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Abstract
Background and Objective: The effect of shape parameter is known to play a crucial role in determining the final results of a collocation-based
numerical method. This is also the case for boundary element method where radial basis functions are used to collocate the non-homogeneous
term. However, finding an optimal shape parameter is known not to be simple particularly when dealing with complex PDE problems. This
investigation  was  carried  out  focusing  on  three  purposes.  Firstly,  it  is  to  propose  a  new  form  of  shape  parameter  contained  in  the
inverse-multiquadric RBF that behaves both linearly and exponentially. Secondly, it is to integrate the effect of the local phenomena of the problem
at hand into the mechanism of the proposed shape via. the local Reynolds number (Re). Thirdly, the methodology of dual reciprocity boundary
element method is studied, applied and computationally implemented to one of the most challenging types of PDEs, ‘Burgers equations’, famous
for its rich in transient, couple and nonlinear phenomena. Materials and Methods: The study began with gathering mostly-used and proposed
forms of shape parameter and analyzing the general aspects in terms of their affectiveness. A new form of shape parameter that was hoped to
alleviate the drawbacks commonly found when using those previously proposed shape parameter. The investigation then moved on applying
the methodology of the dual reciprocity boundary element method in conjunction with the newly formulated shape parameter to one of the most
challenging forms of PDE namely Burgers’ equations. The overall effectiveness of the was evaluated by comparing the results against both their
analytical solutions and other numerical works when available in literature. Results: Main findings of this work are as follows. Firstly, the method
has successfully been applied to Burgers’ equations using inverse multiquadric radial basis function at relatively high Reynolds number. Secondly,
it is found from all the results obtained in this work that the proposed shape parameter can outperform the fixed ones and certainly deserves
further investigation. Lastly, when compared with other numerical works, the accuracy lies in an acceptable level and moreover, gets better when
the problem become advective dominated, at high Reynolds number. Conclusion: It is found in this work that with its ability to adapt itself locally,
the proposed choice of variable shape provides reasonable solutions while requiring only the upper and lower bounding values. This makes
choosing the suitable shape much more effective and simpler, particularly when the flow reaches the stage of instability, high Reynolds number.
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INTRODUCTION

The radial basis functions (RBFs),  n are commonly found
as multivariate functions whose values are dependent only on
the distance from the origin and commonly assumed to be
strictly positive definite. This means that n(x) = n(r)0R,  the set
of real numbers, with x0Rn and r0R or in other words, on the
distance from a point of a given set {xj} and n(x-xj) = n(rj)0R
where can normally defined as expressed in Eq. 1:

(1)2 2
1 1 n n2

r x x (x x ) ... (x x )        

for some fixed points x0Rn and rj = ||x-xj||2 is the Euclidean
distance. Two classes of numerical tools that involve the use
of RBFs are the so-called ‘meshfree method’ and ‘boundary
element method’. There are many forms of RBFs invented,
proposed, tested and documented nowadays under the
context of finding solution to different type partial differential
equations (PDEs). Below is the list of some well-known and
most widely used RBFs:

C Linear (LR): 1+r
C Gaussian (GU):  2re 

C Cubic (CU) : r3

C Polyharmonic (PY) in R3: r2n-1, n0ù
C Polyharmonic (PY) in R2: r2n ln(r), n0ù
C Multiquadric (MQ): 2 2r  
C Inverse multiquadric (IMQ): 2 21 r    
C Thin-plate spline (TPS): r2 ln(r)
C Matern/sobolev (MS): *[KV (r) rV]
C *[KV is an order Bessel function]

In  this  study,  nevertheless, the RBF type being focused
on is the ‘Inverse-multiquadric (IMQ)’ form expressed as
follows:

n(r, g) = (g2+r2)β (2)

where, $ = ..., -3/2, -1/2, 1/2, 3/2,... and g is the so-called ‘shape
parameter’ and is normally given in an  ‘ad  hoc ’  manner.
Different values of g, illustrated in Fig. 1, lead to different
impact on the final results as well acknowledged. This kind of
radial basis function has been proven to be strictly positive
definite as nicely documented by Buhmann1, meaning that
the distance matrix of the interpolation problem is invertible.
Throughout this study, it focused on the most popular form of
the inverse multiquadric, i.e., $ = -1/2, only.

Fig. 1: Infinitely smooth inverse-multiquadric RBF measured
numerically at different shape values, g

Appearing as an alternative numerical method, finite
element, finite volume and finite difference, over the last two
decades, the boundary element method (BEM) is now known
to be another important tool for solving a wide range of
applied sciences and engineering that involve linear as well as
certain types of nonlinear partial differential equations (PDEs).
Like other numerical schemes, the method is not without
difficulties or challenges when it faces problems with
nonlinear, transient, coupled and nonhomogeneous form of
PDEs.

Brebbia and Butterfield2 proposed an improved version of
the scheme and they named it as ‘dual reciprocity boundary
element method (DRBEM)’. In the process of DRBEM, the
solution is divided into two parts: Complementary solutions of
its homogeneous form and the particular solutions of the
inhomogeneous counterpart. Since the particular solutions are
not always available especially in complex problems, the
inhomogeneous term of the PDE is approximated by a series
of simple functions and transformed to the boundary integrals
employing particular solutions of considered problem. The
most widely used approximating functions in DRBEM are
radial basis functions (RBFs) for which particular solutions can
be easily determined3.

When it comes to using a radial basis function, particularly
those forms with the parameter, it is then down to the user’s
decision to choose what they believe is best and very often
this is done under rather  ‘ad  hoc ’  manner. For multiquadric
(MQ) type of RBF, there are some investigations done on
providing information regarding choosing  optimal  shape
value.    Hardy4    suggests    that    by    fixing    the    shape    at
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g = 1/(0.815d), where, and di is the distance from 
N

i
i 1

d 1 N d


 
the  node  to  its  nearest  neighbor,  good  results  should  be

anticipated. Also, in the work of Franke and Schaback5 where
the choice of a fixed shape of the form  where, D0.8 N D 

is the diameter of the smallest circle containing all data nodes,
can also be a good alternative.

Some recent attempts to pinpoint the optimal value of g
involve the work of Zhang et al.6 where they demonstrated
and concluded that the optimal shape parameter is problem
dependent. In 2002, Wang and Lui7 pointed out that by
analyzing the condition number of the collocation matrix, a
suitable range of derivable values of g can be found. Later in
2003, Lee et al.8 suggested that the final numerical solutions
obtained are found to be less affected by the method when
the approximation is applied locally rather than globally.

At this point, nevertheless, there are several facts to be
noticed at. Firstly, most of the proposed forms are concerned
with either numerical aspect or fixed values only, meaning
that no real physical aspects included or being under
consideration. Secondly, all the works were done under the
context of pure RBF-collocation methods, nothing is done
under DRBEM. Thirdly, the shape parameter contained in the
inverse-multiquadric type of RBF has not, by far, been taken a
look at. This prompts our initiative idea of this study.

One of the classical non-linear parabolic equation system
widely acknowledged as the Burgers’ equations, named after
the great Physicist9. The equations retain the nonlinear of the
governing equation in a number of applications, flow through
a shock wave traveling in viscous fluid, the phenomena of
turbulence, air/water pollution or chemical compound carried
by fluids, sedimentation of two kinds of particles in fluid
suspensions under the effect of gravity (Burgers9, Nee and
Duan10).

For large values of the Reynolds number (Re), one of the
major difficulties is due to in-viscid boundary layers produced
by the steepening effect of the nonlinear advection term in
Burgers’ equations. This difficulty is also encountered in an
inviscid Navier‒Stokes equation for a convection dominated
flow and in fact, the famous coupled-Burgers’ equations are
one of the principle equations used to evaluate any newly
proposed numerical methods11.

This all leads to our main objectives of this investigation
which are, firstly, it proposed a new form of shape parameter
contained in the inverse-multiquadric RBF. Secondly, the
proposed shape was designed to take into consideration the
local physical of the problem at hand governed by the
dimensionless  Reynolds  number  (Re).  Thirdly,  the
methodology     of     DRBEM     was     studied,     applied     and

computationally implemented to one of the most  challenging
types of PDEs known as ‘Burgers’ equation’, famous for its rich
in transient, couple and nonlinear phenomena. The results
obtained from this investigation were validated against other
alternative numerical works in literature when available.

MATERIALS AND METHODS

DRBEM for Burgers’ equations: Let us consider the system of
two-dimensional unsteady, nonlinear and coupled Burgers’
equations, expressed as follows:

(3)
2 2

2 2

u u u 1 u uu v
t x y Re x y

     
         

(4)
2 2

2 2

v v v 1 v vu v
t x y Re x y

     
         

Subject to the initial conditions:

u(x, y, 0) = β1(x, y) and v(x, y, 0) = β2 (x, y)

and the boundary conditions:

u(x, y, t) = γ1(x, y, t) and v(x, y, t) = γ2 (x, y, t)

for (x, y)0MS, t>0, u(x, y, t) and v(x, y, t) are the velocity
components, $1, $2, γ1 and γ2 are known functions and Re is the
Reynolds number, described by Keannakham et al.12.

The mathematical construction of the dual reciprocity
boundary element method can start with the Poisson
equation as follows:

L2u = b(x, y) (5)

Which as its equivalent integral form, given by Brebbia
and Butterfield 2 as:

(6)
N L

* * * *
i i j i ij j j

j 1

c u q ud  u qd  c u q u ˆˆ d q dˆ  u


   

 
           

 
   

where, u* the fundamental solution and the term is defined as

, where n is the unit outward normal to Γ and can bej
j

û
q̂

n





written as follows:

(7)j j
j

u ux yq
x n

ˆ
n

ˆ
y

ˆ  
 
   
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Next, the method was applied with N and L being the
number of boundary and internal nodes, respectively, b can
be now approximated by:

   
N L

i j ij
j 1

b x, y  f x, y




 

Or, can be written as follows:

b = Fα (8)

Or:

 
 
 

 

     
     

        

1 111 1 N L

2 2
2 N L21

33

N L 1 N L N L
N LN L

b x, y f x, y f x, y
b x, y

f x, yf x, y
b x, y

f x, y f x, yb x, y





  


                                  

  


where, the function f is the radial basis function which is, in
this work, the inverse-multiquadric type. With this radial basis
function, then the following form was obtained:

(9)2
j jfû 

for some particular solution,  Applying Green’s theorem,jû .
the boundary element approximation to Eq. 9, then it
becomes, at a node ith:

(10)k k

k k

N N
* *

i i
k 1 k 1

N L N N
* *

j i ij j j
j 1 k 1 k 1

c u q ud u qd  

 c u q uˆ ˆ d u dq̂

  



   

   


    








  

   

For i = 1, 2,..., N.
After  introducing  the  interpolation  function  and

integrating over each boundary elements, the above Eq. 10
can be re-written in terms of nodal values as:

(11)

N N

i i ik k ik k
k 1 k 1

N L N N

j i ij ik kj ik kj
j 1 k 1 k 1

ˆˆ

c u H u G q  

 c u H u   qˆ G

 



  

 

 
     

 

 

  

where, the definition of the terms Hik and Gik are described by
Toutip13. The index k is used for the boundary nodes which are

the field points. After application to all boundary nodes, using
a collocation technique, Eq. 11 can be compactly expressed in
matrix form as follows:

(12) ˆˆHu Gq HU GQ   

By substituting " = FG1b from Eq. 8, into Eq. 12 making the
right hand side of Eq. 12 a known vector. Therefore, it can be
rewritten as:

Hu-Gq = d (13)

where,  Applying boundary conditions to  1ˆd HU GQ bˆ F  .
Eq. 13, then it can be seen as the simple form as follows:

Ax = y (14)

where,    x    contains    N    unknown    boundary    values    of
u’s and q’s.

After Eq. 14 is solved using standard techniques such as
Gaussian elimination, the values at any internal node can be
calculated from Eq. 11, i.e., ci = 1 as expressed in Eq. 15 where
each one involving a separate multiplication of known vectors
and matrices:

(15)

N N

i ik k ik k
k 1 k 1

N L N N

j i ij ik kj ik kj
j 1 k 1 k 1

ˆˆ

u H u G q  

c u H u   G qˆ

 



  

  

 
     

 

 

  

Firstly, substituting Eq. 12 into Eq. 11 to get the equation
system matrix which expressed as:

(16)  1Hu Gq HU GQ F bˆˆ   

It is then possible to approximate the terms,

 and  as below:
u u uu ,  u ,  v
x y x
  
  

uv
y



(17)

1 1

1 1

u F v Fu U F u, u U F v
x x x x
u F u Fv V F v, v V F u
y y y y

 

 

   
 

   
   

 
   

From Eq. 16 and Eq. 17, the following was obtained:

(18)  1
1Hu Gq HU GQ bˆˆ F  
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and:

(19)  1
2Hv Gz HV GZ bˆ ˆ F  

where,  and:u vq , z
n n
 

 
 

(20)1
u u u b Re u v
t x y

   
      

and

(21)2
v v vb Re u v
t x y

   
      

In the case, if  were considered to be generated byÛ  V̂,
using the same redial basis function, then:

(22)U V an ˆˆ ˆdˆ Q Z 

For the time derivatives, the forward difference method

was used to approximate time derivative  and
t 1 tu uu

t

 





Now, substituting Eq. 32-35, 38 and 39 in Eq. 43
t 1 tv vv

t

 



 .
and 44, then the following was obtained:

(23)  1 1F FHu Gq ARe u U F u V F u
x y

   
      



and:

(24)  1 1F FHv Gz ARe v U F v V F v
x y

   
      



by setting  and  then  1A HU G Fˆˆ Q   1 1F FC  U F V F
x x

  
 

 
the final forms of DRBEM for this type of equations A = πr2 as
follows:

(25)  t 1 t 1 tSRe ReSRe AC H u Gq u
t t

        

and:

(26)  t 1 t 1 tSRe ReSRe AC H v Gz v
t t

        

Note that the elements of matrices H, G and A depend
only on geometrical data. Thus, they can all be computed
once and stored.

Table 1: Some choices proposed in literature
References Formulation of g for jth-element

Kansa14  with j = 1, 2,..., N

1
j 1 2

2 N 1
2 max

j min 2
min




 
          

,

Kansa and Carlson15  with j = 0, 1, 2,..., N-1max min
j min j

N 1
         

Sarra16 gj = gmin+(gmax-gmin)×r and (1, N)

Sarra and Sturgill17 with Ξ = (gmax-gmin)j min
n

r and(1, N)
h
       

Proposed variable IMQ shape: Regarding the studies in the
search for optimal choice of the shape parameter, many
outstanding and well-known forms proposed in the past are
listed in Table 1. In this table, it can be seen that one of the
first attempts in searching for variable form of shape
parameter was done in 1990 by Kansa14 which the
experimental manner was looked at. This form was then
modified by Kansa and Carlson15. In their work,  and 2

min 2
min

were observed that the better quality of results can be
achieved if these two values vary by several orders of
magnitude. Sarra16 and Sarra and Sturgill17 later invented a
linear form of variable shape parameter and applied to both
interpolation and some benchmark partial differential
equations. The command ‘rand’ is the MATLAB function that
returns uniformly distributed pseudo-random numbers  on
the unit interval. In their study, the variable form of shape
parameter was shown to be superior to the fixed form
particularly when the system includes some information about
the minimum distance of a center to its nearest neighbor hn,
with also a user input value µ. It is, nevertheless, to be noticed
that all the attempts mentioned so far are under the context
of the collocation meshfree method where there is no, by far,
work carried out under the DRBEM. This leads to one of our
main objectives of this investigation.

In this study, it proposed a new form of variable shape
parameter where both linear and exponential manners are
taken into consideration, expressed as in Eq. 27-30:

gj = ζ@gexp+(1-ζ)@glin (27)

Where:

(28)
1
22

2 max
exp min 2

min

       
   

and:

glin = [gmin+(gmax-gmin)] (29)
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and ζ is set to correspond to local Reynolds  number (Reij) and
is defined as follows:

(30)
ij

iji j

Re
max Re



 

and the dimensionless number called The Reynolds Number,
(Re), which is the ratio of the inertia to the viscous or friction
force and is defined, in a global sense, as:

(31)Global
ULRe  


where, L is the characteristic length scale, U is the velocity and
v is the kinematic viscosity. In this investigation, this number
is locally defined as:

(32)

t
i ij

t

t 2 t 2
i i i j

i

2

t
j

t

R
U L

(u ) (v )

e

x x



  






where, vt is defined in a local sense as:

(33)
N L

t t 1 2 t 1 2
i i

i 1Global

1 1v (u ) (v )
Re N L


 



 
   



where, N+L is the total number of nodes (both boundary and
internal) involved in the system, the superscript t indicates the
time level. The subscript i and j mean at ith and jth node,
respectively.

Numerical setup: The computation process is done following
the below algorithm:

C Initializing the matrix C by setting it to zero for both U and
V

C Setting all the values appearing in Eq. 25 and 26 and then
applying the initial conditions to the right hand side and
boundary condition to the left hand side, reducing to the
form Ax = y

C Using the iterative scheme as A(k)x(k) = y(k),  where, k = 1, 2,
3.... The solutions of for both U and Vcan then be
achieved when the algorithm stops i.e. when it reaches
the following condition:

(34)(k 1) (k1)
i ii

max x x  

with an user’s given value of a tolerance T.

C The solutions obtained from step 3 will be used as the
initial conditions in next time-step and the computing
process continues until the time level given is reached

All numerical simulations under this investigation were
carried out on an Intel(R) Core(TM) i7-5500U CPU @ 2.4 GHz
with 8.00 GB of RAM.

RESULTS

To demonstrate the effectiveness of the proposed shape
parameter, the methodology was applied to two benchmark
examples governed by the Burgers’ form of equations. The
results obtained were validated against both the
corresponding exact solutions and those published in
literature. In some cases, the root mean square (RMS) error
norm was used and it was defined as below:

(35) 
N L 2exact num

i i
i 1

u u
RMS

N L












It was noted here that the Reynolds number written as
‘Re’ from now on is the global Reynolds number described and
used in Eq. 31-33.

Experiment 1: The first example was the well-known form
where its exact solutions for validation were provided by using
a Hopf-Cole transformation nicely done by Fletcher18 and was
expressed as follows:

(36)    13 1u x, y, t  1
4 4

   

and:

(37)    13 1v x, y, t  1
4 4

   

where,  and both the initial and Reexp 4x 4y t
32

      
 

boundary conditions to be imposed to the equation system
was generated directly from the above exact form over the
domain Ω = {(x, y):0<x<1, 0<y<1}.

Table 2-9 showed the computed values  of  both U- and
V-values for Re = 1 at t = 0.01 and Re = 10 at t = 0.5,
respectively, obtained from this work compared against both
its’ exact solutions and those provided by Biazar and
Aminikhah19. In this case, only 13 internal nodes were chosen
and it can be seen that the method constructed in this study
performed well and results agreed nicely with both references.
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Table 2: Comparison  of  U-velocity  for  Re  =  1,  t  =  0.01  with  boundary  node
N = 80 and internal nodes L = 13, for (gmin, gmax) = (0.1, 1)

(gmin, gmax) = (0.1, 1)
--------------------------------------------------------------------------------------

Biazar and
Points Exact Numerical Fixed g = 3 Aminikhah19

(0.1, 0.1) 0.62498047 0.62497105 0.62801251 0.62498046
(0.5, 0.1) 0.62185613 0.62182512 0.64215822 0.62185614
(0.9, 0.1) 0.61873572 0.61872154 0.62501143 0.61873572
(0.3, 0.3) 0.62498047 0.62496988 0.63265822 0.62498046
(0.7, 0.3) 0.62185613 0.62172788 0.63220140 0.62185614
(0.1, 0.5) 0.62810483 0.62804458 0.64011253 0.62810483
(0.5, 0.5) 0.62498047 0.62496250 0.61254870 0.62498046
(0.9, 0.5) 0.62185613 0.62185688 0.63251115 0.62185614

Table 3: Comparison  of  U-velocity  for  Re  =  1,  t  =  0.01  with  boundary  nodes
N = 80 and internal nodes L = 13, for (gmin, gmax) = (0.1, 10)

(gmin, gmax) = (0.1, 10)
-------------------------------------------------------------------------------------

Biazar and
Points Exact Numerical Fixed g = 3 Aminikhah19

(0.1, 0.1) 0.624980469 0.624982141 0.625145882 0.624980468
(0.5, 0.1) 0.621856132 0.621852158 0.619528022 0.621856142
(0.9, 0.1) 0.618735721 0.618736528 0.617995862 0.618735722
(0.3, 0.3) 0.624980469 0.624981458 0.623569825 0.624980468
(0.7, 0.3) 0.621856132 0.621852154 0.632541777 0.621856142
(0.1, 0.5) 0.628104832 0.628104589 0.619856722 0.628104835
(0.5, 0.5) 0.624980469 0.624981025 0.612499603 0.624980468
(0.9, 0.5) 0.621856132 0.621853652 0.601548862 0.621856142

Table 4: Comparison  of  V-velocity  for  Re  =  1,  t  =  0.01  with  boundary  nodes
N = 80 and internal nodes L = 13, for (gmin, gmax) = (0.1, 1)

(gmin, gmax) = (0.1, 1)
-------------------------------------------------------------------------------------

Biazar and
Points Exact Numerical Fixed g = 3 Aminikhah19

(0.1, 0.1) 0.87501953 0.87502154 0.86220155 0.87501953
(0.5, 0.1) 0.87814386 0.87810012 0.87201258 0.87814387
(0.9, 0.1) 0.88126427 0.88124585 0.89200258 0.88126428
(0.3, 0.3) 0.87501953 0.87504125 0.85210041 0.87501953
(0.7, 0.3) 0.87814386 0.87813605 0.85236051 0.87814387
(0.1, 0.5) 0.87189517 0.87180128 0.85988622 0.87189517
(0.5, 0.5) 0.87501953 0.87506005 0.86022500 0.87501953
(0.9, 0.5) 0.87814386 0.87811458 0.86002598 0.87814387

Table 5: Comparison  of  V-velocity  for  Re  =  1,  t  =  0.01  with  boundary  nodes
N = 80 and internal nodes L = 13, for (gmin, gmax) = (0.1, 10)

(gmin, gmax) = (0.1, 10)
-------------------------------------------------------------------------------------

Biazar and
Points Exact Numerical Fixed g = 3 Aminikhah19

(0.1, 0.1) 0.875019531 0.875025144 0.882115471 0.875019531
(0.5, 0.1) 0.878143868 0.878141202 0.880258822 0.878143878
(0.9, 0.1) 0.881264279 0.881221110 0.882550144 0.881264281
(0.3, 0.3) 0.875019531 0.875015269 0.890125851 0.875019531
(0.7, 0.3) 0.878143868 0.878142158 0.880114225 0.878143878
(0.1, 0.5) 0.871895173 0.871885962 0.882002569 0.871895177
(0.5, 0.5) 0.875019531 0.875012985 0.892001582 0.875019531
(0.9, 0.5) 0.878143868 0.878125140 0.889958002 0.878143878

Table 6: Comparison  of  U-velocity  for  Re  =  10,  t  =  0.5  with  boundary  nodes
N = 80 and internal nodes L = 13 for (gmin, gmax) = (0.1, 1)

(gmin, gmax) = (0.1, 1)
-------------------------------------------------------------------------------------

Biazar and
Points Exact Numerical Fixed g = 3 Aminikhah19

(0.1, 0.1) 0.61525419 0.61510154 0.62001582 0.615254225
(0.5, 0.1) 0.58539562 0.58444958 0.58002158 0.585395632
(0.9, 0.1) 0.55983733 0.55912958 0.54099852 0.559837332
(0.3, 0.3) 0.61525419 0.61503547 0.60025472 0.615254225
(0.7, 0.3) 0.58539562 0.58283985 0.56988500 0.585395632
(0.1, 0.5) 0.64627528 0.64712698 0.65520225 0.646275273
(0.5, 0.5) 0.61525419 0.61392014 0.60205807 0.615254225
(0.9, 0.5) 0.58539562 0.58412015 0.60221500 0.585395632

Table 7: Comparison  of  U-velocity  for  Re  =  10,  t  =  0.5  with  boundary  nodes
N = 80 and internal nodes L = 13, for (gmin, gmax) = (0.1, 10)

(gmin, gmax) = (0.1, 10)
-------------------------------------------------------------------------------------

Biazar and
Points Exact Numerical Fixed g = 3 Aminikhah19

(0.1, 0.1) 0.6152541 0.61521250 0.62502225 0.615254225
(0.5, 0.1) 0.5853956 0.58493625 0.57988544 0.585395632
(0.9, 0.1) 0.5598373 0.55955520 0.56880220 0.559837332
(0.3, 0.3) 0.6152541 0.61522011 0.60014522 0.615254225
(0.7, 0.3) 0.5853956 0.58430155 0.57015455 0.585395632
(0.1, 0.5) 0.6462752 0.64679210 0.60125884 0.646275273
(0.5, 0.5) 0.6152541 0.61487581 0.60148022 0.615254225
(0.9, 0.5) 0.5853956 0.58478952 0.56990520 0.585395632

Table 8: Comparison of V-values for Re = 10, t = 0.5 with boundary nodes N = 80
and internal nodes L = 13, for (gmin, gmax) = (0.1, 1)

(gmin, gmax) = (0.1, 1)
-------------------------------------------------------------------------------------

Biazar and
Points Exact Numerical Fixed g = 3 Aminikhah19

(0.1, 0.1) 0.88474580 0.88455261 0.87202582 0.88474577
(0.5, 0.1) 0.91460437 0.91422015 0.90250259 0.91460435
(0.9, 0.1) 0.94016266 0.94012148 0.93695802 0.94016267
(0.3, 0.3) 0.88474580 0.88395820 0.89580024 0.88474577
(0.7, 0.3) 0.91460437 0.91438591 0.90254781 0.91460435
(0.1, 0.5) 0.85372471 0.85246325 0.84255699 0.85372471
(0.5, 0.5) 0.88474580 0.88350225 0.89658025 0.88474577
(0.9, 0.5) 0.91460437 0.91458557 0.90012586 0.91460435

Table 9: Comparison of V-values for Re = 10, t = 0.5 with boundary nodes N = 80
and internal nodes L = 13, for (gmin, gmax) = (0.1, 10)

(gmin, gmax) = (0.1, 10)
-------------------------------------------------------------------------------------

Biazar and
Points Exact Numerical Fixed g = 3 Aminikhah19

(0.1, 0.1) 0.88474580 0.88448520 0.87589522 0.88474577
(0.5, 0.1) 0.91460437 0.91421025 0.93225862 0.91460435
(0.9, 0.1) 0.94016266 0.94012556 0.93225014 0.94016267
(0.3, 0.3) 0.88474580 0.88321369 0.86922581 0.88474577
(0.7, 0.3) 0.91460437 0.91421140 0.93002581 0.91460435
(0.1, 0.5) 0.85372471 0.85233660 0.86955822 0.85372471
(0.5, 0.5) 0.88474580 0.88347504 0.89002586 0.88474577
(0.9, 0.5) 0.91460437 0.91466905 0.90214552 0.91460435
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Fig. 2(a-b): Comparison of V-values for (gmin, gmax) = (0.1, 10) at
t = 0.1 with Re = 80 between the exact (left) and
the computed ones (right)

Solution profiles of both U- and V-velocity, at moderate
Reynolds number, were illustrated in Fig. 2-4 showed the root
mean square (RMS) error.

Experiment 2: For this example, it was adopted from the work
of Aminikhah20 for solution validation. This problem is on the
domain Ω = {(x, y): 0<x<1, 0<y<1)} with the following initial
and boundary conditions:

(38)
4 cos(2 x)sin( y)u(x, y ,0)

Re(2 sin(2 x)sin( y))
  

 
  

(39)
2 sin(2 x)cos( y)v(x, y, 0)

Re(2 sin(2 x)sin( y))
  

 
  

(40)
     

 
u 0, y, t  u 1, y, t  u x, 0, t

u x, 1, t 0,  t 0

 

  

(41)
     

 
v 0, y, t  v 1, y, t v x, 0, t

v x, 1, t 0,  t 0

 

  

Fig. 3(a-b): Comparison of U-values for (gmin, gmax) = (0.1, 10) at
t = 0.1 with Re = 80 between the exact (left) and
the computed ones (right)

Fig. 4(a-b): Root mean square (RMS) error comparison at two
intervals of (gmin, gmax)and that obtained using a
fixed value of 3, computed with boundary  nodes
N = 120 and internal nodes L = 24 at t = 1.0

This leads to the exact solutions as the following forms:

(42)
4 cos(2 x)sin( y)u(x, y , t)

Re(2 )sin(2 x)sin( y))
   


   
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Table 10: Comparison of U-velocity for Re = 100, t = 0.5  with  boundary  nodes
N = 80 and internal nodes L = 12, for (gmin, gmax) = (0.1, 1)
(gmin, gmax) = (0.1, 1)
-------------------------------------- -----------------------------------------------

Points Exact Numerical Fixed g = 1.5 Aminikhah20

(0.1, 0.1) -0.011460121 -0.01251140 -0.00758995 -0.011463997
(0.5, 0.1) 0.015170656 0.01256220 0.00854112 0.015174171
(0.9, 0.1) -0.013210753 -0.01399250 -0.00855622 -0.013198417
(0.3, 0.3) 0.009436724 0.00901225 0.00521580 0.009435086
(0.7, 0.3) 0.017548132 0.01452011 0.00745885 0.017771096
(0.1, 0.5) -0.032300168 -0.03029582 -0.01225212 -0.032279521
(0.5, 0.5) 0.049093275 0.04526220 0.02115895 0.049013874
(0.3, 0.7) 0.009436724 0.01025885 0.00754821 0.009435086
(0.7, 0.7) 0.017548123 0.01650778 0.00899532 0.017771382
(0.1, 0.9) -0.011460121 -0.01350025 -0.00895632 -0.011463997
(0.5, 0.9) 0.015170656 0.01325002 0.00458790 0.015174171
(0.9, 0.9) -0.013210753 -0.01422152 -0.00744502 -0.013198421

Table 11: Comparison of V-values for Re = 100,  t  =  0.5  with  boundary  nodes
N = 80 and internal nodes L = 12, for (gmin, gmax) = (0.1, 1)
(gmin, gmax) = (0.1, 1)
---------------------------------------------------------------------------------------

Points Exact Numerical Fixed g = 1.5 Aminikhah20

0.1, 0.1) -0.01281279 -0.0170025 -0.0256622 -0.01281338
(0.5, 0.1) 0.00000000 0.0000012 0.0002150 -0.00000716
(0.9, 0.1) 0.01477007 0.0182212 0.0215002 0.01476979
(0.3, 0.3) -0.01055058 -0.0122502 -0.0198852 -0.01054980
(0.7, 0.3) 0.01961941 0.0185592 0.0260210 0.01969169
(0.1, 0.5) 0.00000000 0.0000025 0.0013620 0.00000000
(0.5, 0.5) 0.00000000 0.0000001 0.0021104 0.00000000
(0.3, 0.7) 0.01055058 0.0089958 0.0155289 0.01054980
(0.7, 0.7) -0.01961941 -0.0174125 -0.0321151 -0.01996921
(0.1, 0.9) 0.01281279 0.0145502 0.0142178 0.01281338
(0.5, 0.9) 0.00000000 0.0000003 0.0005210 0.00000716
(0.9, 0.9) -0.01477007 -0.0160252 -0.0180215 -0.01476979

Table 12: Comparison of U-velocity for Re = 500,  t  =  0  with  boundary  nodes
N = 80 and internal nodes L = 12, for (gmin, gmax) = (0.1, 1)
(gmin, gmax) = (0.1, 1)
-------------------------------------------------------------------------------------

Points Exact Numerical Fixed g = 1.5 Aminikhah20

(0.1, 0.1) -0.0027524 -0.0025582 -0.0102596 -0.0027524
(0.5, 0.1) 0.0036962 0.0031558 0.0076215 0.0036962
(0.9, 0.1) -0.0032733 -0.0045862 -0.0085510 -0.0032733
(0.3, 0.3) 0.0021888 0.0025505 0.0059025 0.0021888
(0.7, 0.3) 0.0047180 0.0048155 0.0081147 0.0047180
(0.1, 0.5) -0.0075616 -0.0079932 -0.0094589 -0.0075616
(0.5, 0.5) 0.0119613 0.0111522 0.0310688 0.0119613
(0.3, 0.7) 0.0021888 0.0025201 0.0052585 0.0021888
(0.7, 0.7) 0.0047180 0.0046522 0.0085802 0.0047181
(0.1, 0.9) -0.0027524 -0.0028582 -0.0078995 -0.0027522
(0.5, 0.9) 0.0036962 0.0032560 0.0108024 0.0036962
(0.9, 0.9) -0.0032733 -0.0038475 -0.0087596 -0.0032733

and:

(43)
2 sin(2 x)cos( y)v(x, y, t)

Re(2 )sin(2 x)sin( y)
   


   

where, K = exp (-5π2 t/Re).

Fig. 5(a-b): Comparison of V-velocity for (gmin, gmax) = (0.1, 20) at
t = 1 with Re = 1,000 between the exact (left) and
the computed ones (right)

Table 13: Comparison of V-velocity for Re = 500, t = 0.5 with  boundary  nodes
N = 80 and internal nodes L = 12, for (gmin, gmax) = (0.1, 1)
(gmin, gmax) = (0.1, 1)
-------------------------------------------------------------------------------------

Points Exact Numerical Fixed g = 1.5 Aminikhah20

(0.1, 0.1) -0.0030773 -0.0032295 -0.0048550 -0.0030773
(0.5, 0.1) 0.0000000 0.0002448 0.0015890 0.0000000
(0.9, 0.1) 0.0036596 0.0038201 0.0044225 0.0036596
(0.3, 0.3) -0.0024472 -0.0025507 -0.0062256 -0.0024472
(0.7, 0.3) 0.0052749 0.0052798 0.0081258 0.0052749
(0.1, 0.5) 0.0000000 0.0001158 0.0072155 0.0000000
(0.5, 0.5) 0.0000000 0.0002052 0.0022598 0.0000000
(0.3, 0.7) 0.0024472 0.0022758 0.0101588 0.0024472
(0.7, 0.7) -0.0052749 -0.0054471 -0.0091025 -0.0052750
(0.1, 0.9) 0.0030773 0.0035521 0.0075900 0.0030773
(0.5, 0.9) 0.0000000 0.0004122 0.0082145 0.0000000
(0.9, 0.9) -0.0036596 -0.0035518 -0.0053489 -0.0036596

Table 10-13 provided results comparison amongst those
produced in this study and both the exact solutions and other
numerical investigation, Aminikhah20. The solution profiles
obtained at high Reynolds number were shown in Fig. 5-6
where Fig. 7 provided the comparison of RMS at different
values of both Reynolds numbers and ranges of (gmin, gmax).
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Fig. 6(a-b): Comparison of U-velocity for (gmin, gmax) = (0.1, 20)
at t = 1 with Re = 1,000 between the exact (left)
and the computed ones (right)

Fig. 7(a-b): Root mean square (RMS) error comparison at two
intervals of (gmin, gmax) and that obtained using a
fixed value of 1.5, computed with boundary nodes
N = 120 and internal nodes L = 24 at t = 0.75

DISCUSSION

Regarding the use of inverse multiquadric (IMQ) type of
radial basis functions (RBFs), it is not surprising to realize that
only a few works available in literature. Most of these works,
moreover,  were  carried  out  under  the  context  of
meshfree/meshless method. Some recent works that adopted
this type of RBF are Chantawara21 and Chuathong22, where
some fixed values of shape parameters were adopted. To
validate results obtained in this paper, their suggested values
of shape parameter were adopted.

The computational results produced in this work for the
two benchmark examples are promising in several aspects.
Firstly, by providing only two thresholds or bounding values
of (gmin, gmax), searching for optimal choice becomes simpler.
This feature can be seen more clearly when compared with
those obtained by using a fixed value of g, as shown in all
Tables. The effect of the wide of the range (gmin, gmax) was seen
not to have any significant effect on the final results quality
ensuring the simplicity of the proposed shape form.

Another aspect that is desirable about the main findings
of this study is the capability of the method to handle the
instability of the problem when the Reynolds number
increases. It is commonly found and is known to be a great
challenge for any numerical procedure to tackle Burgers’
equations at high Reynolds number (>500), the flow becomes
more turbulent. One of our previous works and many other
works, Keannakham et al.12 and references herein, have shown
that beyond this value of Reynolds number, the error norm is
growing dramatically. It is shown clearly in this work that the
proposed adaptive parameter is able to take into
consideration the local physics that effects both the
computing collocation matrix and the numerical algorithm
itself.

CONCLUSION

In this study, the effectiveness of shape parameter
contained in the inverse multiquadric type of RBF in
conjunction with the method of DRBEM was investigated
numerically. The investigation began with applying DRBEM to
one of the most complicated PDEs namely Burgers’ equations.
Then   a   new   form   of   shape   parameter   that   behaves
locally-adaptive, i.e., it varies accordingly to the local change
of the physics of the problem which, here, is the local Reynolds
number(Re) was proposed. The proposed variable shape form
also contains both linear and exponential aspects based on
the distance between the center node i and pointed node j  in
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the RBF-collocation numerical method adopted. Some
important conclusions can now be withdrawn from the
investigation and they are as follows:

C DRBEM has successfully been applied to Burgers’
equations using inverse multiquadric radial basis function
at relatively high Reynolds number (Re)

C It is found from all the results obtained in this work that
the proposed shape parameter can outperform the fixed
ones and certainly deserves further investigation

C When compared with other numerical works, the
accuracy lies in an acceptable level and moreover, gets
better when the problem become advective dominated,
at high Reynolds number

SIGNIFICANCE STATEMENT

This study discovers the benefit of using the local physical
aspect of the problem as the indicator for the radial basis
function’s shape parameter which is designed to be locally
adaptive. This study will help the researcher to uncover the
critical area of choosing the optimal shape parameter when
dealing with this particular form of equations. Thus, a new
theory on these radial basis function’s adaptive shape
parameters  and  possibly  other  related  fields,  may  be
arrived at.
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