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Abstract
Background and Objective: Roof fall is one of the greatest single hazards faced by underground coal miners. This accident may have
detrimental effects on studyers in the form of fatal and non-fatal injuries as well as downtimes, equipment breakdowns, etc. Due to
different impacts of contributing parameters on roof fall and ill-defined or even immeasurable nature of such factors, this problem is an
uncertain and complex issue. As a result, development of a methodology for roof fall risk evaluation under uncertainty condition has a
remarkable role on safety of underground coal miners. Methodology: This study proposes a new quantitative assessment framework,
integrating the inference process of Bayesian networks and fuzzy set theory with the traditional probabilistic risk analysis. The constructed
Fuzzy Bayesian Network (FBN) based model has 12 root nodes contributing to the failure of the leaf node. The geology maps and data
related to mining equipment at Tabas Coal Mine (TCM) are used to determine the prior probability of FBN root nodes. In addition,
weighted sum algorithm is used to populate the conditional probability table of intermediate and leaf nodes. Results: The new model
quantifies uncertainty in roof fall and also provides an appropriate method for modeling complex relationships in underground mining.
Conclusion:  Finally, the proposed approach is illustrated with an application for the TCM and found to be a powerful technique for coping
with uncertainties and predicting roof fall risk.
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INTRODUCTION

Roof falls continue to be one of the greatest single
hazards faced by underground coal miners. The complexity of
geological deposit and variability of mining parameters lead
to the occurrences of roof falls1. These accidents may have
detrimental effects on studies in the form of injury, disability
or fatality as well as mining company due to down times,
interruptions in the mining operations, equipment
breakdowns, etc2. The hazardous nature of roof falls in
underground coal mine operations can be illustrated from the
statistics of mine accidents. It accounted for 18.18% of all fatal
accidents in coal mines, contributing about 35.29% of all fatal
accidents in below-ground operations3 in 2005.

Several factors such as geological and stress conditions,
mine layout and environment contribute to occurrences of
roof falls in underground coal mines4. Analyzing the roof fall
risk during underground mining could increase the ability of
mine designer and studies to reduce the detrimental effects of
this hazard. Therefore, extensive research has been conducted
to control and assess roof fall in coal mines. In these studies, it
has been tried to find the relationship between the roof fall
and contributing parameters. Kidybinski5 classified roofs of
mines in the United State for the selection of suitable
mechanized support for longwalls. Unrug and Szwilski6

proposed the roof quality index for determining the influence
of strata  control  parameters  on  longwall  mining design.
Coal Mine Roof Rating (CMRR) has been introduced by
Molinda and Mark7 and similar to Bieniawski’s RMR  has a
single rating between 0 and 100. When the CMRR value is
close to 0, the roof is weaker while the value getting close to
100 shows that the roof is stronger. Mark8 evaluated the
stability  of  extended  cut  by  using  some  contributing
parameters like entry with, cut depth, CMRR and depth of
cover.  Using  statistical  analysis  of  roof  fall  database from
37 coal mines, Molinda et al.1 found the relationships between
the roof fall rate and CMRR, primary roof support, intersection
span and  depth  of cover. Deb9  analyzed the coal mine roof
fall rate. In this study, the relationships between CMRR,
primary roof support and intersection diagonal span with roof
fall rate were determined by using fuzzy reasoning techniques.
Duzgun and Einstein2 proposed a risk and decision analysis
methodology for assessment and management of risk
associated with mine roof falls in underground coal mines.
Duzgun4 introduced a risk assessment and management
methodology for roof fall risk in underground mines. The data
was collected from Zonguldak coal region, in Turkey; then the
probability of roof fall was computed by fitting a distribution
function  to  the  annual  roof  fall, while the consequence was

quantified based on a cost model. Palei and Das3 predicted the
effects  of  contributing parameters such as number of bolts
per row, anchorage strength of bolt, spacing between bolts,
width of gallery, mean rock density and RMR on roof falls in
underground  coal  mines.  Palei  and  Das10  proposed  a
model to predict the severities of roof fall accidents based on
some major contributing parameters in bord and pillar
underground coal minig  by  using  logistic  regression  model. 
Ghasemi and Ataei11 developed a fuzzy based model for
predicting roof fall rate in coal mines based on Mamdani
algorithm. Ghasemi et al.12 developed a practical methodology
for assessment and control of the roof fall risk during retreat
mining in room and pillar coal mines. Razani et al.13 applied a
Fuzzy Inference System (FIS) to predict roof fall rate for
controlling, mitigating and/or even eliminating the risk of roof
fall. Gao et al.14 presented a numerical approach to simulate
shear failure of a coal mine roadway roof. The distinct element
code, UDEC, incorporating a proposed Trigon logic was
employed in this study. Oraee et al.15 evaluated the effect of
discontinuities characteristics on coal mine stability. For this
aim, a practical rule-based approach was proposed to assess
the risk of a roof fall.

The literature review shows that the behavior of the roof
at longwall face has been given little attention. One of the
major problems in predicting the roof fall risk at mine faces
arises from the adherent complexity and uncertainty of
contributing parameters related to the roof fall. Therefore,
applying a proper technique that can simultaneously take into
account both the complexity and inherent uncertainty
connected with the roof fall problem helps designers to
analyze the problem more accurately and precisely. In order to
control the uncertainty of parameters affecting the roof fall at
longwall faces, Bayesian Networks (BNs) which are based on
probability theory can be utilized. Also, in order to increase the
accuracy of BN results, the fuzzy logic can be applied.

The main aim of this study is to develop a Fuzzy Bayesian
Network (FBN) model to evaluate the probability of roof fall in
order to obtain a more accurate, precise and robust model.
The new  approach  explicitly  quantifies  uncertainty in roof
fall analysis and also provides an appropriate method for
modeling  complex  relationships  and  factors in underground
coal  mining,  such  as  causal  relation between variables,
common causal  factors,  formal  use of experts’ judgments
and learning  from  data  to  update  previous  beliefs and
probabilities. To show the capability and effectiveness of the
constructed model, the data from Tabas Coal Mine (TCM) has
been used as a case study.

Tabas Coal Mine (TCM) is the biggest and only fully
mechanized coal mine in Iran which is located approximately
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Fig. 1: Location map showing Tabas coal mine

Fig.  2(a-b): (a) Location of panels in mine-field No. 1 and (b) Generalized stratigraphic column at TCM

75 km South of the city of Tabas (Fig. 1). It has three minable
seams (C1, B1 and B2). The C1 seam located in the Tabas coal
mine-field No. 1 is mined by longwall method. The thickness
and  dip  of  the  C1  seam mostly vary from 1.8-2 m and from
11-26  degrees,  respectively.  Low-strength  sandstone  and
siltstone layers have been formed in the hanging wall of the
coal  seam.  The  mine  foot  wall  consists  of  siltstone and
mudstone seams. The location of panels in the mine-field and
generalized stratigraphic column at mine16 is shown in Fig. 2.

In this study, data collected from East 2 panel has been
used. Panel width and length are 217 and 900 m, respectively.

From October, 2010 to July, 2013, this panel was extracted
(approximately 33 months).

MATERIALS AND METHODS

Fuzzy set theory: Fuzzy Set Theory (FST) was first introduced
by Zadeh17. The FST provides a basis to generate powerful,
widespread problem-solving  techniques, especially in the
field of decision making18. The FST has been employed in
various  studies   such  as  multi  criteria  analysis system19,
wave  parameters  prediction20,   coronary   heart   disease  risk
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assessment21, rock brittleness prediction22, building damage
risk assessment on mining terrains23, the fuzzy Risk Analysis
and Management for Critical Asset Protection (RAMCAP)
introduction in order to extend RAMCAP24, risk evaluation of
tunneling projects25, risk assessment of mining equipment
failure26, green supply chain practices evaluation in the mining
industry27 and over break minimization in underground
blasting operations28.

A fuzzy subset A of U is defined by its membership
function that can be any number between 0 and 1.
Membership of 0 means that the value does not belong to set
A, membership of 1 means that the value belongs to the set
under  consideration  and  membership  anywhere  between
0 and 1 determines the degree of membership.

A membership function of fuzzy number Ã on R is
described as µÃ(x): R÷[0,1], which has the following
characteristics29:

C µÃ(x) is the piecewise continuous function
C µÃ(x) is the convex fuzzy subset

Fuzzy number: In general, the FST uses triangular, trapezoidal
or Gaussian fuzzy numbers to convert the uncertain numbers
into fuzzy numbers30. Without loss of generality, Triangular
Fuzzy Numbers (TFN) are often utilized to provide more
precise descriptions and obtain more accurate results31. Thus,
in this study, TFNs are used for representing probabilities of
nodes in the FBN model.

A fuzzy number  Ã can be shown as:

Ã = (a, b, c)

where, Ã is defined as a TFN and a, b and c are crisp numbers
and a>b>c, so that a and c represent fuzzy probabilities
between the lower and upper boundaries of evaluation
information. A fuzzy number Ã = (a, b, c) is called a TFN if its
membership function is given by Eq. 1:

(1) 

0, x a

x-a
, a x b

b-a
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If  assume  two  TFNs  Ã1  =  (a1,  b1,  c1),   Ã2   =   (a2,   b2,  c2)
then   mathematical   operations   are   described   as  follows
in Eq. 2:
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Fuzzy linguistic variable: The fuzzy linguistic variable is a
variable with values as words or sentences in a natural
language. It helps experts to evaluate the importance of the
child  node  on  its parents' with respect to other child nodes.
In  this  study,  a  5-point  scale  has  been used (Table 1).
Figure 3 shows linguistic variables used for determining the
importance weight of each node on its parents.

Fuzzy Bayesian Network (FBN): A BN, also called a causal
network or Bayesian belief network is a powerful tool for
knowledge  representation  and  reasoning under conditions
of  uncertainty32.  This  method is frequently applied in
different aspects of science and engineering real world
problems such as diagnosis, forecasting, automated vision,
sensor fusion and manufacturing control33.  It  has  been
extended to other  applications  including  software  risk
management34,   transportation35,   project  scheduling36,
ecosystem and environmental  management37, new product
development project assessment38, risk analysis during tunnel
construction39, fall risk assessment of cantilever bridge
projects40, safety risk analysis in construction projects41, safety
and risk analysis of managed pressure drilling operation42 and
determination of safety integrity levels43.

Fig. 3: Linguistic variables used in roof fall risk modelling

Table 1: Membership function of linguistic scale
Linguistic value Fuzzy number
Very Low (VL) 0.0, 0.1, 0.3
Low (L) 0.1, 0.3, 0.5
Medium (M) 0.3, 0.5, 0.7
High (H) 0.5, 0.7, 0.9
Very High (VH) 0.7, 0.9, 1.0
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Fig. 4: A naive BN model

A BN has many advantages such as suitability for small
and incomplete data sets, structural learning possibility,
combination of different sources of knowledge, explicit
treatment of uncertainty and support for decision analysis and
fast responses37.

Numerous uncertainties about roof fall items such as
geological condition, mining parameters and stress condition
make the roof fall analysis a complex issue. Uncertainty
generally occurs for reasons including uniqueness (no similar
experience) and variability and ambiguity (lack of clarity, data,
structure and bias in estimates)44. One way to control the
uncertainty of roof fall items is Bayesian belief networks. The
BN is a combination of two different mathematical areas,
namely graph theory and probability theory, which consists of
a Directed Acyclic Graph (DAG) and an associated Joint
Probability Distribution (JPD). A Bayesian belief network
consists of qualitative and quantitative parts45. The qualitative
part of a BN, the so-called structural learning is the graphical
representation  of independence holding among variables
and has the form of a DAG that is popular in the statistics,
machine learning and artificial intelligence societies. The
quantitative part of a BN, the so-called parameter learning,
finds dependence relations as joint conditional probability
distributions among variables using cause and consequence
relationships from the qualitative part and data of variables.
The network is commonly represented as a graph, which is a
set of nodes and arrows. The nodes represent the probabilistic
variables and the arrows represent the causal relationships
between these variables. Nodes, which are the starting ones
and do not have an inward arrow are called the parent nodes.
Other nodes, which have inward arrows connected to them
are the child nodes. In order to run the calculations, it is
necessary to define the states and probabilities for each node.

In a BN, for example as shown in Fig. 4, nodes without arcs
directing   into   them   and   with  no  parents  are  root nodes

(Y1 and Y2) having marginal prior probabilities assigned to
them while nodes with arcs directing into them are
intermediate nodes (Y3, Y4, Y5 and Y6), possessing
Conditional Probability Tables (CPTs). Nodes such as Y7 with
no children are leaf nodes46. Considering the DAG of Fig. 4, the
JPD of the BN is the product of the conditional probability
distributions of the variables Y1 = y1, Y2 = y2, . . . and Y7 = y7:

(3)   
7

1 2 7 i Ø(i)
i = 1

P y , y , …, y = P y | y

where, Ø(i) in Eq. 3 are the parents of the node i in the DAG
and y1, y2, . . . , y7 are the states of variables Y1, Y2, . . . , Y7.
Thus, Eq. 4  gives  the  joint probability distribution of the BN
in Fig. 4:

(4)
       

     
1 2 7 7 6 6 4, 5 4 3

5 3 3 1, 2 1 2

P y , y , …, y = P y | y  P y | y y P y | y

                             P y | y P y | y y P y P(y )

When constructing a BN model, researchers are faced
with  insufficient data relating to probabilities of root nodes.
In  the  engineering  practice,  in  the absence of sufficient
data, it  is  necessary  to  study  with rough estimates of
probabilities47.  Under  such  uncertain  circumstances,  it is
considered inappropriate to use conventional BN to estimate
the system failure probability. The FST offers an analysis frame
that can deal with imprecision in input failure probabilities for
the estimate of probability of the leaf root and such analysis is
termed Fuzzy Bayesian Network (FBN).

With  regard to the FBN, it is essential to choose the
proper fuzzy probability measure as to conduct the fuzzy
Bayesian inference. The fuzzy marginalization rule and fuzzy
Bayesian rule can be calculated by Eq. 5 and 6, respectively.
Here, T stands for the leaf root and Xi stands for the root
nodes. Combing with Eq. 2, the FBN-based inference
techniques can then be fulfilled:

(5)   j i j i
i

P T = t = P(X = x P T = t | X = x

(6)     j j i j i jP X = x | T = t = P (X = x ) P T = t | X = x ØP T = t  

Proposed approach
Inputs: Various factors could affect the roof fall in
underground mine projects. Table 2 shows the Common
Cause (CC) items used in the last researches. One of the
important matters in predicting the behavior of the rock mass

107



J. Applied Sci., 17 (3): 103-115, 2017

Specifications of extraction method and 
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Contributing parameters on roof fall
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Fig. 5: Major contributing parameters on roof fall during longwall mining

Table 2: Common cause items used in the last researches
References Parameters involved in model
Kidybinski5 Average roof rock strength
Unrug and Szwilski6 Roof quality index
Newman and Bieniawski50 Strata weatherability, high horizontal stresses and the roof support reinforcement factor
Molinda and Mark7 Groundwater, surcharge, rock strength, strong bed, discontinuities, spacing, cohesion, roughness, persistence, bedding contact and

moisture sensitivity
Mark8 Entry with CMRR, cut depth and cover
Mark et al.51 Rock Quality Designation (RQD), Uniaxial Compressive Strength (UCS) and diametral point load testing
Deb9 ntersection diagonal span (IS), CMRR, primary roof support (PRSUP) and depth of mine
Duzgun and Einstein2 Injury, equipment damage, interruption and delay in operation and clean up
Palei and Das3 Number of bolts per row, anchorage strength of bolt, spacing between the bolts, width of gallery, mean rock density and Rock Mass

Rating (RMR)
Palei and Das10 Width of gallery, Mining Height (MH), Depth of Cover (DOF), seam thickness, roof support status, immediate roof,  face and specific
Ghasemi and Ataei11 CMRR, PRSUP, IS and DOF
Ghasemi et al.12 Geological, design and operational parameters
Razani et al.13 CMRR, DOF, MH, IS and PRSUP
Gao et al.14 Roadway geometery, matrix properties (density and E), contact properties (Kn and Ks), cohesion, friction and tensile strength
Oraee et al.15 structural data and the geometry and stability of wedges in underground coal mines

is to  choose  parameters  with  the highest effect on
designing. Clearly, no single parameter can represent the
behavior of the rock mass. Different parameters have different
effects on the rock and only when combined together, can
represent the behavior of the rock satisfactorily48. Regarding
the fact that determining several parameters in the rock mass
is difficult and  partly  impossible,  methods  or  models  need 
to be developed to simplify the real status of the
environment49.

In the present study, the most important factors affecting
the roof fall at the longwall mine faces are divided into four
groups (Fig. 5).

Model framework: The model employs a FBN methodology
to  conduct    a    causal    analysis   on   important  variables
influencing  the  roof  fall  risk  and  provides probabilistic
results    which    can    improve   our   decisions.  The
schematic  framework   of   the  proposed model is portrayed
in Fig. 6.

For  constructing  the  model,   first,   the   mining
engineers  are  interviewed  to   establish   the   structure  of
the FBN model for the Roof Fall Risk (RFR). Then the logic
diagram   is    subsequently    used    to    build     up   the
failure-consequence  scenario  from  the  top  to  bottom
nodes using a DAG.
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Fig. 6: A framework for using FBN roof fall risk analysis

Table 3: Descriptions of nodes in FBN model
States
----------------------------------------------------------------------------------------------- ----------------------------------------------------

Nodes Descriptions 1 2 3 4 5
RFR Roof fall risk Very High High Moderate Low Very low
GC Geology condition Weak Moderate Good
LC Layer condition Bad Moderate Good
SC Stress condition High Moderate Low
EM and E Excavation method and equipment Inadequate Medium condition Adequate
CC1 CMRR CMRR<20 21<CMRR<40 41<CMRR<60 61<CMRR<80 81>CMRR
CC4 Immediate roof lithology Carbonized Hard shale, weak Sandstone or Hard and thick Hard limestone

soft shale sandstone strong shale sandstone or or sandstone 
CC3 Water inflow Flow Seepage Leakage Wet Dry
CC2 Faulted zone (It) >2.25 1.5-2.25 1-1.5 0.5-1 0.5>
CC5 Dip 45-70 30-45 15-30 5-15 0-5
CC6 Thickness 4.5<T<6 1.8<T<4.5 1.2<T<1.8 0.8<T<1.2 0.6<T<0.8
CC7 Depth of cover H>600 100<H<600 H<100
CC8 Vertical to horizontal stresses ratio K>1 K = 1 K<1
CC11 Panel width W>365 304<W<365 182<W<304 W<182
CC10 Type of support system Frame Chock Shield Chock shield
CC9 Cut depth CD>1 0.5<CD<1 0.2<CD<0.5 CD<0.2
CC12 Cutting tool Shearer Pollow

In   accordance    with    what    mentioned     above,   a
FBN model is established (Fig. 7), where 12 root nodes
contribute to the failure of the leaf node (roof fall risk). The
descriptions  and  states  of  all   nodes   are   illustrated  in
Table  3.

RESULTS

In order to validate the FBN based model, several steps by
using data collected from the E2 panel of TCM was carried out.
The  first  step  is  determining  the  prior  probabilities  of root
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Fig. 7:  Establish network model for RFR in longwall mining

Table 4: States of the root nodes in E2 panel zones
Probability of variables in each state
------------------------------------------------------------------------------------------------------------------------------------

Common cause Zone ID S1 S2 S3 S4 S5

CMRR 1 0 0 0 0 100
2 0 70 30 0 0
3 70 30 0 0 0
4 80 20 0 0 0
5 95 5 0 0 0

Fault zone 1 0 0 0 10 90
2 0 0 0 20 80
3 0 0 0 70 30
4 0 70 30 0 0
5 0 90 10 0 0

Water inflow All zones 0 10 70 20 0
Immediate roof 0 70 30 0 0
Thickness 0 70 30 0 0
Dip 0 20 80 0 0
Depth of cover 0 100 0 - -
K 100 0 0 - -
Cut depth 0 10 70 20 -
Type of support 0 0 100 0 -
Panel width 0 0 100 0 -
Cutting tools 1 0 0 0 -

nodes. To do this, the panel was divided into zones. Zoning
was done based on the changes in one of the geological
parameters like the immediate roof, the faulted zone
condition and the like. Then, the geology maps and data
related to mining equipment are used to determine the prior
probability of root nodes (CC1-CC12). The states of the root
nodes in different zones are illustrated in Table  4.

Determining the Conditional Probability Table (CPT) of
intermediate and leaf nodes is the next step. In this research,
weighted sum algorithm proposed by Das52 was used to
populate the CPT. The input to the algorithm consists of a set
of weights that quantifies the relative strengths of the
influences of the parent-nodes on the child-node and a set of

probability distributions over the child node for compatible
parental configurations. These are elicited from the domain
expert. So, to populate the CPTs a questionnaire was
distributed among experts. The questionnaire asked the
experts  to  express the relative weight of parental nodes on
the child nodes using the linguistic variables presented in
Table 1. The experts' opinions were integrated by using Eq. 3.
Finally the integrated linguistic variables were defuzzified by
using the best non fuzzy performance (BNP) method. The BNP
value of the fuzzy number  can be found using the Eq. 7:iR

(7) i i i i
i i

UR -LR + ( MR -LR )
BNP = + LR

3

  
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 1 2 ki
i i iy , y , y

Table 5: Relative weight of parent's nodes
Child node Parent node Relative weight
Geology condition CMRR 0.34

Immediate roof lithology 0.27
Groundwater 0.09
Fault zone 0.30

Layer condition Dip 0.62
Thickness 0.38

Stress condition Depth of cover 0.49
Vertical to horizontal stresses ratio 0.51

Excavation method and equipment Panel width 0.13
Type of support system 0.30
Depth of cut 0.37
Cutting tool 0.20

Roof fall risk Geology condition 0.45
Layer condition 0.08
Stress condition 0.37
Excavation method and equipment 0.10

Table 6: Fuzzy JPD of the leaf node (RFR) in FBN model under zone No. 5 condition
States P(RFR = s*GC = gi, LC = li, EM and E = Ei, GC = gj, SC = si)
--------------------------------------------------- --------------------------- ------------------------------------------------------------------------------------

Parents nodes 1 2 3 s = VH s = H s = M s = L s = VL
GC 0.45 0.06 0.06 0.109 0.045 0.032 0.024 0.037

0.60 0.20 0.18
0.72 0.38 0.35

LC 0.21 0.10 0.13 0.257 0.177 0.16 0.151 0.185
0.38 0.29 0.34
0.57 0.51 0.64

EM and E 0.11 0.04 0.44
0.23 0.16 0.59
0.38 0.33 0.72

SC 0.33 0.26 0.01 0.516 0.423 0.431 0.437 0.483
0.48 0.41 0.09
0.60 0.54 0.23

The relative weight of the parent nodes are obtained and
given in Table 5. Then the experts were asked to answer the
following question using the linguestic variables from Table 1.
Given the parental configuration {Comp }, what is

i iY y

should be the probability distribution over the states of the
child X?

In  other  words,  we  seek  distributions  of   the   type  in
Eq. 8:

          i i is s s0 1 m
i i i i i i

i i

P x | Comp(Y = y ) , P x | Comp(Y = y ) , …, P x | Comp Y = y  , 

1 i n , 1 s k   

(8)

where,  X  is   the   child   node   and   has  states (x0, x1, ..., xn)
and      Yi      are      the      parent's      nodes      which    have 
states                     .

Finally, Eq.  9  was used to complete the CPTs:

(9)
    j1 2 n

n
ss s sl l

1 2 n j j j
j = 1

j j

P x | y , y , …, y = w P x | Comp(Y = y ) , 

l = 0, 1, …, m and s =1, 2, …, k



where, Wj is the relative weight of the node j.
The final aim of this study is to calculate the probability

distribution in risk event under the combination of or root
nodes, i.e., CC1, CC2,… and CC12. In order to obtain this goal, in
each zone the state of risk factors were treated as evidence
input into a FBN model. As an example, the fuzzy JPD of the
RFR  node  under the zone condition No. 5 is presented in
Table  6.

At  the  end,  for  different  zones the CPT of leaf node
(RFR)  was  calculated  and  defuzzfied using Eq. 7. The
correlation between the RFR values and values of the
extraction rate in E2 panel can prove the reliability of the FBN
model. Higher extraction rate shows lower roof fall risks and
better  studying  conditions.  In  this  study, the parameter R is
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Fig. 8: Relation between RFR in VH state and R, a linear regression analysis

Fig. 9: Compatibility rate of the RFR in VH state with the R parameter

defined for determining the relation between the risk values
and extraction rate. The extraction efficiency (R) is calculated
from Eq. 10:

(10) Extraction rate
R = ×100

Maximum extraction rate

The relation between the RFR in VH state and extraction
efficiency in the E2 panel is shown in Fig. 8. Also, the
compatibility  rate  of  the  RFR values with the R is shown in
Fig.  9.

DISCUSSION

Development  of  a  methodology for analyzing the roof
fall  risk  has  a  remarkable  role  on mine safety. Factors like
the geological and stress conditions, mine layout and
configuration contribute to occurrences of roof falls4. In the
last studies, it has been tried to find the relationship between
the roof fall and contributing parameters. Clearly, no single
parameter can represent the behavior of the roof. In addition,
only when different parameters combined together, can
represent  the  behavior  of  the  rock  satisfactorily48.  Also, last
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studies show there are no doubt that the condition of a mine
roof can be better expressed by using fuzzy set theory rather
than traditional set theory9. For this reason, some studies are
done using fuzzy sets in the field of risk assessment in
underground coal mining9,11,13,53,54.

Another major problem in risk evaluation arises from the
complexity and uncertainty of contributing parameters. One
of the ways to overcome the problems like this is using a
Bayesian network based model. Bayesian belief networks was
developed for knowledge representation and reasoning under
conditions of uncertainty. This approach has the wide
application in the any phases of the risk analysis34,39-42.

Considering the problems mentioned in the context of
risk analysis, a new methodology was proposed, integrating
the inference process of Bayesian networks and fuzzy set
theory. The main advantage of this approach is considering all
effective parameters on roof fall under uncertainty condition.
Another advantage of FBN model is its possible utilization in
new coal field where enough experience and data are not
available.

CONCLUSION

The  complex  nature  of  geological  condition  and
variability of mining configuration lead to the occurrence of
roof  falls.  The  presented  approach was a probabilistic
methodology  of  risk  analysis which developed based on
fuzzy Bayesian network model. This methodology can
simultaneously take into account both the complexity and
inherent uncertainty associated with the roof fall problems.
Application of the proposed methodin Tabas coal mine show
that the FBN based model is a powerful technique for coping
with uncertainties and evaluating the roof fall risk at longwall
face.
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