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Abstract
Background and Objectives: The industrial and manufacturing systems comprise of large complex subsystems arranged in series-parallel
whose failure is costly. Through mathematical modelling of such systems, the maximum profit level in which the system can attain can
be identified and the corresponding subsystem that enable the maximum profit in order to lay emphasis on its preventive maintenance
as well as the most critical subsystem leading to drop in profit can also be identified. Materials and Methods: Through the transition
diagrams, systems of first order differential difference equations are developed and solved recursively to obtain the steady-state
availability, busy period of repair men and profit function. Profit matrices for each subsystem have been developed to provide various
performance values for different combinations of  failure and repair rates of all subsystems. Results: Mathematical models of availability,
busy period of remain man due to partial and complete failure as well as profit function for the systems have been developed using the
probabilistic approach. Through these mathematical models impact of each subsystem parameters on the system’s profit has been
analyzed through simulation and profit matrices. Through profit matrices and value of correlation coefficient, the most critical system
leading to drop in profit is identified. Conclusion: Mathematical models of the system are developed in the form of availability, busy period
of repairman due to partial and complete failure and as well as profit function. Profit generated are presented  in  the  form  of  matrices
(or tables). The effects of failure and repair rates of all the subsystems are presented in the form of profit matrices. It is evident from the
profit matrices that as failure/repair rates increases, the profit tend to decrease/increase. From the value of correlation coefficient
presented in the study, it is evident sub-system E is the most critical whose failure is catastrophic to the system. Mathematical models
developed in this paper are vital to plant management for proper maintenance analysis and safety of the system as a whole. The models
will also assist plant management to avoid an incorrect reliability, availability and profit assessment and leading to inadequate
maintenance decision making, which cause unnecessary expenditures and reduction of safety standards.
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INTRODUCTION

Many industrial and manufacturing systems arrange in
series parallel are liable to instant failure. The system operation
must ceased at failure of any of its subsystem which results
incomplete failure. Similarly, subsystems containing units are
also liable to partial due to failure of some units or complete
failure due to failure of all units which retard the system
operation, system performance and leads to high
maintenance cost. Most of the industrial and manufacturing
systems consist of large complex subsystems arranged either
in series, parallel, parallel-series or series-parallel. Examples of
these systems are feeding, crushing, refining, steam
generation, evaporation, crystallization, fertilizer plant,
crystallization unit of a sugar plant and piston manufacturing
plant, etc1-4. Series-parallel systems consist of subsystems
connected in series where each subsystem consists of units
arranged in either parallel or k-out-of-n. Failure of any one of
the subsystems leads to the failure of the system called
complete failure whereas the failure of a unit in the
subsystems  is  called  partial  failure.  These  systems  are  used
in industries,   power   stations,   manufacturing,   production
and  telecommunications5-7.  Due  to  the  importance  of
series-parallel  systems  in  various  industries,  determinations
of their availability and profit have become an increasingly
important issue. System availability represents the percentage
of time the system is available to users. Failure is an
unavoidable phenomenon which can be dangerous and costly
and bring about less production and profit. The importance in
promoting, sustaining industries, manufacturing systems and
economy through reliability measurement leading to increase
in production output, less maintenance cost as well as
generated revenue has become vital to the growth industrial
and manufacturing systems. Reliability, availability and profit
of a system may be enhanced using highly reliable structural
design of the system or subsystem of higher reliability.
Reliability, availability and profit are some of the most
important factors in any successful industry and
manufacturing settings proper maintenance planning plays a
role in achieving high system reliability, availability and
production output. It is therefore important to keep the
equipments/systems always available. Availability and profit
of an industrial system are becoming an increasingly
important issue. Where the availability of a system increases,
the related profit will also increase. Most of these industrial
and manufacturing systems were modelled to obtain their
availability using Markov birth-death process with the
assumption that the failure and repair rates of each subsystem

follow exponential distribution8,9. These systems are exposed
to different types of  failures  such  as  common  cause,  partial,
human and complete failure10. Several method in studying the
behavior, maintenance and performance of these exit1,11,12.
Such performance are measured in terms of reliability,
availability, mean time to failure, mean time between failure
and mean time to repair13,14. Increase in the reliability and
availability of such systems or their subsystems, the
production output and associated profit will also increase.
Increase in production leads to the increase of profit15. Studies
carried to enhance the availability of such system through
failure dependencies have shown that redundancy
optimization of components in the subsystems and availability
of repair teams in the event of failure occurrence are some of
the technique employed in enhancing the availability of the
systems. However, within such systems, failure dependency
can exit leading to increase in the number of repair teams,
associated cost of maintenance and repair teams16. A large
volume of literature exists on the issue of predicting
performance evaluation of various systems configured as
series-parallel system. It is clear that best quality leads to
higher productivity as well as generated revenue. However
system configuration or design can play a vital role increasing
the productivity and generated profit4.

Existing literatures either ignores the importance of profit
on both industrial growth, employment, increase in volume of
business, etc. Most literatures laid emphasis of availability and
performance evaluation of the systems alone without paying
much attention to the generated revenue. More sophisticated
models of series parallel systems should be developed to assist
in reducing risk of a complete breakdown, operating costs,
prolonging the overall availability and the generated revenue
(profit) as well.

To achieve the goal of high system reliability, availability
and profit, it is necessary that the subsystems that constituted
the entire system should remain operative for a longer
period17-19. Mathematical modelling of such systems may
prove beneficial by analyzing the performance of the
system/subsystems through reliability, availability as well as
generated  profit  and  the  degree  of  identification  of  the
most critical  subsystem  that  result  in  low  reliability,
availability and profit between the subsystems20-22. Through
this  mathematical  model,  the  optimal  profit  level  in  which
the profit is maximum can be identified and the
corresponding  subsystem  that  enable  the  maximum  profit
in order to lay emphasis on its preventive maintenance as well
as the most critical subsystem leading to drop in profit. 
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The needs of this research is motivated by the work of the
authors above due to the fact that profit optimization is
affected by failure of some subsystems, system design  as  well
as (of units/subsystems) and identification of the most critical
subsystem is not captured which may affect industrial growth,
employment, increase in volume of business, etc.:

C The objective is develop a mathematical model
availability, minor and catastrophic failure relationship
model based on profit

C To explore the impact of failure on profit
C To explore the impact of repair on profit
C To determine the most critical unit/subsystem and

parameter in the relation to profit/cost optimization
C To identify the subsystem with maximum profit and the

most critical subsystem as far as maintenance is
concerned and required immediate attention

MATERIALS AND METHODS

The system consists of five dissimilar subsystems which
are:

C Subsystem A: Single units in series whose failure cause
complete failure of the entire system

C Subsystem B: Consists  of  2  active parallel units. Failure
of one unit, the system will work in reduced capacity.
Complete failure occurs when both units failed

C Subsystem C: Consisting of 4 units in which 2 are
required in operation while the remaining 2 on standby.
Failure of the system occurs when all the three units have
failed

C Subsystem D: A single unit in series whose failure cause
complete failure of the entire system

C Subsystem E: A single unit in series whose failure cause
complete failure of the entire system

Notations:

F Indicate the system is in full working state
G Indicate the system is in failed state

Indicate the system in reduced capacity state

C A, B, C, D, E represent full working state of subsystem
C B2 denote that the subsystem B is working in reduced

capacity
C C1 denote subsystem is working on standby unit
C a, b, c, d, e represent failed state of subsystem
C $1,  $2,  $3,  $4,  $5  represent  failure  rates  of  subsystems

A, B, C
C "1,  "2,  "3,  "4,  "5  represent  repair  rates  of  subsystems

A, B, C
C P0(t), P1(t), P2(t): Probability of the system working with full

capacity at time t
C P3(t), P4(t), P5(t): Probability of the system in reduced

capacity state
C P6(t) to P28(t): Probability of the system in failed state
C Pi'(t), i = 0, 1, 2,..., 28: Represents the derivatives with

respect to time t
C Av(4): Steady state availability of the system
C BP1(4): Busy period probability of repairman due to type I

failure
C BP2(4): Busy period probability of repairman due to type II

failure
C PF(4): Profit function
C C0: Total revenue generated
C C1: Cost due to partial failure
C C2: Cost due to complete failure

Models formulation: The following differential difference
equations associated with the transition diagram in Fig. 1 and
2 of the system are formed using Markov birth-death process:

(1)
5

i 0 1 6 2 3 3 1 4 7 5 8
i 1

d P (t) P (t) P (t) P (t) P (t) P (t)
dt 

 
             

 


(2)
5

i 1 3 1 1 9 2 4 3 2 4 10 5 11 3 0
i 1

d P (t) P (t) P (t) P (t) P (t) P (t) P (t) P (t)
dt 

 
                

 


(3)
5

i 2 3 2 1 12 2 5 3 13 4 14 5 15 3 1
i 1

d P (t) P (t) P (t) P (t) P (t) P (t) P (t) P (t)
dt 

 
                

 


(4)
5

i 3 2 3 1 16 2 17 3 4 4 18 5 19 2 0
i 1

d P (t) P (t) P (t) P (t) P (t) P (t) P (t) P (t)
dt 
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(5)
5

i 4 2 4 1 20 2 21 3 5 4 22 5 23 2 1
i 1

d P (t) P (t) P (t) P (t) P (t) P (t) P (t) P (t)
dt 

 
                

 


(6)
5

i 5 3 5 1 24 2 25 3 26 4 27 5 28 3 4
i 1

d P (t) P (t) P (t) P (t) P (t) P (t) P (t) P (t)
dt 

 
                

 


(7)6
1 6 1 0

dP (t) P (t) P (t)
dt

  

(8)7
4 7 4 0

dP (t) P (t) P (t)
dt

  

(9)8
5 8 5 0

dP (t) P (t) P (t)
dt

  

(10)9
1 9 1 1

dP (t) P (t) P (t)
dt

  

(11)10
4 10 4 1

dP (t) P (t) P (t)
dt

  

(12)11
5 11 5 1

dP (t) P (t) P (t)
dt

  

(13)12
1 12 1 2

dP (t) P (t) P (t)
dt

  

(14)13
3 13 3 2

dP (t) P (t) P (t)
dt

  

(15)14
4 14 4 2

dP (t) P (t) P (t)
dt

  

(16)15
5 15 5 2

dP (t) P (t) P (t)
dt

  

(17)16
1 16 1 3

dP (t) P (t) P (t)
dt

  

(18)17
2 17 2 3

dP (t) P (t) P (t)
dt

  

(19)18
4 18 4 3

dP (t) P (t) P (t)
dt

  

(20)19
5 19 5 3

dP (t) P (t) P (t)
dt

  

(21)20
1 20 1 4

dP (t) P (t) P (t)
dt

  

(22)21
2 21 2 4

dP (t) P (t) P (t)
dt

  

(23)22
4 22 4 4

dP (t) P (t) P (t)
dt

  

(24)23
5 23 5 4

dP (t) P (t) P (t)
dt

  

(25)24
1 24 1 5

dP (t) P (t) P (t)
dt

  

(26)25
2 25 2 5

dP (t) P (t) P (t)
dt

  

(27)26
3 26 3 5

dP (t) P (t) P (t)
dt

  

(28)27
4 27 4 5

dP (t) P (t) P (t)
dt

  

(29)28
5 28 5 5

dP (t) P (t) P (t)
dt

  

With initial condition:

(30)i

1, i 0
P (t)

0, i 0


  

Steady state availability of the system: In the steady state,
the derivatives of states probabilities are set equal to 0.

Let P0(4) be the probability of full working state when the
system is new and is determine using the condition
normalizing:

P0(4)+P1(4)+P2(4)+...+P28(4) = 1 (31)

Setting  as t÷4 in Eq. 1-29 and solving them recursivelyd
dt

using  Eq.  31, it obtained the steady state probabilities given
in Table 1:

Δ1 = (y1+y2+y3+y4+y5) (32)

(33) 2 2
2 3 3 2 31 y y y y    

Δ3 = (y1+y2+y4+y5) (34)

(35) 2
4 2 2 3y y y  
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Fig. 1: Reliability block diagram of the system

Fig. 2: Transition diagram of the system

The steady-state availability, busy period probability due
to type I and II failure and profit function of the system are
given below:

(36)
  25

2 3 3
V k

k 0 1 2 3 4

1 y 1 y y
A ( ) P ( )

1

  
   

     

(37)
2 25

2 3 3 2 3 2 3
P1 k

k 1 1 2 3 4

y y y y y y yB ( ) P ( )
1

   
   

     

      2 228 53 3 1 4 2 3 3 2
P2 k

k 6 1 2 3 4

1 y y y y y y y 1 y
B ( ) P ( )

1

       
   

     
(38)

PF(4) = C0 AV(4)-C1 BP1(4)-C2 BP2(4) (39)

RESULTS AND DISCUSSION

Using    the    failure   and   repair   rates   values   of
Aggarwal et al.8, the matrices consisting profit are computed.
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 Table 1: Solutions of states probabilities
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Table 2: Effect of failure and repair rates of subsystem A on profit of the system 
"1
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

$1 0.004 0.005 0.006 0.007 0.008 0.009
0.35 603.20 651.63 685.86 711.34 731.04 746.73
0.40 570.57 623.54 661.24 689.44 711.34 728.82
0.45 539.47 596.54 637.44 668.19 692.15 711.34
0.50 509.77 570.57 614.43 647.55 673.45 694.25
0.55 481.39 545.57 592.15 627.49 655.22 677.56
0.60 454.24 521.49 570.57 607.99 637.44 661.24
With constant values $2 = 0.005, $3 = 0.001, $4 = 0.002, $5 = 0.004, "2 = 0.1, "3 = 0.5, "4 = 0.4, "5 = 0.4, C0 = 100,000, C1 = 10,000, C2 = 15,000

Table 3: Effect of failure and repair rates of subsystem B on profit of the system
"2
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

$2 0.004 0.005 0.006 0.007 0.008 0.009
0.05 648.71 658.58 666.05 672.11 677.25 681.75
0.1 608.51 623.54 634.19 642.27 648.71 654.04
0.15 573.77 594.23 608.51 619.15 627.46 634.19
0.2 541.58 567.17 585.01 598.25 608.51 616.75
0.25 511.22 541.58 562.81 578.56 590.75 600.50
0.3 482.41 517.16 541.58 559.72 573.77 585.01
With constant values $1 = 0.005, $3 = 0.001, $4 = 0.002, $5 = 0.004, "1 = 0.4, "3 = 0.5, "4 = 0.4, "5 = 0.4, C0 = 100,000, C1 = 10,000, C2 = 15,000

Table 2 and Fig. 3a and b presented the impact of failure
and repair rates of subsystem A against the profit for different
values of parameters "1 and $1. The failure and repair rates of
other subsystems are kept constant as can be seen at the
bottom of the table. It is evident from Table 2 and Fig. 3a that
the profit showed increasing pattern with respect to repair
rate "1 and decreasing pattern with respect to failure rate $1
from Fig. 3b. It is clear that profit is higher with the higher
value of "1  and lower with higher value of  $1.

Table 3 and Fig. 4a and b displayed the effect of failure
and repair rates of subsystem B against the profit for different
values of parameters "2 and $2. The failure and repair rates of
other subsystems are kept constant as can be seen at the
bottom of the table. It is evident from Table 3 and Fig. 4a that
the profit showed increasing pattern with respect to repair
rate  "2  and  decreasing  pattern  with  respect  to  failure  rate
$2 from Fig. 4b. It is clear that profit is higher with the higher
value of "2 and lower with higher value of $2.
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(b)

Fig. 3(a-b): Profit against (a) "1 and (b) $1

Fig. 4(a-b): Profit against (a) "2 and (b) $2

Table 4: Effect of failure and repair rates of subsystem C on profit of the system
"3
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

$3 0.0005 0.001 0.0015 0.002 0.0025 0.003
0.4 477.97 694.09 817.70 898.02 954.61 996.79
0.5 413.63 623.54 750.79 836.37 898.02 944.66
0.6 364.57 566.05 694.09 782.80 848.00 898.02
0.7 325.91 518.29 645.40 735.76 803.37 855.93
0.8 294.67 477.97 603.12 694.09 763.27 817.70
0.9 268.89 443.48 566.05 656.92 727.02 782.80
With constant values $1 = 0.005, $2 = 0.005, $4 = 0.002, $5 = 0.004, "1 = 0.4, "2 = 0.1, "4 = 0.4, "5 = 0.4, C0 = 100,000, C1 = 10,000, C2 = 15,000

Results from Table 4 and Fig. 5a, b presented the impact
of failure and repair rates of subsystem C against the profit for
different values of parameters "3 and $3. The failure and repair
rates of other subsystems are kept constant as can be seen at
the bottom of the table. It is evident from Table 4 and Fig. 5a
that the profit shows increasing pattern with respect to repair
rate "3  and decreasing pattern with respect to failure rate  $3
from Fig. 5b. It is cleared that profit is higher with the higher
value of "3 and lower with higher value of $3.
It is evident from Table 5 and Fig. 6a and b that the profit

increases and decreases with increase in the values of
parameters  "4  and  $4.  The  failure  and  repair  rates  of  other

subsystems are kept constant as can be seen at the bottom of
the table. It is evident from Table 5 and Fig. 6a that the profit
showed increasing pattern with respect to repair rate "4 and
decreasing  pattern  with  respect  to   failure   rate   $4   from
Fig. 6b. It is cleared that profit is higher with the higher value
of "4 and lower with higher value of $4.

Table 6 and Fig. 7a and b presented the impact of  failure
and repair rates of subsystem A against the profit for different
values of parameters "5 and $5. The failure and repair rates of
other subsystems are kept constant as can be seen at the
bottom of the table. It is evident from Table 6 and Fig. 7a that
the  profit  showed  increasing  pattern  with  respect  to  repair
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Fig. 5(a-b): Profit against (a) "3 and (b) $3

Fig. 6(a-b): Profit against (a) "4 and (b) $4

Fig. 7(a-b): Profit against (a) "5 and (b) $5

Table 5: Effect of failure and repair rates of subsystem D on profit of the system
"4
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

$4 0.001 0.002 0.003 0.004 0.005 0.006
0.05 623.54 695.94 721.78 735.04 743.11 748.54
0.1 498.27 623.54 670.99 695.94 711.34 721.78
0.15 393.66 557.96 623.54 658.83 680.87 695.94
0.2 305.00 498.27 579.12 623.54 651.63 670.99
0.25 228.89 443.71 537.44 589.96 623.54 646.87
0.3 162.85 393.66 498.27 557.96 596.54 623.54
With constant values $1 = 0.005, $2 = 0.005, $3 = 0.001, $5 = 0.004, "1 = 0.4, "2 = 0.1, "3 = 0.5, "5 = 0.4, C0 = 100,000, C1 = 10,000, C2 = 15,000
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Table 6: Effect of failure and rate rates of subsystem E on profit of the system
"4
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

$4 0.003 0.004 0.005 0.006 0.007 0.008
0.3 623.54 695.94 721.78 735.04 743.11 748.54
0.4 498.27 623.54 670.99 695.94 711.34 721.78
0.5 393.66 557.96 623.54 658.83 680.87 695.94
0.6 305.00 498.27 579.12 623.54 651.63 670.99
0.7 228.89 443.71 537.44 589.96 623.54 646.87
0.8 162.85 393.66 498.27 557.96 596.54 623.54
With constant values $1 = 0.005, $2 = 0.005, $3 = 0.001, $4 = 0.002, "1 = 0.4, "2 = 0.1, "3 = 0.5, "4 = 0.4, C0 = 100,000, C1 = 10,000, C2 = 15,000

Fig. 8: Tornado plot of profit

rate "5  and decreasing pattern with respect to failure rate $5 
from Fig. 7b. It is clear that profit is higher with the higher
value of "5 and lower with higher value of $5.

It conducted sensitivity analysis on parameters to
measure their statistical influence on PF(4). To do that each $1
to $4 and "1, "3, "4 and "5 are uniformly distributed while $5
and  "2  follows  triangular  distribution on [0 1]  and  it  drawn
1000 samples from this distribution using Latin Hypercube
sampling. This gives a matrix with 1000 rows 5 columns. Each
row of the matrix represent a unique parameter set. For each
of  these  sets,  we  simulated  the  model  outcomes  PF(4).  It
then performed sensitivity analysis on the model outcomes
using Partial Rank Correlation Coefficients (PRCC). Figure 8
depicted the tornado plots of the results. From the Fig. 8, it is
evident that "3 is the most sensitive parameter affecting all
the outcomes (PF(4)). Increase in "3 will lead to increase in the
outcomes. From the Fig. 8, it is evident that $5 is the most
sensitive, while $2 is the least sensitive for all the outcomes.
Increasing the value of $5 will decrease each one of the
outcomes more significantly than the others. These means
that in order to have high values of profit PF(4), it is necessary
to consider the combinations of high values of "3 together
with low values of $5. This means that subsystem C and E
should be given more care in terms of maintenance.

CONCLUSION AND FUTURE STUDY

In this research, it constructed a series-parallel system
configurations consisting of five subsystems to study the cost
analysis of the system. Explicit expressions for steady-state
availability, busy period and profit function for the system are
derived. Numerical results presented have shown the effect of
both failure and repair rates on profit. From the analysis, it is
evident that profit can be enhancing through:

C Proper maintenance planting to avoid the occurrence of
catastrophic failure

C Maintaining the system availability at the highest order
C Adding more fault tolerant redundant units/subsystem

Mathematical models of the system are developed in the
form of availability, busy period of repairman due to partial
and complete failure and as well as profit function. Profit
generated are presented in the form of matrices (or tables).
The effects of failure and repair rates of all the subsystems are
presented in the form of profit matrices. It is evident from the
profit matrices that as failure/repair rates increases, the profit
tend to decrease/increase. From the value of correlation
coefficient presented in the study, it is evident subsystem E is
the most critical whose failure is catastrophic to the system.

With modifications and assumptions, the model in this
paper will plant management to avoid an incorrect reliability
assessment and consequent erroneous decision making,
which may lead to unnecessary expenditures. The present
work can extended to incorporate failure dependency,
condition monitoring to enable management in determining
the optimal maintenance/ replacement time. 

SIGNIFICANCE STATEMENT

The study discovers the existence of correlation between
the parameters of the system  with  the  outcome  profit  using
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tornado 2019. Through this the most critical parameter or
subsystem that needs more attention in terms of condition
monitoring, preventive or corrective maintenance than the
rest is discovered. This would assist the researchers to uncover
reliable systems for efficiency, long term survival, growth as
well as profit maximization. The study will assist the
researchers to uncover the critical areas of profit maximization
of series parallel system exposes to different types of failures
such as common cause, electrical, mechanical, installation,
partial, human and catastrophic failures, that many
researchers were not explore. This will pave way to new theory
on profit maximization of series parallel system exposes to
different types of failure. 
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