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Abstract
Background: The discontinuous Galerkin method for the approximation of a partial differential equation solution has some advantages
comparing to the classical finite element method. Objective: This study aimed to provide a numerical approximation of the wave equation
solution derived from Maxwell's equations. Methodology: This study applied the discontinuous Galerkin method for approximating the
electric field which is solution of a wave equation that derives from Maxwell’s equations in a tridimensional domain. Results: Some
discrete inequalities on discontinuous spaces for Maxwell's equations were presented and a discontinuous Galerkin method for the
numerical approximation of the solution of the wave equation was analyzed. Its hp-analysis was carried out and error estimates that were
optimal in the mesh size and slightly suboptimal in the approximation degree were obtained. The DG spatial discretization was
augmented with the second order Newmark scheme in time and some numerical results were obtained. Conclusion: The results of the
study can be applied for approximating solutions of several partial differential equations.
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INTRODUCTION

In this study, we present and prove some discrete
inequalities on discontinuous space for Maxwell's equation
and we analyze a hp-discontinuous Galerkin method for the
wave equation in stable medium with perfect electric
conductor boundary. Approximate continuity is imposed by
including penalty terms in the form which defines the
method. This method was analyzed for advection-diffusion-
reaction problems1,2 and for the approximation of second
order elliptic equations3. An interior penalty finite element
method with discontinuous element has been introduced and
analysed4. This method is inspired from the DG method with
the addition of penalty terms. For the time-harmonic
Maxwell's equations, a hp-DG version has been presented and
analysed5. For the plane-wave discontinuous Galerkin method
we refer to Atcheson6.

The problem considered for the most of this study is the
initial-boundary  value  problem  derived  from  Maxwell's
equations in stable medium with perfect electric conductor
boundary:

utt-c
2L×(µ(x)L×u(x, t)) = f (x, t), (x, t)0Ω×I

L@(g (x) u (x, t)) = g (x, t), (x, t)0Ω×I
n×u(x, t) = 0, (x, t)0MΩ×I

ut (x, 0) = u1 (x), x0Ω (1)

where, S  is a convex polyhedron included in R3, I = [0, T]dR.
We suppose that the functions µ, g are sufficiently smooth and
satisfies 0<gmin<*g(x)*<gmax and 0<µmin<*µ(x)*<µmax for all x in
S  with a constants gmin, gmax, µmin, µmax. The u0 and u1 are in
H0(L×, S)1H(L@, S), g0L2 (I, L2 (S)), f is defined on S×I and in
L2 (I, L2 (S)3). Physically, u is the electric field, f and g are related
to  a  current  and  charge  density,  respectively.  Moreover,
µ0g0c2 = 1, where µ0.4π10G7 H@mG1 and g0.(36π109)G1 F@mG1 are
the magnetic permeability and the electric permittivity in
vacuum, respectively. In fact, many of the results proved are
valid so long as S is a bounded, convex domain with Lipchitz,
connected and simply connected boundary. If we assume that
S is a stable medium with perfect electric conductor boundary
and if u is the exact solution of Maxwell's equations, then u
belong to H1(S)3 as described by Duvaut and Lions7.

Let Jh be a partition of S into tetrahedra. We denote by I
hF

the set of all interior faces,  the set of exterior faces and FhD
hF

the set of all faces of the partition. For e0Fh we denote by +,,e;
i.e.,  the scalar product in L2(e)3 or L2(e) furthermore we identify

to +,,  the scalar product in L2 (MS)3 or L2 (MS). The
h ee F

,


scalar product in L2  (S)3  or  L2  (MS)  is  denoted  by  (,)  and  is
identified to  with (,)K is the scalar product in L2 (K)3h

KK
(, )



or L2 (K). For the other spaces and notations used in this study
we refer to Zaghdani8.

In order to define the average of L×u in the formulation

Eq. 5, we set for 1
s

2


Hs (L×, Jh): = {v:v*K0HS (K)3 and L×(v*K)0HS (K)3, œK0Jh}

Finite element spaces: Let p = (pK)K0Jh  be a degree vector
that assigns to each element K0Jh a polynomial
approximation order pK$1. The generic hp-finite element
space of piecewise polynomials is given by:

Kpp 2
h hS ( ) {u L ( ) : u K S (K) K }      

where, is the space of real polynomials of degree at mostKpS

pK in K.
Now, we set:

(2)p 3
hh

S ( ) 

We define the local parameters h and p as h = min (hK, hK’),
p = max (pK, pK’) in the case of interior faces and h = hK, p = pK
in the case of boundary faces8,9. In the following of this study
F denotes a stabilization parameter and will be chosen
depending  on  the  local  mesh  size  and  polynomial  degree.
We consider the same definition of this parameter as by
Perugia and Schotzau9 and Zaghdani8 and define 

2p

h
  

with a strictly positive constant κ.

MATERIALS AND METHODS

Formulation for the Maxwell problem: In the notations of
Zaghdani8, we can state the basic integration by parts
formulas:

œv, u0H1 (Jh)
3, œψ0H1 (Jh)

We have10:

(3)
I
h

T Te e
e F

( u, v) (u, v) n u, v

[u] ,{v} [v] ,{u}


    

 

and:

(4)
I
h

N ee
e F

( ( u), ) ( u, ) u n,

[ u] ,{ } [ ],{ u} n
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In order to derive a weak formulation of Eq. 1, we note
that Eq. 3 implies for any u with:

2 2

1 1
2 2 2

u H( , );

c ( ( ( u)), v) c ( u, v) a(u, v)

c ( u, v) a(u, v)

   

      

     

where, we have denoted by:

Ie Fh

Ie Fh

Ie Fh

2 2

e F

2 2
T

e

2 2
T T e

2 2
T T

e

e F

T e
I
h

2
T e

I
h

a (u, v) c n ( u), v c [v] , { u}

c ( u), v n c [v] , { u}

c ( u), [v] c [v] , { u}

c [v] , ( u) c [v] , { u}

c [v] ,{ u}











     

     

   

   

 





Now, we introduce the penalty term via the form:

J0(u, v) = J(u, v)+Jσ (u, v)-a(v, u), u, v0H1(Jh)
3

Where:

J(u, v) = (L@(gu), L@(gv)) u, v0H1(Jh)
3

and:

I
hh

1 3
hN N T T

e ee Fe F

J (u, v) [ u] , [ v] [u] ,[v] , u, v H ( )


        

We also define:

1 1
2 2 2

0

0

A (u, v) c ( u, v) a(u, v) a(v,u);

A(u, v) A (u, v) J(u, v);

B(u, v) A(u, v) J (u, v)

      

 

 

Now, since J0 (u, v) = (g, L@(gv)) for the exact solution u of
Eq. 1, then u satisfies:

(utt, v)+B(u, v) = (f, v)+(g, L@(gv))œv0H1 (L×, Jh) (5)

Properties of the bilinear form
Mesh-dependent   norm:   We   now,   introduce   the
discontinuous Galerkin norm and set for u0H1 (L×, Jh):

h

I h
h

2 21
22 2

2
h

0,F

2 2

T 0,F0,F

1u u u ( u) { u}

[ u] [u]N

        


    

We start by studying the continuity of the bilinear forms
introduced above. We have:

Proposition 1: œv, u0H1 (L×, Jh),

h h

h h

A(u, v) C u v ,

J (u, v) C u v





with a constant C independent of h and p.

Proof: The proof can be easily obtained from the definition of
A, JF, 2@2 and the Cauchy-Schwarz inequality.

In  order  to  study  the  coercivity  of  the  bilinear  form,
we   start   by   introducing   the   following   inequality   of
Poincarré-Friedrichs type valid for u0H1 (Jh)3.

Lemma: Let u0H1 (Jh)3 and F the stabilization parameter
defined previously, then there exists C independent of h and
p such that:

Ih h

2 22 22

N
0,e0,ee F e F

u C( u u [u] [u] )T 

        

Proof: Since ' is simply connected we have the following
orthogonal decomposition11:

L2 (Ω)3 = H0 (L×0, Ω)rH (L×0, Ω)

Therefore,  for  u0H1  (Jh)3,  u0L2  (S)3  and  we  can  write
u = u1+u2 with:

u10H0 (L×0, Ω) and u20H0 (L@0, Ω) (6)

Since  u1  =  H0  (L×0,  S)  we  can   write   u1   =   Lq  with
                 11. Also u2 = L×N in S avec N0H(L×, S)1H0(L@0, S)2.1

0q H ( ) 

In particular, the traces of N are well defined. Note that the
inequality Eq. 6 implies that:

2

2 2

2 2

u ( q ) ( q )

( q )

q
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Using    the    integration    by    parts    Eq.    3    and     4,
we obtain:

I
h

D
h

2

N T
e F e

e F e

u u q u.

q u u ([u] q [u] )

((u n)q (n u) )

 

 



   

        

    

 

  

 

Since, 1
0q H ( )  :

I
h

D
h

2
N T

e F e

e F e

u q u u) ([u] q [u] )

(n u)





       

  

 

 

We can get:

I
hh

I
hh

2 22

2 2

12 2
2

N T
0,e 0,e

e Fe F

2 2 1

2

e Fe F 0,e 0,e

u C( u u [u] [u] )

1 1
( q q )





       

     
 

 

 

It is clear that:

2 2 2q C q C u  

Since, N0H (L×, S)1H0 (L@, S) and L@N = 0. We obtain for
the first inequality11:

2 2 2

2

2

C( )

C(

C u

    

 



Using  the  trace   inequality8,   we   get   for   every   face
e0Fh:

 

2

o,e

2

0, K 0, K 0, K
K

2 2 2

K0, K 0, K 0, K
K K

2 2 2

0, K 0, K 0, K
K K K

2 2

0, K 0, K

C 11 q q q q
h

1 1
Ch q q h q

h h

1 1 1
Ch q q q

h h h

Ch q q

 
      

 
    

 
 

    
 

 

By adding:

I
hh

2
2 2

0,K 0,K
Ke F o,e

22

2

1
q C ( q q )

C( q q )

C u



  


  



 

Similarly   and   using  the  fact  that  the  embedding  of
H (L×, S)1 H0 (L@, S) in H1 (S)3 is continuous, we can estimate:

h

2

e F

0,e

1







and obtain:

h

0

2
2

1,
0,F

2

H( , ) H ( , )

2 2

2

2

1
C

C

C( )

C

C u



   

  


 

    

 





Therefore, we get:

I
hh

2 22

1

22 2

N T
0,e 0,ee Fe F

u C u u [u] [u] u


 
         
 

 

which is equivalent to:

I
hh

2 22
2 2

N T
0,e 0,ee Fe F

u C u u [u] [u]


 
         
 

 

Remark:  If  we  use  the  assumptions  on  µ  and  g,  the
definition of the bilinear forms A and JF we deduce in
particular that there exists a constant C independent of h and
p such that:

2
u C(A(u, u) J (u, u)) 

Now, the following coercivity result on the discrete space
Σh holds.

84



J. Applied Sci., 17 (2): 81-89, 2017

Proposition  2:  There  exists  two  constants  ">0  and  C̃>0
independent of h and p such that:

2

h hB(v, v) v CJ (v, v) v    

Proof: Let us first recall the following inverse inequality:

(7)K
2 2

0, K 0.K

2
pK

inv
K

p
q C q q S (K)

h
  

with a constant Cinv>0, only depending on the shape regularity
of the mesh. For the two dimensional elements, the proof of
Eq. 7 can be found by Schwab12. For the three dimension
space, the proof is analogous2.

Now, let " be an arbitrary real number and choose v0Σh.
Then:

h

2

h

22

F

B(v, v) v (1 )A(v, v) (1 )J (v, v)

2a(v, v) { v} / ds v

       

      

Since, {L×v} is the average of the flux at the face of two
elements Ki and Kj the corresponding integral can be split into
two integrals with integrands (L×v)i/F  and (L×v)j/F each one
associated with the elements Ki or Kj, respectively. Therefore,
let e0Fh and consider the integral associated with the element
K. Using the inverse inequality, we have since L×ΣhdΣh:

(8)2 2

o,e o,K

2
2 inv K

Ke

C p1( v) / ds v v
h h

     

So that, selecting F to be equal to κp2/h in Eq. 8, we
obtain:

2

o,K

2 inv

e

C
( v) / ds v    



In particular:

hh

22 inv

0,K
KF

inv

C
( v) / ds v

C
A(v, v)



     


 




Now, from the definition of a (v, v) we can get for all 0>0:

h h

T

F

2

F

2 2 1
2a(v, v) 2 [v] { v}   

 


From the previous inequality and the definition of JF we
obtain:

invC2
2a(v, v) 2 J (v, v) A(v, v)   






It then follows that:

2

h
inv invC C2

B(v, v) v (1 C)A(v, v)

(1 2 C)J (v, v)

         
 

     




The previous inequality is true for all 0>0, taking 1 / 
we obtain:

2

h
inv inv

inv inv

C 2C
B(v, v) v (1 C)A(v, v)

2(1 C)J (v, v)

C 2C
(1 (1 C) )A(v, v)

2
(1 (1 C) ) J (v, v)





         
 

  

    
 

 


  



We can choose κ sufficiently large and:

inv

inv

2C
1

1
min ,

C2(1 C) 1 C

  
  

     

and obtain:

2

h
B(v, v) v CJ (v, v)   

Now, the following hp-approximation result to interpolate
scalar function holds.

Proposition 3: Let K0Jh and suppose that Kt
Ku H (K), t 0. 

Then   there   exists   a   sequence   of   polynomials
 satisfying:K K

K

h p
p K(u) S (K), p 1, 2,...  

(9)
K K

K

K

min(p 1, t ) q
Kh

Kp Kq, K
qK

K

h
u (u) C u 0 q tt , Ktp

 


    

Furthermore, if tk$1:

(10)
K K

K

K

1
min(p 1,t )

2
Kh

p K0, K
K

K

h
u (u) C u t ,K1t

2p
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The constant C is independent of u, hK and pK but
depends on the shape regularity of the mesh and on

hK Kt max t .

Proof: The assertion in Eq. 9 has been proved by Babuska and
Suri13    (Lemma)    for    two-dimensional    domains.    For
three-dimensional domains, the proof is analogous2. The
assertion in Eq. 10 has been proved by Perugia and Schotzau9.

In order to interpolate the vector functions, we define the
following.

Definition:   For   u   =   (u1,   u2,   u3)   we   define
by  with h t

p h h
: H ( , )    h h h h

p p 1 p 2 p 3(u) ( (u ), (u ), (u ))     h
p

is  defined  by    where,    is  given  inK

K

hh
p pK K
(u) (u )   K

K

h
p

proposition 3.

Model problem: If u is the exact solution of the Maxwell
problem, then u satisfies:

(utt, v))+B (u, v) = (f, v)+(g, L@ (gv)) œv0H1 (L×, Jh)

The interior penalty finite element approximation to u is
to find uh:I÷Σh such that:

(11)

h h
tt h

h h
p 0

h h
t p 1

(u , v) B(u , v) (f , v) (g, ( v)) v

u (0) (u )

u (0) (u )









      

 

 

Upon  choice  of  a  basis  for  Σh  and  the  data  f  and  g,
Eq. 11 determines uh as the only solution to an initial value
problem  for  a  linear  system  of  ordinary  differential
equations. Note that if u is the exact solution of Eq. 1, then u
satisfies the first line in Eq. 11 and thus the problem is
consistent.

We now analyze the proposed procedure by the method
of energy estimates.

A priori error estimate: In this study, u denote the exact
solution  of  Eq.  1  and  uh  the  discrete  solution  of  Eq.  11.
The C is generic constant independent of h and p which takes
different values at the different place sand depends of µmin,

µmax,  gmin,  gmax,  T,  ",  C̃  the  coercivity  constants  of  the  form
B and S.

Let ζ = uh-u, then ζ satisfies:

(ζtt, v)+B(ζ, v) = 0   œv0Σh (12)

Decompose  ζ  as  η-υ  where,    andh
p (u) u   

h h
p (u) u .   

Note that [η]N = [η]T on  and [η]T = 0 on  thus:I
hF I D

hF I

(υtt, v)+B(υ, v) = (ηtt, v) +A (η, v) œv0Σh

Since, υt (t)0Eh we can set v = υt (t), obtaining:

2
t tt t t

2 2
tt t t

1 d 1 d(t) B( (t), (t)) ( (t), (t)) A( (t), (t))2 2dt dt
1 1(t) (t) A( (t), (t))2 2

         

      

So:

2 2 2
t tt t t

d d(t) B( (t), (t)) (t) (t) 2A( (t), (t))dt dt          

Since, υt(0) = υ(0) = 0, integration over [0, t]dI, yields:

2 2

2

2
tt L (L )

t t
2

t t

0 0

(t) B( (t), (t))t

(t) (t) dt 2 A( (t), (t))dt

   

       

The  final  term  may  be  integrated  by  parts  in  time.
Hence:

t t

t

0 0

2 A( (t), (t))dt 2 A( (t), (t)) 2 A( (t), (t)) dt        

Therefore, we can apply the coercivity of B and continuity
of A to get:

2 2

2 2

2 2

2 2

t h

2
tt L (L )

2 22
tt L (L ) h h

2

t
h

t
2

t h h
0

t

t

0

t
2

t

0

t
2 2

t hh
0

T
2 22

tt thL (L ) h
t I 0

(t) (t) CJ ( (t), (t))

(t) dt C (t) (t)

2 A( (t), (t)) dt

(t) dt C (t) C (t)

(t) C ( (t) (t) )dt
2

C sup (t) (t) dt





      

      

  

       

     

 
     















 2

h

t
2 2

t h
0

(t) C (t) (t) dt
2
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In particular:

 

2 2

2 2

t h

t
2 22

tt thL (L ) h
t I 0

t
2 2

t h
0

(t) (t) J ( (t), (t))

C sup (t) (t) dt

C (t) (t) dt





     

 
      

 
 

   





As this holds for all t0I, Gronwall's Lemma implies that:

(13)
2 2

2 2
t h

T
22 2

tt tL (L ) h h
t I 0

(t) (t) J ( (t), (t))

C( sup (t) (t) dt





     

     

Since, ζ = η-υ and JF (η, η) = 0:

2 2 2

2 2

h

T
2 2 22

tt t thL (L ) h L (L )
t I 0

(t) (t) J ( (t), (t))t

C sup (t) (t) dt C 





     

 
         

 


Then, error bounds for the finite element approximation
to the true solution reduce to the error bounds for the
piecewise polynomial interpolant. Thus, we start by estimating

 where  is defined after proposition 3. By usingh
p

h
u (u) , h

p


proposition 3 and the definition of 2@2h, we obtain the
following proposition.

Proposition  4:  Let  u  be  the  exact  solution  of  Eq.  1  and
suppose that  for any t0I with tK$2, then weKt 3

1Ku ( , t) H (K)  ,
have:

K

K K
h

2
h
p

h

2µ 2
2K

2t 3 t ,K
K K

h
u( , t) (u( , t)) C u ( , t) t I

p






      

and:

K

K

K K K

q
h K

Kp t q t ,K
q,K K

h
u ( , t) (u( , t)) C u( , t) 0 q t , t I

p




         



where, µK = min (pK+1, tk) and C is independent of h  and p.
In   order   to   obtain   an   estimation   of

 we apply the previous
2 2

t h
(t) (t) J ( (t), (t))      ,

proposition and get the following.

Proposition 5: Let u be the exact solution of Eq. 1 and
suppose that  with tK$2. Let uh theK

K

t2 3
t hu C (I,H (K) ), K  

discrete solution of Eq. 11, then the error ζ = uh-u satisfies:

 
 

K

t 3t2 3 KKK

h

K

t 3t2 3 KKK

h

2 2

h

2

L (H (K) )

2

L (H (K) )

2 2
2K

tt2t 3 L (H (K) )
K K

2 2
2K

t t2t 3 L (H (K) )
K K

(t) (t) J ( (t), (t))t

h
C u u

p

h
C u u

p







 




 




     

 

 





where, µK = min (pK+1, tK) and C is independent of h and p.

RESULTS AND DISCUSSION

We shall now present some numerical results which verify
the sharpness of the theoretical error bounds stated in
proposition 5. To obtain a full discretization of our wave
equation, we choose to augment our DG spatial discretization
with the second order Newmark scheme in time1.

In our example, the DG stabilization parameter is  set  to
κ = 10. The functions µ and g  in Eq. 1 are supposed constants
and equal to 1.

Time discretization: The discretization of Eq. 1 in space by the
DG method Eq. 9 leads to the linear second order system of
ordinary differential equations:

(14)h h hMu (t) Au (t) f (t), t I  

with initial conditions:

(15)h h h h
0 1Mu (0) u , Mu (0) u 

where, M is the mass matrix and A the stiffness matrix. To
discretize Eq. 11 in time, we employ the Newmark time
stepping  scheme14.  We  let  k  denote  the  time  step  and  set
tn = n.k. Then the Newmark method consists in finding
approximation to uh(tn) such that:h

n n{u }

  (16)2 h h h 22 1 0
n n1 0 1

1 1(M k A)u M k ( )A u kMu k f ( )f
2 2


   
   
   

        

and:

(17)
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Table 1: Errors in the L2 (S) norm and in the energy norm
h 2u-uh20, S, p = 1 2u-uh20, S, p = 2 norm 1 = 2u-uh20, S, p = 1 norm 2 = 2u-uh20, S, p = 2
0.4367 0.48550E-01 0.2109E-01 0.2295E+00 0.1305E+00
0.2184 0.2500E-01 0.2540E-02 0.1617E+00 0.3875E-01
0.1733 0.1513E-01 0.8845E-03 0.1333E+00 0.2051E-01
0.1379 0.8141E-02 0.3891E-03 0.9205E-01 0.1137E-01
9.268E-02 0.3868E-02 0.9734E-04 0.6540E-01 0.4521E-02
7.703E-02 0.2552E-02 0.5080E-04 0.5328E-01 0.3111E-02

Fig. 1: Error of the energy norm with p = 1

Fig. 2: Error of the energy norm with p = 2

For n = 1, 2,...,N-1. Here fn: = f(tn) while, $$0  and  are1

2
 

free parameters that still can be chosen. We recall that for
 the Newmark scheme is second order accurate in time,1

2
 

whereas, it is only first order accurate for  For $ = 0, the1

2
. 

Newmark scheme Eq. 16 and 17 requires at each time step the

solution of a linear system with the matrix M. However,
because individual elements decouples, M is a bloc diagonal
with a bloc size equal to the number of degrees of freedom
per element. It can be inverted at very low computational cost
and the scheme is essentially explicit. In fact, if the bases
functions are chosen mutually orthogonal, M reduces to the
identity15 and the references therein. Then, with  the1

2
 

explicit  Newmark  method  corresponds  to  the  standard
leap-frog scheme.

For $>0, the resulting scheme is implicit and involves the
solution of a linear system with the symmetric positive definite
stiffness matrix A at each time step. We finally note that the
second order Newmark scheme with  is unconditionally1

2
 

stable for  whereas, for  the time step k has to1

4
  1

0
4
  

be   restricted   by   a   CFL   condition.   In  the  case  $  =  0  the
condition is k2λmax (A)#4 (1-g), g0(0, 1) where, λmax (A) is the
maximal eigen value of the DG stiffness matrix A.

In our test, we will employ the implicit second order
Newmark scheme, setting  and  in Eq. 16 and 17.1

2
 

1

2
 

Example: We consider the three dimensional wave Eq. 1 in
S×I: = (0.1)3×(0.1) and data f, g, u0 and u1 chosen such that
the analytical solution is given by:

(18)

2 2

2 2

2 2

sin(t(y y)(z z))

u (x, y, z, t) sin(t(x x)(z z))

sin(t(x x)(y y))

 
 
 
 
 
  
 

 

  

 

This solution is arbitrarily smooth so that our theoretical
assumptions are satisfied. We discretize this problem using the
polynomial spaces Pp (K)3, p = 1,2 on a sequence Jh of
tetrahedral meshes. With decreasing mesh size h smaller time
step k is not necessary, because the scheme is unconditionally
stable.

We show the relative errors at time T = 1 in the energy
norm, as we decrease h and we remark that the decrease of
the energy norm as a function of the mesh size h is of order
one for  p  =  1  and  of  order  two  for p = 2. Then the
numerical results corroborate with the expected theoretical
rates of O(hp) as we decrease the mesh size (Table 1, Fig. 1, 2).
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CONCLUSION

In this study, a discontinuous Galerkin method for the
discretization of the wave has been proposed and its hp-error
analysis has been carried out. The hp-error estimates obtained
are optimal in the mesh size and suboptimal in the
approximation degree. Some numerical results are given to
confirm the convergence rates as a function of the mesh size.
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