


   OPEN ACCESS Journal of Applied Sciences

ISSN 1812-5654
DOI: 10.3923/jas.2020.104.108

Research Article
Bilateral Risky Partial Differential Equation Model for European
Style Option
1Sunday Emmanuel Fadugba and 2Florence Dami Ayegbusi

1Department of Mathematics, Ekiti State University, Ado Ekiti, Nigeria
2Department of Mathematics, First Technical University, Ibadan, Nigeria

Abstract
Background and Objectives: In this study, a bilateral risky partial differential equation model for the European style option is presented.
European option is an option contract that can only be exercised at the maturity date. Materials and Methods: The derivation of the
model has been obtained by means of a self-financing portfolio. Results: It is clearly seen that the bilateral risky partial differential
equation model has few adjustments when compared with the Black-Scholes model.  Conclusion: Moreover, the risky partial differential
equation has been decomposed into total-valuation adjustments.
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INTRODUCTION

The valuation of derivatives has become very important
in financial markets. Financial derivative is defined as a
financial contract that derives its value from an underlying
asset, such as; market indexes, currencies, interest rates, bonds
and commodities. Options are financial instruments that are
derivatives based on the value of underlying securities such as;
stocks. An option contract offers the buyers the opportunity to
buy or sell depending on the type of contract they hold.
Options come in 2 ways namely, call and put options. Call
options permit the holder to buy the asset at a stated price
within a specific time frame while the put options allow the
holder to sell the asset at a stated price within a specific time
frame. A European option is a version of an option contract
that limits execution to its expiration date. In other words, if
the underlying security such as; stock has moved in price, an
investor would not be able to execute the option early and
take delivery of or sell the shares.

Unlike American options, there is no freedom of an early
exercise of the European options. Financial instruments such
as; bonds, stocks etc., that are traded directly between the
parties Over The Counter (OTC) are mainly European options.
Exchange derivatives are traded through a central-exchange
which act as an intermediary between the  counter parties
that are trading a derivative. An exchange market has listing
requirements and publicly visible prices unlike the OTC
market. The OTC market is very flexible as it allows even small
firms who cannot meet exchange listing requirements to
trade. But it carries high risk for the counterparty compared to
the exchange, because of less prices transparency1. Many
institutions and financial analysts claim that the 2007 global
financial crisis was the consequences of ignoring counter
party risk in the OTC derivative market. Counterparty risk is the
risk that each party involved in a derivative trade may not
meet the fall obligations of the contract. Inappropriate
valuation of OTC derivatives and consideration of low
probability of default were considered as the main causes of
the crisis2. The traditional derivative pricing model that relies
on the assumption that one can  borrow  and   lend  it  at  a
risk-free interest rate, did not take into account an effort of
counterparty risk. After, the crisis, new pricing models which
include total-valuation adjustments (XVA) were developed3-5.
This study presents a new approach of the bilateral risky
partial differential equation model for European options.

SOME DEFINITIONS OF TERMS

This section presents some definitions of terms:

C Definition 2.1 (Funding Valuation Adjustment (FVA)):
This is an adjustment to the value of a derivative that is
designed to make sure that a lender recovers his average
funding cost when he trades or hedges a derivative6

C Definition 2.2 (Credit Valuation Adjustment (CVA)): This
is designed to take into account the risk that counterparty
(C) defaults and causes losses to the lender. Derivatives
are marked-to-market. The value of the derivative upon
defaults depends on the sign of the mark-to-market value

C Definition 2.3 (Debit Valuation Adjustment (DVA)): This
reflects a risk faced by counterparty (C) when a lender (B)
defaults7. For example, if lender (B) enters into a
derivative trade with counterparty  (C)  then,  (CVA)B  = 
(DVA)C  and (DVA)B =  (CVA)C. The combination of CVA and
DVA is called bilateral counterparty risk

C Definition 2.4 (Total Valuation Adjustments (TVA)):
These are the adjustments that are added to non-default
value of a derivative to capture the effect of counterparty
risk and funding costs of trading a derivative in today's
financial market conditions. Thus:

TVA = DVA-CVA+FVA

C Definition 2.5 (Portfolio): A portfolio is a set of financial
assets such as; stocks, bonds and cash equivalents as well
as their mutual exchange-traded and closed-fund
counterparts

C Definition 2.6 (Self-financing portfolio): A self-financing
portfolio is characterized by the assumption that all
trades are financed by selling or buying assets in the
portfolio. For example, if we let π(t) be the value of the
portfolio at time t, we have:

i i
i

(t) S (t)  

So, for the self-financing portfolio, we have that:

i i
i

d (t) dS (t)  

where, Si present the financial assets

C Definition 2.7 (Arbitrage portfolio): The portfolio is
called an arbitrage portfolio if the value of a portfolio π (t)
has the following properties; π (0) = 0and π (1) = 1 with
probability 1. Basically, having an arbitrage in a portfolio
means a portfolio makes a positive amount out of
nothing
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C Definition 2.8 (Hedging portfolio): Let V be the financial
derivative defined as V = N (z) where, z is the stochastic
variable driving the stock price process, then a financial
derivative V is said to be reachable if there exists a
portfolio such that π (t) = V with probability 1. In this case
the portfolio is said to be hedging portfolio or replication
portfolio. If all claims can be replicated then the market is
complete

C Definition 2.9 (Mark-to-market): This refers to the daily
settling of gains or losses due to the changes in the
market price. If the market value of the derivative goes up
on a given trading day, the party who bought the
derivative (long position) collects the money-equal to the
derivative change in value from the party who sold the
derivative (short position)

BILATERAL RISKY PARTIAL DIFFERENTIAL EQUATION
MODEL FOR EUROPEAN STYLE OPTION

Consider the following trading financial assets:

PB = Default risky, zero recovery, zero coupon bond of
counterparty B

PC = Default risky, zero recovery, zero coupon bond of
counterparty C

S = Underlying asset with no default risk

Due to the risk involved and bond prices are modelled as
stochastic processes which satisfy the following stochastic
differential equations:

(1)RdS r (t)Sdt (t)SdW  

(2)B B B B BdP r (t)P dt P (t)dJ 

(3)c C C C CdP r (t)P dt P (t)dJ 

where, Wt is the geometric Brownian motion, rB and rC are the
yields of the risky zero-coupon bonds of counterparty B and C,
respectively. Assume rB (t), rC (t)>0 and σ (t)are deterministic
functions of t, JB and JC are two independent jump 'Poison'
processes that change from 0 to 1 on default of B and C,
respectively. Let RB  0  [0,1]  and   RC  0  [0,1]  be  recovery   rates
(the value of a derivative when one party defaults) of
derivative positions of parties B and C, respectively. So, we
have the following boundary conditions:

If the seller B defaults first:

(4)t BV̂(t,S ,1,0) V (t,S) R V (t,S)  

If the seller C defaults first:

(5)t CV̂(t,S ,1,0) V (t,S) R V (t,S)  

Similar to the B-S framework, Burgard and Kjaer8 set up a
self-financing portfolio to hedge the value of the risky
derivative to the seller at time t, such that:

tV̂ 0  

The portfolio πt consists of all risky assets such as; σ (t)
units of S, "B (t) units of PB, "C (t) units of PC and an amount of
cash P(t). So, we have:

(6)t t t B B C CV̂ (t)S (t)P (t)P (t)         

The cash amount $ (t) is the financial cost involved for
buying or selling the trading assets in this derivative trade. The
bonds PB and PC are used for hedging the counterparty default
risk. The portfolio πt is assumed to be self-financing, this
assumption implies that:

(7)t t t B B C C
ˆdV d (t)dS (t)dP (t)dP d (t)          

The growth in cash can be decomposed into:

(8)S F Cd (t) d (t) d (t) d (t)      

where, d$ (t) is the funding for the underlying asset which
provides a dividend income δ(t) D0(t) S(t) dt and the financing
costs for the underlying asset S given by δ(t) D0(t) S(t) dt. Thus:

(9)S 0 R(t) (t)(D r )(t)S(t)dt   

where, rR is the rate (repo-rate) paid on the underlying asset in
repurchase agreement. Assuming that it also depends on the
risk-free rate. Financing costs incurred for shorting the bond
and the seller’s cash account position are given by:

(10)C C cd (t) (t)r(t)P (t)dt  

And:

(11)F B B F B Bd (t) r(t) V P dt s V P dt
                

   

Where:
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SF = rF-r

When   the   derivative   is   used   as    collateral,   SF  =  0 
and SF  = (1-RB)λB when it is not used as collateral. Substituting
Eq. 9, 10 and 11 into Eq. 8 and using Eq. 2 and 3, one gets:

(12)

B B C C S C F

B B B C C C

0 R F B B

B B B C C C

d V dS dP dP d d d

r V P (r r) dP (r r) dt

(D r ) S s V P dt

dS P dJ P J







           

         
 
             

    

Assuming that no simultaneous jump between the
counterparties and by means of the Ito’s lemma for jump
diffusion process:

(13)

^ ^ ^ ^ ^
2 2 2

B Ct S S B C

^ ^ ^ ^ ^
2 2 2

B Ct S S B C

1d V Vdt VdS S V dt V dJ V dJ
2

1V S V dt V dS V dJ V dJ
2



          

            
 

Where:

(14)^ ^ ^ ^

B BV V(t,S,1,0) V(t,S,0,0) (V (V R V ))       

(15)^ ^

C CV (V (V R V )     

Combining Eq. 12 and 13 and simplifying further, one
gets:

(16)^

S V  

(17)
^

B
B

B

V
P


 

(18)
^

C
C

C

V
P


 

Introducing the parabolic differential operator At as:

(19)
^

2 2 2
t S 0 R S

1A V S V (D r )S V
2

     

It follows that is the solution of the following partial^
V

differential equation:

(20a)^ ^ ^ ^ ^ ^ ^
B B Ct t F B CV A V r V s (V V ) V V           

With:

(20b)^
V(T,S) H(S)

Where:

λB /rB-r (21)

λC /rC-r (22)

Substituting Eq. 14 and 15 into Eq. 20, the partial
differential model simplifies to:

(23a)
^ ^ ^ ^

t t F B C

B B C C

V A V r V s V ( ) V
(R V V ) (V R V )



   

       

    

With:

(23b)^
V(T,S) H(S)

Where, we have used the fact that:

(24)^ ^
BBV (R V V ) (V V )        

The above bilateral risky partial differential equation given
in Eq. 23 is linear. If we compare the bilateral risky partial
differential equation model to the Black and Scholes9 partial
differential equation given by:

(25)t tV A V rV 0,V(T,S) H(S)    

It is clearly seen that the bilateral risky partial differential
equation model has few adjustments. The first terms on the
right shows the funding cost, the 2nd, 3rd and 4th are related
to the bilateral counterparty risk.

DECOMPOSITION OF THE RISKY PARTIAL DIFFERENTIAL
EQUATION MODEL INTO TOTAL-VALUATION

ADJUSTMENTS

According to Brigo and Morini10, the value of the
derivative with bilateral counterparty risk can be written as:
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(26)^
V V U 

where, U is the total value adjustment and V is the risk-free
value of the derivative which satisfy the Black-Scholes partial
differential Eq. 25.

Substituting Eq. 26 into Eq. 23a, one gets:

(27)t t F

B C B B C C

(V U) A (V U) r(V U) s V
( )(V U) (R V V ) (V R V )



   

      

          

Simplifying Eq. 27 and rearranging terms yields:

(28)t t B C F B B C CU A U (r )U s V (1 R ) V (1 R ) V               

With V = V++V-, where V- = min (V,0) and V+ = max (V,0).
Thus, we obtain the following linear partial differential
equation model for U given by:

(29)t t B C F B B C CU A U (r )U s V (1 R ) V (1 R ) V               

With the condition:

U (T, S) = 0 (30)

where,  0<S<4  and  0<t<T.  By  means  of  change of  variable
τ = T-t and setting:

(31)F B B C CG(V) s V (1 R ) V (1 R ) V        

Equations 29 and 30, yield:

(32)B CU A U (r )U G(V)        

And:

U (0, S) = 0 (33)

CONCLUSION

A bilateral risky partial differential equation model for the
European style option has been considered in this paper. The
derivation of the model is also presented. Moreover, the risky
partial  differential  equation  has  been decomposed into
total-valuation adjustments. Some extensions and
modifications of the methodology can be explored by further

research. A natural extension is the extension of a bilateral
risky partial differential equation model for the exotic options
under jump diffusion processes.

SIGNIFICANCE STATEMENT

This study discovers a bilateral risky partial differential
equation for the European style option. This study shows that
the risky partial differential equation can be decomposed into
total-valuation adjustments. This study also shows that the
bilateral risky partial differential equation model has few
adjustments when compared with the Black-Scholes model.
This study will help the researcher to uncover the critical areas
of bilateral risky partial differential equation in financial
markets that many researchers were not able to explore. 
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