

 OPEN ACCESS Journal of Applied Sciences

ISSN 1812-5654
DOI: 10.3923/jas.2017.204.211

Research Article
Evaluation of Parallel Self-organizing Map Using Heterogeneous
System Platform

Muhammad Firdaus B. Mustapha, Noor Elaiza Bt Abd Khalid and Azlan B. Ismail

Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, Shah Alam, 40450 Selangor, Malaysia

Abstract
Background: Self-organizing map (SOM) is a very popular algorithm that has been used as clustering algorithm and data exploration.
The SOM consists of complex calculations where the calculation of complexity depending on the circumstances. Many researchers
successfully improve SOM processing speed using discrete Graphic Processing Units (GPU) since the introduction of Compute Unified
Device Architecture (CUDA) in 2007 and Open Computing Language (OpenCL) in 2009. In spite of excellent performance using GPU, there
are performance issues in processing a large mapping size especially dealing with find the Best Matching Unit (BMU) and updating
weightage. Additionally, the larger mapping size also could burden the processing through the usage of high memory capacity which
leads to high rate memory transfer. Recently, heterogeneous systems, that soldered CPU and GPU together on a single chip are rapidly
attractive the design paradigm for today’s platform because of their remarkable parallel processing abilities. Therefore, this study evaluates
parallel SOM performance on discrete GPU and heterogeneous system in order to improve the algorithm processing. Materials and
Methods: Accordingly, this study demonstrates parallel SOM that comprises of three kernels. The parallel SOM then executes on two
different platforms: (1) Discrete GPU platform and (2) Heterogeneous system platform. This study evaluates the outcomes of the
computation experiments based on computation time and SOM quality measurements. Results: As a result, parallel SOM that executed
on heterogeneous system platform is able to reduce the total processing time compared to discrete GPU platform when processing large
mapping sizes and large data sets. Conclusion: More important, this study highlights how the proposed parallel SOM can improve the
execution performance and maintain the SOM results when running on heterogeneous system.

Key words: Self-organizing map, Kohonen network, clustering, parallel self-organizing map, parallel computing, GPU computing, heterogeneous system,
OpenCL

Received: September 08, 2016 Accepted: January 30, 2017 Published: March 15, 2017

Citation: Muhammad Firdaus B. Mustapha, Noor Elaiza Bt Abd Khalid and Azlan B. Ismail, 2017. Evaluation of parallel self-organizing map using
heterogeneous system platform. J. Applied Sci., 17: 204-211.

Corresponding Author: Muhammad Firdaus B. Mustapha, Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, Shah Alam,
40450 Selangor, Malaysia Tel: +6013-2075853

Copyright: © 2017 Muhammad Firdaus B. Mustapha et al. This is an open access article distributed under the terms of the creative commons attribution
License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Competing Interest: The authors have declared that no competing interest exists.

Data Availability: All relevant data are within the paper and its supporting information files.

http://crossmark.crossref.org/dialog/?doi=10.3923/jas.2017.204.211&domain=pdf&date_stamp=2017-03-15

J. Applied Sci., 17 (4): 204-211, 2017

INTRODUCTION

Self-Organizing Map (SOM) is an unsupervised neural
network that has been used as data analysis method. It is
widely applied to clustering problem and data exploration in
various areas of problems with remarkable abilities to remove
noise, outliers and deal with missing values1. The SOM
algorithm is based on nonlinear projection mapping which
reduce the dimensions of high-dimensional data to
two-dimensional data (2D) by producing a topology map.
The SOM is categorized as data reduction technique performs
data reduction on two ways: (1) Reducing the number of
dimension (Projection) and (2) Number of observations
(Quantization), at the same time preserving the structure and
useful information in the dataset2. There are other techniques
in this category such as Multi Dimensional Scaling (MDS) and
Principal Component Analysis (PCA). However the SOM is
differs from these techniques because it has learning
capability and combines the two methods in the algorithm
that are projection and quantization. The learning nature of
algorithm in SOM is to allow the information constantly
updated in order to improve the quality of final results.

On the other notes, Graphic Processing Unit (GPU) is a
many core processor consisting hundreds or even thousands
of compute cores3 has been used to process the applications
of scientific computing and scientific simulations or also
called General Purpose Graphic Processing Unit (GPGPU)3.
Originally, GPU has designed for graphic applications through
programming environments such as DirectX and OpenGL4.
The GPU computing has proven to be optimized to produce
high throughput of floating point operations using large data
in graphic applications. Since the introduction of GPU
programming frameworks such as of Compute Unified Device
Architecture (CUDA) in 2007 and Open Computing Language
(OpenCL) in 20095, the GPU have become popular in
improving the processing of algorithms in various fields.

The OpenCL is a framework of parallel programming that
can be used for programming a heterogeneous collection of
Central Processing Units (CPU), GPU and other discrete
computing devices organized into a single platform6. An
OpenCL program is executed on a host and the host is
connected to one or more GPU. The host code portion of an
OpenCL program runs on a host processor according to the
models native to the host platform. The OpenCL program host
code submits various commands to a command queue, to be
executed by processing elements within the device. The
command can be of different types, such as for execution,
memory management or synchronization. Meanwhile, the
device code or kernel is executed on GPU. Kernels are sets of

instructions that are executed in parallel. Each kernel program
is stored in a separate file with the extension of cl.

However, due to the restrictions imposed by past GPU
architectures, most of these frameworks treat the GPU as an
accelerator which can only work under close control of the
Central Processing Unit (CPU). Further, the communication
protocol between a CPU and a GPU is source of high latency
and becomes a performance bottleneck. This problem can be
noticed when using OpenCL 1.0 where the memory
management is relied on the programmer to take care of data
movement between the CPU and the GPU. The main problem
in performance for OpenCL 1.0 applications is data transfers
between the host code and device code7.

The most recent technology, heterogeneous systems, that
soldered CPU and GPU together on a single Integrated
Circuit (IC) chip is quickly becoming the design paradigm for
today’s platform because of their impressive parallel
processing capabilities7. The introduction of heterogeneous
programming models such as OpenCL 2.0 in July, 2013 is to
improve the communication between CPU and GPU. This
framework treats the GPU as a first-class computing device
which allows the GPU to manage their own resources as well
as access some of the CPU resources. OpenCL 2.0 introduced
Shared Virtual Memory (SVM) which allows the host and the
device to share a common virtual address range8. This
reduces overhead by eliminating deep copies during
host-to-device and device-to-host data transfers. Deep copies
involves completely duplicating objects in memory7.

Many researchers are trying to take advantages of GPU
computing to execute SOM algorithm in parallel manner. As
a result, Hasan et al.9 addressed the larger mapping size and
feature dimensions, the slower the computation time for both
CPU and GPU. Some researchers agreed that GPU variant
shows the significant speed up for large data compared
to CPU variant4,10,11. Both comparisons are proven that GPU
computing achieves better performance in terms of
computation time. Despite its excellent performance, there are
performance issues in processing a large map, especially when
dealing with winner-search and updating weightage of
neurons on the map1. Additionally, the larger dataset and
mapping size degrades its performance whilst increases its
memory usage which leads to high rate memory transfer9,12.
On the other hand, datasets features also have a great
influence to the SOM processing9.

The SOM algorithm comprises of dependency tasks which
make it suitable to decompose. To enable parallelism of SOM,
some researchers attempt to decompose several steps of the
algorithm. Most of the studies are found in the literature
perform decomposition on calculate distance and find the

205

J. Applied Sci., 17 (4): 204-211, 2017

BMU. This step obviously consists of many computations and
it independent each other’s. Hasan et al.9 and De et al.10

decomposed calculate Euclidean distance and Best Matching
Unit (BMU) searching process. Some researchers tried to
decompose calculate distance, find BMU and update the
neuron’s weights10,11,13,14. Meanwhile; Lachmair et al.12 and
De et al.10 decomposed initialize neuron weights. From the
literature shows that there are three major steps have been
decomposed, calculate distance, find the BMU and update the
weights. Some researchers are used different configurations
of decomposition on these three steps.

This study demonstrates parallel SOM that comprises of
three kernels. The parallel SOM then executes on discrete
GPU using OpenCL 1.0 and heterogeneous system platform
that employs OpenCL 2.0 with the interest to study the
performance of the algorithm. The main purpose of this
study is to improve processing speed of parallel SOM using
heterogeneous system platform. The study evaluates the
outcomes of the computation experiments based on
computation time and SOM quality measurements. The
significance of this study can be summarized as follows:

C This study presents three kernels of parallel SOM
specifically calculate distance, find BMU and update
weights

C This study describes specific set of performance of parallel
SOM appropriate for heterogeneous system using GPU
and implemented in OpenCL

C This study evaluates the proposed parallel SOM in terms
of execution time and SOM quality measurements on
discrete GPU and heterogeneous system

MATERIALS AND METHODS

This study describes about the parallel SOM, parameter
setting of GPU programming framework and experimental
setup.

Parallel self-organizing map: This study proposes to
parallelize all of the three steps using separate kernels
code. The first kernel is to calculate the distance between
neurons and a current input vector. The second kernel is
to find BMU for each input vector. The BMUs values are
then used by the third kernel to update the map
appropriately. The parallel SOM will be executed on discrete
GPU and heterogeneous system. The discrete GPU system will
be run on OpenCL 1.0 while the heterogeneous system will be
run on OpenCL 2.0.

Calculate distance kernel: Calculate distance kernel includes
distance calculation step in SOM algorithm where it calculate

the distance between neurons and current input vector. The
amount of neurons on the SOM is represented by the same
ammount of work-items on the GPU. As such, each work-item
of the kernel is responsible for finding the distance between
a single neuron and the current input vector. The distance
calculation of SOM algorithm can be realized by using
algorithm in Fig. 1.

This study applies Manhattan distance calculation, MD to
calculate distance using Eq. 1:

MD(x,b) = (x1-b1)+(x2-b2)+...+(xn-bm) (1)

where, x is an input vector with n attributes and b is neurons
vector with m weights. Afterward the sum of the differences
between each of the components of the current input vector
and the current neuron’s vector is calculated as described in
the equation. The result of this calculation is stored in a
distance map array. The distance map array will be employed
by find BMU kernel on the next step.

Find BMU kernel: This kernel applies two stage parallel
reduction15 with the aims of finding BMU in parallel which
performs in stages. Generally, the BMU is a calculation to select
a neuron with the smallest distance as a winner neuron1, Ck
where:

Ck = argmin (MD) (2)

Algorithm in Fig. 2 describes the find BMU step. Firstly, the
kernel acquires the number of work units, chunk_size for each
Compute Unit (CU) from the host. chunk_size is calculated
using the following Eq. 316:

(3) 
Amount of work unit

chunk_size (cs) =
Amount of compute unit CU , (aCU)

where, the amount of work unit is equivalent with amount of
neurons on SOM map and amount of CU on device is
depending on the device type. All the CUs should have almost
the same number of work units. The work unit per CU then is
divided by the size of local work group in order to acquire the
amount of work units for each processing element must deal
with, local_chunk_size as shown in Eq. 416. This kernel then
acquires the values of distance map from the host which were
stored into distance map array previously. Each work-item in
the work-groups will find the minimum distance among the
distance values covered by the work groups using Eq. 5. The
minimum distance value identified by the kernel is stored in a
local array.

206

J. Applied Sci., 17 (4): 204-211, 2017

At the second stage, each CU will search the minimum
distance in the local array using Eq. 6. This local array contains
minimum distances from all the work-groups under the
same CU. All the CUs in the device will have their BMU. The

Begin
 for k = 1 to Bm do in parallel

 MD (x, b) = (x1-b1)+(x2-b2)+...+ (xn-bm) (1)

 dist_array[i] = MD(x,b)
 end for
End

Fig. 1: Algorithm to calculate distance

Begin

 (3) 
Amount of work unit

chunk_size (cs) =
Amount of compute unit CU , (aCU)

 (4)
chunk_size

local_chunk_size (lcs) =
Amount of work group (awg)

 Clcs = argmin (MD) (5) do in parallel
 Store the winner into local_winner_array[awg]
 Ccs = argmin (local_winner_array [awg]) (6) do in parallel
 Store the winner into global array, global_winner_array[aCU]

 CaCU = argmin (global_winner_array [aCU]) (7)
End

Fig. 2: Algorithm to find BMU

Begin
 Determine neighborhood value
 for k=1 to Bn do in parallel
 Wupdate = wcurrent+neighborhood_function[x(i)-wcurrent] (8) do in parallel
End

Fig. 3: Algorithm to update weights

minimum value identified at this stage will be stored into a
global array. Finally, the host read the global array that
contains the BMUs from all the CU. Next, the host finds the
minimum distance value from the appropriate array as the
winning neuron among the winners through Eq. 7.

Update weights kernel: This kernel deals with updating the
weight vectors associated to each neuron using the original
update weight. Algorithm in Fig. 3 defines the update weight
step. The algorithm begin with determine the neighborhood
value which includes learning rate. The learning rate describes
how much a neuron’s vector is changed during an update
according to how far away the neuron is from the BMU on the
map. The BMU and its close neighbors will be changed the
most, while the neurons on the outer edges of the
neighborhood are changed the least. The learning rate values
can be an inverse time, linear or power function. Equation 8
describes the formulation of update weight1. This study
applies Gaussian function as a neighborhood function. The
weight vectors of units in the neighborhood of the winner are
modified according to a spatial temporal neighborhood
function.

Parameter setting of GPU programming framework: This
study describes the different parameters setting of parallel
SOM on OpenCL 1.0 and OpenCL 2.0. The parameter setting
can be divided into four parts, pointer declaration, allocating
the pointer, accessing the parameters from host and
passing the parameters to kernel. Table 1 and 2 show the
parameter setting that impose to OpenCL 1.0 and OpenCL 2.0,
respectively. Both parameters setting clearly show the
different between OpenCL 1.0 and OpenCL 2.0 on every part.
The most anticipating part of OpenCL 2.0 is when accessing
parameter values from the host, where the parameter can be

Table 1: Parameter setting on OpenCL 1.0
Pointers declaration cl::Buffer winner_distance_array_buffer
Allocating the pointers and initializing the buffer winner_distance_array = (float *)malloc(sizeof(float)*compute_units);

winner_index_array = (int *)malloc(sizeof(int)*compute_units);
for (int i = 0; i < compute_units; I++)

{winner_distance_array[i] = FLT_MAX;
winner_index_array[i] = -1}

winner_distance_array_buffer = cl::Buffer(device_context, CL_MEM_READ_WRITE
 CL_MEM_USE_HOST_PTR, sizeof(float)*compute_units, winner_distance_array,
&err);

Accessing from host Read from host:
err = command_queue.enqueueReadBuffer(winner_distance_array_buffer, CL_TRUE,
0, sizeof(float)*compute_units, winner_distance_array)
Write from host:
err = command_queue.enqueueWriteBuffer(winner_distance_array_buffer,
CL_TRUE, 0, sizeof(float)*compute_units, winner_distance_array)

Passing to kernel manhattan_distance_kernel.setArg(0, winner_distance_array_buffer)

207

J. Applied Sci., 17 (4): 204-211, 2017

Table 2: Parameter setting on OpenCL 2.0
Pointers declaration float* map_buff;

float* distance_map_buff;
float* input_buff

Allocating the pointers input_buff = (float*)clSVMAlloc(oclobjects.context,
CL_MEM_READ_WRITE | CL_MEM_SVM_FINE_GRAIN_BUFFER,
input_size*input_vector_length*sizeof(float),
0)

Accessing from host for (int i = 0; i < input_size*input_vector_length; i++)
{input_buff[i] = input[i]}

Passing to kernel err = clSetKernelArgSVMPointer(executable.kernel, 0, input_buff)

Table 3: Experimental setting
Dataset parameters SOM parameters
-- ---
No. of samples No. of parameters Iterations Mapping size Quality measurements
5000 3 30 10×10 Time
10000 20×20 Quantization error
15000 30×30 Topographic error

40×40
SOM: Self-organization map, QE: Quantization error, TE: Topographic error

Table 4: Intel i7-6700HQ details
Model Intel i7-6700HQ
No. of cores/threads 4/8
CPU clock speed 2.6-3.5 GHz
CPU micro-architecture 14 nm
GPU clock speed 350-1050 MHz
No. of execution units 24

accessed as normal as C++ variables. This feature is enabled by
SVM through clsMAlloc at allocating the pointers. The pointers
can be shared between host code and device code without
calling any wrapping function8,17. The improvement version
shows the codes are more similar to normal C++ coding rather
than depending on specific function. Furthermore, the
parameter setting of OpenCL 2.0 is simpler which could help
to improve programmability of programmer.

Experimental setup: This study applies Bank Marketing
dataset taken from UCI Machine Learning Repository. The
dataset is divided into three different number of samples;
5000, 10000 and 15000. All the samples have three
parameters. Each sample is tested using the same number of
iterations and mapping size as shown in Table 3. The number
of iterations is set to 30 due to processor constraint. The
objective of these experiments is to examine the performance
of parallel SOM that tested on OpenCL 1.0 and OpenCL 2.0.
These experiments will be evaluated based on processing
time and quality of SOM results. The processing time has
taken from executing three kernels and total processing
time. The quality measurement SOM results is measured

using Quantization Error (QE) and Topographic Error (TE).
The experiments were conducted on a laptop equipped with
Intel i7-6700HQ processor, 16GB of RAM and built in Intel® HD
Graphics 530. This processor belongs to the Skylake family
which supports the OpenCL 2.0. It is equipped with four CPU
cores and 24 number of execution units placed at GPU. Table
4 shows detailed information of the processor.

RESULTS AND DISCUSSION

Firstly, the results are highlighted in term of processing
time performance. Three series of experiments have been
conducted with three different data sets sizes and mapping
sizes. In order to facilitate the reader understanding, this study
labels the experiment of parallel SOM using OpenCL 1.0
with SOMonCL1 and parallel SOM using OpenCL2.0 with
SOMonCL2. The performances of time processing are depicted
in Fig. 4-6.

From the graphs, the calculate distance kernel and
update weight kernel of SOMonCL2 are outperforming the
time of SOMonCL1. This trend can be seen on the graph for
each mapping size. The time is increasing when the
experiments use larger mapping size for both SOMonCL1 and
SOMonCL2. Both of kernels uses the same work-item of GPU
representation which amount of work-items are equal to the
number of neurons in the SOM map. The performance of
SOMonCL2 is triggered by parameter setting in OpenCL 2.0.
The SOMonCL2 utilizes SVM in OpenCL 2.0 which resulting
both kernels capable to reduce the processing time compared

208

J. Applied Sci., 17 (4): 204-211, 2017

2000

1500

1000

500

0
10 10H 20 20H 30 30H 40 40H 10 10H 20 20H 30 30H 40 40H

5000 (GPU)

5000 (HSA)

Calculate distance
Update weight
Find BMU
Total time

SOMonCL1 vs. SOMonCL2-5000 data set

5000

4000

3000

2000

1000

0
10 10H 20 20H 30 30H 40 40H 10 10H 20 20H 30 30H 40 40H

10000 (GPU)

10000 (HSA)

Calculate distance
Update weight
Find BMU
Total time

SOMonCL1 vs. SOMonCL2-10000 data set

6000

5000

4000

3000

2000

1000

0
10 10H 20 20H 30 30H 40 40H 10 10H 20 20H 30 30H 40 40H

15000 (GPU)

15000 (HSA)

Calculate distance
Update weight
Find BMU
Total time

SOMonCL1 vs. SOMonCL2-15000 data set

Fig. 4: Performance of execution time on 5000 data sets

Fig. 5: Performance of execution time on 10000 data sets

Fig. 6: Performance of execution time on 15000 data sets

to SOMonCL1. The SVM feature manages the CPU and GPU
efficiently share a common virtual address space where it is
removing the need to explicitly copy buffers back and forth
between the two devices7.

Meanwhile, the find BMU kernel achieves in opposite way
because the SOMonCL2 consumes longer time compared to
SOMonCL1. The find BMU kernel is more complex algorithm
because it comprises of two level parallelisms that involve
work group processing in GPU. Moreover, this kernel contains
read operation from GPU to host which could consume higher
time compared to other kernels. Even though the SOMonCL2
is drove by SVM in OpenCL 2.0, it still unmanageable to reduce
the time from SOMonCL1 at find BMU kernel. One of the

reasons, the two level of parallelism requires synchronization
point in order to harmonize the SVM memory. The SOMonCL2
use clFinish function for synchronization point7. It has been
tested in the experiments that this function is useful for
SOMonCL2 where the final result could not be accomplished
if the function is removed. Furthermore, it can be seen clearly
on the graph, the find BMU kernel consumes the highest time
among of three kernels which resulting the total time
increases for both SOMonCL1 and SOMonCL2. However, the
SOMonCL2 attains better in total processing time compared
to SOMonCL1. This performance can be realized in Fig. 7 that
indicates the performance of SOMonCL2 better in total time
about 30-40%.

209

J. Applied Sci., 17 (4): 204-211, 2017

40 40H
30 30H
20 20H
10 10H
40 40H
30 30H
20 20H
10 10H
40 40H
30 30H
20 20H
10 10H

50
00

10
00

0
15

00
0

 34.78
 33.64
 34.58
 33.79
 38.02
 35.94
 32.24
 34.52
29.91
29.91
 33.93
29.54

0 20 40 60 80 100

Relative different of processing time

10
x1

0

20
x2

0

30
x3

0

40
x4

0

10
x1

0

20
x2

0

30
x3

0

40
x4

0

10
x1

0

20
x2

0

30
x3

0

40
x4

0

5000
10000

15000

3

2

 1

 0

Topographic error
Quantization error

3

2

1

0

40
40

H

30
30H

20
20

H

10
10H

40
40

H

30
30H

20
20

H

10
10H

10
10H

20
20H

30
30H

40
40H

5000
10000

15000

Topographic error
Quantization error

Fig. 7: Relative different of processing time between
SOMonCL1 and SOMonCL2

Fig. 8: Performance of SOM quality measurement on
SOMonCL1

Fig. 9: Performance of SOM quality measurement on
SOMonCL2

Even the SOMonCL1 surpasses the performance of SOMonCL2
in find BMU kernel, the total time of execution of SOMonCL2
is substantially reduced by calculate distance kernel and
update weight kernel.

Overall, all of the three graphs of time processing
performance indicate that the increasing of the data sets size
will lead to rise the computation time across mapping sizes. As
a result, the SOM complexity increases when dealing with
larger data set sizes and mapping sizes for both SOMonCL1
and SOMonCL2. This issues has been highlighted by
researchers9,12. However, the SOMonCL2 is capable to reduce

processing time when dealing with larger dataset and
mapping size compared to SOMonCL1. As pointed by
Kohonen1, the find BMU and update weight are the main
issues in SOM processing. Hence, SOMonCL2 is able to
perform better at calculate distance kernel and update weight
kernel but still incontrollable to reduce time at find BMU
kernel.

On the other note, Fig. 8 and 9 describe the analysis on
SOM quality measurement based on TE and QE for both
SOMonCL1 and SOMonCL2 respectively. The graphs show that
the trend of QE values is decreasing when the mapping size
growth for the same data set. However, the QE value rises
when tested on larger data set that uses the same mapping
size. Meanwhile, both graphs depict quite the same trend in
terms of TE measurements. Overall, the values of TE from the
both graphs are below one which indicates the data are
sufficiently spreading to whole map of the SOM map.
Kohonen1 states that, mapping size could influent the SOM
quality measurement. The results show that larger mapping
size will reduce QE meanwhile TE values depending on data
spreading on the map.

However, in order to find the best mapping sizes, both of
TE and QE values should be designated with minimum values
as pointed in18. The best mapping sizes of SOMonCL1 are
20×20 for 5000 data sets and 30×30 for both 10000 and
15000 data sets. Meanwhile, the ideal mapping size of
SOMonCL2 are 20×20 for 5000 and 10000 data sets and
30×30 for 15000 data sets. Generally, the ideal mapping size
can be seen increasing in term of the mapping size when
larger dataset is imposed. For example, the ideal map of
dataset 5000 is 20×20, 10000 and 15000 are 30×30.
Consequently, both SOMonCL1 and SOMonCL2 show fairly the
same trends of SOM quality measurement. These could
indicate the quality of results from SOMonCL1 and SOMonCL2
are on the par.

CONCLUSION

This study is carried out with the aims to evaluate the
performance of both parallel SOM on discrete GPU
(SOMonCL1) and heterogeneous system (SOMonCL2). As a
result, the main finding of this study is SOMonCL2 capable to
reduce the total processing time from discrete GPU platform
when processing large mapping sizes and large data sets.
The processing of SOMonCL2 is drastically improved at
calculate distance kernel and update weight kernel. Overall,
the SOMonCL2 shows improvements compared to SOMonCL1
in terms of reducing the total processing time about 30-40%.
On the other hand, SOMonCL2 is capable to generate

210

J. Applied Sci., 17 (4): 204-211, 2017

equivalent quality of SOM map with SOMonCL1. The main
issue arise from this study is the processing time increases
at Find BMU kernel compared to SOMonCL1 due to
synchronization point. The future improvement may focus
on this issue in order to reduce processing time.

ACKNOWLEDGMENTS

This study was funded by Ministry of Higher Education
(MOHE) of Malaysia, under the FRGS, grant No.
FRGS/1/2015/ICT02/UITM/02/6 and academic staff
Bumiputera Training Scheme (SLAB). The authors also would
like to thank the Universiti Teknologi MARA for supporting this
study.

REFERENCES

1. Kohonen, T., 2013. Essentials of the self-organizing map.
Neural Netw., 37: 52-65.

2. Arribas-Bel, D., K. Kourtit and P. Nijkamp, 2013. Benchmarking
of world cities through self-organizing maps. Cities,
31: 248-257.

3. Perelygin, K., S. Lam and X. Wu, 2014. Graphics processing
units and open computing language for parallel computing.
Comput. Electr. Eng., 40: 241-251.

4. Wittek, P. and S. Daranyi, 2013. Accelerating text mining
workloads in a map reduce-based distributed GPU
environment. J. Parallel Distrib. Comput., 73: 198-206.

5. Kirk, D.B. and W.W. Hwu, 2013. Programming Massively
Parallel Processors: A Hands-on Approach. 2nd Edn., Elsevier,
New York, ISBN: 978-0-12-381472-2, Pages: 514.

6. Gaster, B.R. L. Howes, D. Kaeli, P. Mistry and D. Schaa, 2012.
Heterogeneous Computing with OpenCL. 2nd Edn., Morgan
Kaufmann Publisher Inc., San Francisco, CA, USA., ISBN: 978-0-
12-387766-6.

7. Mukherjee, S., Y. Sun, P. Blinzer, A.K. Ziabari and D. Kaeli, 2016.
A comprehensive performance analysis of HSA and OpenCL
2.0. Proceedings of the IEEE International Symposium on
Performance Analysis of Systems and Software, April 17-19,
2016, IEEE.

8. Khronos OpenCL Working Group, 2014. The OpenCL
specification. Version 2.0. The Khronos Group Inc.
https://www.khronos.org/registry/cl/specs/opencl-2.0.pdf.

9. Hasan, S., S.M. Shamsuddin and N. Lopes, 2014. Machine
learning big data framework and analytics for big data
problems. Int. J. Adv. Soft Comput. Appl., 6: 1-14.

10. De, A., Y. Zhang and C. Guo, 2016. A parallel adaptive
segmentation method based on SOM and GPU with
application to MRI image processing. Neurocomputing,
198: 180-189.

11. Richardson, T. and E. Winer, 2015. Extending parallelization of
the self-organizing map by combining data and network
partitioned methods. Adv. Eng. Softw., 88: 1-7.

12. Lachmair, J., E. Merenyi, M. Porrmann and U. Ruckert, 2013.
A reconfigurable neuroprocessor for self-organizing feature
maps. Neurocomputing, 112: 189-199.

13. Mustapha, M.F.B., N.E.B. Khalid and A.B. Ismail, 2015. Time
consuming factors for self-organizing map algorithm.
Proceedings of the International Conference on Information
Technology and Society, June 8-9, 2015, Kuala Lumpur,
Malaysia, pp: 84-92.

14. Khan, S.Q. and M.A. Ismail, 2013. Design and implementation
of parallel SOM model on GPGPU. Proceedings of the
5th International Conference on Computer Science and
Information Technology, March 27-28, 2015, IEEE.,
pp: 233-237.

15. Catanzaro, B., 2010. OpenCLTM optimization case study:
Simple reductions. Khronos, 2010. http://developer.amd.
com/resources/articles-whitepapers/opencl-optimization-
case-study-simple-reductions/.

16. Davidson, G., 2015. A parallel implementation of the
self organising map using OpenCL. University of Glasgow,
March 27, 2015.

17. Kyriazis, G., 2012. Heterogeneous system architecture:
A technical review. pp: 1-18, http://amd-dev.wpengine.
netdna-cdn.com/wordpress/media/2012/ 10/hsa10.pdf

18. Chattopadhyay, M., P.K. Dan and S. Mazumdar, 2012.
Application of visual clustering properties of self organizing
map in machine-part cell formation. Applied Soft Comput.,
12: 600-610.

211

	JAS.pdf
	Page 1

