
J. Manage. Applied Sci., 1: 121-130.

13. Ul-Saufie, A.Z., A.S. Yahaya, N.A. Ramli and H.A. Hamid, 2012.
Performance  of   multiple   linear   regression   model for
long-term  PM10   concentration  prediction  based on
gaseous  and  meteorological  parameters.   J.  Applied Sci.,
12: 1488-1494.

14. Adhikari, R. and R.K. Agrawal, 2013. An Introductory Study on
Time Series Modeling and Forecasting. Lap Lambert
Academic  Publishing,  Germany,  ISBN: 9783659335082,
Pages: 76.

15. Ali, S.M., 2013. Time series analysis of Baghdad rainfall using
ARIMA method. Iraqi J. Sci., 54: 1136-1142.

16. Quintos, C.E., 1998. Analysis of cointegration vectors using
the GMM approach. J. Econometrics, 85: 155-188.

17. Shamsudin, M.N. and M.A. Fatimah, 1990. Composite models
for short term forecasting for natural rubber prices. Petanika,
12: 283-288.

18. Islam, A., 2007. Explaining and forecasting investment
expenditure in  Canada:  Combined  structural  and time
series  approaches,  1961-2000.  Applied  Econometrics Int.
Dev., 7: 75-89.

19. Khin, A.A., E.C.F. Chong, M.N. Shamsudin and Z. Mohammed,
2008. Natural rubber price forecasting in the world market.
Proceedings of the International Conference on Agriculture
Extension, June 15-19, 2008 Putrajaya, Malaysia, pp: 92-104.

20. Khin, A.A., M. Zainalabidin and S.M. Nasir, 2011. Comparative
forecasting models accuracy of short-term natural rubber
prices. Trends Agric. Econ., 4: 1-17.

21. Khin, A.A., M. Zainalabidin, C.A.N. Malarvizhi and S. Thambiah,
2013. Price forecasting methodology of the Malaysian palm
oil market. Int. J. Applied Econ. Finance, 7: 23-36.

285


	JAS.pdf
	Page 1


