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Abstract
This article  proposed  symmetrical  Gaussian  quadrature  formulae for triangular domain integrals. As a result, it presents n×n points
(for n>1) and  points (for n>2) quadrature formulae in which the second one is totally free of crowding of Gaussian quadrature n n 1

1
2




points and weights. By suitable transformation of a triangle in global space into its contiguous space, Gauss points and weights are
computed which are symmetric about the line of symmetry. For clarity and reference, Gaussian integration points and weights for different
values of n are presented in tabular form. The efficiency and accuracy of the schemes are tested through application examples. Finally,
an error formula also presented to evaluate the error in monomial/polynomial integration using m×n points method successfully. The
error calculated by the new error formula and the error in calculation of integrals by the proposed methods are found in good agreement.
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INTRODUCTION

For numerical solution of continuum mechanics problem
using Finite Element Method (FEM), an extra and important
consideration is involved in the stiffness matrix calculation
which involves numerical integration over the corresponding
domain. Among all the numerical rules, Gaussian quadrature
rule occupies a central role for such calculations. Complication
arise from two main sources, firstly the large number of
integrations that need to be performed and secondly in
methods which use iso-parametric or sub-parametric
elements, the presence of the determinant of Jacobean matrix
in the denominator of the stiffness matrix for which the
integrands are rational functions. Most of the domain integrals
encountered in several areas of science and engineering are
not amenable to evaluate analytically or tedious in calculation.
Such integrals encountered for employing linear elements in
the discretization are simple and may be evaluated analytically
but, large numbers of integrals are needed to be evaluated.
However, encountered integrals for employing higher order
elements or for some distorted elements are too complicated.
It is highly expected that the expressions for the exact values
of the integrals must be evaluated with care and hence, the
numerical integration techniques are the best choice. Finite
Element Method (FEM) got importance due to the most
obvious reason that it can provide solutions to many
complicated problems that would be intractable by other
numerical methods. The crucial problem of integrating
arbitrary functions of two variables over the surface of the
triangle were first described by Hammer et al.1 and Hammer
and Stroud 2,3.

A table of Gaussian quadrature formulae with
symmetrically placed integration points is provided by
Cowper4. A detailed study of symmetric quadrature rules by
formulating the problem in polar co-ordinates is made by
Lyness and Jesperson5. Different researchers described some
numerical integration formulae for triangles with precision
limited up to 10E and it is not likely that the techniques can be
extended much further to give a greater accuracy which may
be demanded in future6-13. Lague and Baldur14 proposed the
product formulae based only on the sampling points and
weight coefficients of Gauss Legendre quadrature rules.
According to Lague and Baldur14, one can obtain numerical
integration rules of very high degree of precision as the
derivation rely on standard Gauss Legendre quadrature rules.
However, Lague and Baldur14  have not worked out on explicit
weight coefficients and sampling points for application to
integrals over a triangular surface. Different reports provided
the information about the quadrature for triangle in a

systematic manner in their study15-21. Principal drawback in the
symmetric quadrature scheme of Wandzura and Xiao22 was
that, one must manually adjust the annealing parameters
several times, before the process yields a satisfactory initial
approximation of weights and abscissae, also, it provides only
6 types of quadrature rules of order up to 30 over triangles.

The versatility of the popular triangular elements can be
further enhanced by improved numerical integration schemes
and hence, evaluation of the triangular domain integrals with
desired accuracy by other technique is preferable. It is notable
that the high order Gaussian quadrature formulae available
only for the square domain integrals and the same are
demanded for the triangular domain integrals. But, the
derivation of the higher order Gaussian quadrature for
triangular domain integrals is not so easy and indeed very
difficult task. 

The aim of this article was to present symmetrical
extended Gaussian quadrature formulae avoiding the crowd
of Gaussian integration points and weights in the calculation
process.

MATERIALS AND METHODS

The study of this article was carried out at Mathematics
Department Lab, Huston Tillotson University, Texas, USA, from
August, 2016 to July,  2019.  The  results  are  tested and
verified at Mathematics Department Lab, Shahjalal University
of Science and Technology, Bangladesh. First, it proposed a
numerical integration scheme to evaluate the triangular
domain integral employing Gaussian quadrature schemes for
square domain integrals. This scheme is used as a tool for
testing the accuracy for the derived numerical integration
formulae for triangular domain integrals. Secondly, it
presented  2  types  of  extended   quadrature   n×n  points
(for n>1) and  points (for n>2) formulae for which n n 1

1
2




Gauss points are symmetrical about the line of symmetry. It is
easy to observe that n×n points formulae give rise to huge
crowding of Gauss points, but  points formulae are n n 1

1
2




totally free of such crowding. Through application examples
it is demonstrated that the formulae so presented are accurate
in view of accuracy and the  point formula is faster as n n 1

1
2




it utilizes minimum number of Gauss points and weights in the
calculation process. 

An error  formula is described to calculate the error in
two-dimensional domain integral. The error calculated by the
new error formulae and the error in the resultant integrals of
the proposed methods are found in good agreement.
Therefore, a proper balance between accuracy and efficiency
is ensured for the presented quadrature schemes.
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Consider the triangular domain integral:

(1)I f (x,y)dxdy; : trianglearbitrary


 

The aim of this article is to derive a suitable, highly
accurate, efficient method to evaluate the integral I. 

INTEGRATION OVER ARBITRARY TRIANGLE (IOAT)

Integration over any triangle can be calculated as a sum of
integrals evaluated over three quadrilaterals (Fig. 1). Each
quadrilateral in Fig. 1 is transformed into 2-square in {(ξ, η) |-1 
< ξ, η < 1} space through iso-parametric transformation and
that results the equivalent integral I in Eq. 2:

(2)

 

i

3

i 1 e
1 1

1 1 2 2

3 31 1

1 3 2 3 2 3 1 3

I f (x, y) dx dy

J f (X ,Y )(4 ) f (X ,Y )(4 ) d df (X ,Y )(4 )96
where, J (x x ) (y y ) (x x ) (y y )

2 area of the original triangle
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Fig. 1: Arbitrary triangle divided into quadrilaterals 

and:
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Now right-hand side of Eq. 2 can be evaluated by use of
available higher order Gaussian quadrature for square domain
integrals.

TRANSFORMATION OF TRIANGULAR DOMAIN

The simple shapes of the elements restrict severely their
applications in the analysis of practical problems, where often
quite complex geometrical boundaries needed to be
modelled. In FEM solution process, this restriction can be
removed by mapping a simple element in the local
coordinates into a more complex shape in the global
coordinate system. Once a particular form of mapping is
adopted and the coordinates are chosen for every element so
that these map into contiguous space, then shape functions
written in the local element space can be used to represent
the function variation over the element in the global space
without upsetting the inter-element continuity requirements.
Therefore, integration over triangular domains is usually
carried out in normalized co-ordinates.

To perform the integration, first map one vertex (vertex 1)
to the (1,0), the second vertex (vertex 2) to point (-1,1) and the
third vertex (vertex 3) to point (-1, -1)) (Fig. 2). This geometrical
transformation is most easily accomplished by use of shape
functions N1(s, t), N2(s, t) and N3(s, t):

(3)
1

1 2 3
2

1 2 3
3

Nx x xx Ny y y y N

               

where:

(4)     1 2 3
1 1 1N 1 s , N 1 s 2t , N 1 s 2t
2 4 4

       

The original and the transformed triangles are shown in
Fig. 2. Using the shape functions in Eq. 4, we obtain:
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Fig. 2(a-b): Original and transformed triangle, (a) Triangle in
(x, y) space and (b) Transformed triangle in (s, t)
space
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and hence:

(6) 1 3 2 3 2 3 1 3
(x,y) 1 J(x x ) (y y ) (x x ) (y y )  
(s, t) 4 4


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

Finally, Eq. 1 reduces to:

(7)
(1 s)/21

s 1 t ( 1 s)/2

JI f (s, t)  dt ds
4



    

  

Using mathematical transformation equations:

(8) 1
s , t

2
  

  

Then integral I of Eq. 7 is transformed into an integral over
the surface of the standard square {(ξ, η)| -1< ξ, η <1}.

Now, the determinant of the Jacobean and the differential
area are:

(s, t) s t s t 1 (1 )
( , ) 2
    

    
      

and:

(9)
(s, t) 1dsdt dt ds d d (1 )d d
( , ) 2


        
  

Now, using Eq. 8 and 9, we get:

(10)
 1 1

1 1

1 1I J f , d d
2 8 

               
 

Thus, the triangular domain integral in Eq. 1 is finally
converted to square domain integral which can be evaluated
by using available higher order Gaussian quadrature for
square domain integrals.

Again, if we use the shape functions:

1 2 3
1 1 1N (s, t) = (1 + 2s t); N (s, t) = (1+ t); N (s,t) = (1 2s t)
4 2 4

  

then  using  mathematical  transformations, the original
triangle  can   be   transformed   to  a  triangle  with  vertices
1(1, -1), 2(0, 1), 3(-1, -1). Now  consider the transformation:

(11) 1
S , t

2
  

  

The integral I in Eq. 1 becomes:

(12)
 1 1

1 1

1 1I J f , d d
2 8 

               
 

SYMMETRIC GAUSS QUADRATURE FOR TRIANGLE (SGQTS)

The  Gauss points  are  calculated  simply for i = 1, m and
j = 1, n. Thus, the m×n points Gaussian quadrature formula
for Eq. 10 is:
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Table 1: Computed Gauss points (s, t) and corresponding weights G for m×m point formula (SGQTS)
Gauss points (s, t) and corresponding weights G
------------------------------- --------------------------------------------------------------------------------------------------------------------------------------

Variables s t G
m = 3, total 9 point -0.7745966692D+00 ±0.6872983346D+00 0.6846437767D-01

-0.7745966692D+00 0.0000000000D+00 0.1095430043D+00
0.0000000000D+00 ±0.3872983346D+00 0.6172839506D-01
0.0000000000D+00 0.0000000000D+00 0.9876543210D-01
0.7745966692D+00 ±0.8729833462D-01 0.8696116156D-02
0.7745966692D+00 0.0000000000D+00 0.1391378585D-01

m = 8, total 64 points -0.9602898565D+00 ±0.9412232325D+00 0.2510939335D-02
-0.9602898565D+00 ±0.7808486073D+00 0.5516085752D-02
-0.9602898565D+00 ±0.5150979262D+00 0.7781386411D-02
-0.9602898565D+00 ±0.1797925345D+00 0.8996247611D-02
-0.7966664774D+00 ±0.8626602969D+00 0.5055663745D-02
-0.7966664774D+00 ±0.7156719768D+00 0.1110639129D-01
-0.7966664774D+00 ±0.4721032318D+00 0.1566747258D-01
-0.7966664774D+00 ±0.1647854365D+00 0.1811354112D-01
-0.5255324099D+00 ±0.7324766495D+00 0.6055613217D-02
-0.5255324099D+00 ±0.6076702656D+00 0.1330310188D-01
-0.5255324099D+00 ±0.4008583619D+00 0.1876631018D-01
-0.5255324099D+00 ±0.1399177461D+00 0.2169618166D-01
-0.1834346425D+00 ±0.5682201415D+00 0.5431069819D-02
-0.1834346425D+00 ±0.4714013539D+00 0.1193109146D-01
-0.1834346425D+00 ±0.3109666298D+00 0.1683085382D-01
-0.1834346425D+00 ±0.1085414553D+00 0.1945855410D-01
0.1834346425D+00 ±0.3920697150D+00 0.3747417313D-02
0.1834346425D+00 ±0.3252651235D+00 0.8232407275D-02
0.1834346425D+00 ±0.2145657801D+00 0.1161322448D-01
0.1834346425D+00 ±0.7489318721D-01 0.1342632758D-01
0.5255324099D+00 ±0.2278132070D+00 0.1883402929D-02
0.5255324099D+00 ±0.1889962118D+00 0.4137500225D-02
0.5255324099D+00 ±0.1246740480D+00 0.5836654737D-02
0.5255324099D+00 ±0.4351689638D-01 0.6747896641D-02
0.7966664774D+00 ±0.9762955961D-01 0.5721629090D-03
0.7966664774D+00 ±0.8099450059D-01 0.1256939834D-02
0.7966664774D+00 ±0.5342917807D-01 0.1773129531D-02
0.7966664774D+00 ±0.1864920601D-01 0.2049957612D-02
0.9602898565D+00 ±0.1906662400D-01 0.5086480501D-04
0.9602898565D+00 ±0.1581787007D-01 0.1117409020D-03
0.9602898565D+00 ±0.1043448371D-01 0.1576297352D-03
0.9602898565D+00 ±0.3642107988D-02 0.1822395206D-03

(13)
 m n mn

i ji
i j i r r r

i 1 j 1 r 1

11I J W W f , J G f (s , t )
8 2  

               
 

where, (sr,tr) are the new Gaussian points, Gr is the
corresponding weights for triangles. For Eq. 12, we have:

(14)
 m n mnj ij ' ' '

i j j r r r
i 1 j 1 r 1

11
I J W W f , J G f (s , t )

8 2  

                
 

Computed Gauss points and weights for different values
of n are listed in Table 1 and Fig. 3 and 4 showed the
distribution of Gaussian points for n = 10. The Gauss points in
Fig. 4 can be obtained by simply interchanging s and t shown

in Fig. 3 and the corresponding weights are the same. Also,
the distribution of Gauss points is symmetric about the
straight-line y = 0 or x = 0, which can significantly minimize
the computational effort to calculate the quadrature points
and weights. But, in both cases it is seen that there are
crowding of gauss points at one side within the triangle and
that is one of the major causes of error germane in the
calculation. To get rid of these crowding, further modification
is obtained in the next section.

SYMMETRIC GAUSS QUADRATURE 
FOR TRIANGLE (SGQTM)

It is clearly  noticed  in  the  Eq.  13  and 14  that for each
i (i =  1,  2,  3,  ....,  m),  j  varies  from  1  to  n  and  hence,  at the
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Fig. 3: Distribution of Gauss points (s, t) for n = 10 SGQTS (100 points)

Fig. 4: Distribution of Gauss points  (s’, t’) for n = 10 SGQTS (100 points)
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Fig. 5: Distribution of Gaussian points (p, q) for n = 10 SGQTM (54 points)

Fig. 6: Distribution of Gaussian points (p', q') for n = 10 SGQTM (54 points)
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Table 2: Computed Gauss points (p,q) and Corresponding weights L for  point formula (SGQTM) m m 1
1

2




Gauss points (p,q) and corresponding weights L
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Variables p q L
m = 3,5 points -0.5773502692D+00 ±0.6109051324D+00 0.1095382131D+00

-0.5773502692D+00 0.0000000000D+00 0.1752611410D+00
 0.5773502692D+00 ±0.1220084679D+00 0.5283121635D-01

M = 5, total 14 points -0.8611363116D+00 _0.8432621081D+00 0.1917346465D-01
-0.8611363116D+00 ±0.5010823929D+00 0.3873334126D-01
-0.8611363116D+00 0.0000000000D+00 0.4603770905D-01
-0.3399810436D+00 ±0.5769531667D+00 0.3799714765D-01
-0.3399810436D+00 _0.2277840768D+00 0.7123562050D-01
0.3399810436D+00 ±0.2556242426D+00 0.2989084476D-01
0.3399810436D+00 0.0000000000D+00 0.4782535162D-01
0.8611363116D+00 _0.4008649394D-01 0.6038050853D-02

m = 8, 35 points -0.9491079123D+00 ±0.9358542787D+00 0.3193509426D-02
-0.9491079123D+00 ±0.7763944673D+00 0.7015570468D-02
-0.9491079123D+00 ±0.5121596892D+00 0.9896667159D-02
-0.9491079123D+00 ±0.1787669565D+00 0.1144177446D-01
-0.7415311856D+00 ±0.8264505139D+00 0.7884269378D-02
-0.7415311856D+00 ±0.6456998424D+00 0.1703110962D-01
-0.7415311856D+00 ±0.3533959938D+00 0.2324942473D-01
-0.7415311856D+00 0.0000000000D+00 0.2544930806D-01
-0.4058451514D+00 ±0.6554538727D+00 0.1149574334D-01
-0.4058451514D+00 ±0.4647790050D+00 0.2420682761D-01
-0.4058451514D+00 ±0.1677308129D+00 0.3139666970D-01
 0.0000000000D+00 ±0.4530899230D+00 0.1237822093D-01
 0.0000000000D+00 ±0.2692346551D+00 0.2500590605D-01
 0.0000000000D+00 0.0000000000D+00 0.2972154195D-01
 0.4058451514D+00 ±0.2558241574D+00 0.9864562309D-02
 0.4058451514D+00 ±0.1010006927D+00 0.1849370967D-01
 0.7415311856D+00 ±0.1001045414D+00 0.5020494508D-02
 0.7415311856D+00 0.0000000000D+00 0.8032791213D-02
 0.9491079123D+00 ±0.1469128025D-01 0.8237200311D-03

terminal value i = m there are n crowding points as shown in
Table 1 and Fig. 3 and 4. To overcome the crowding of points,
considering the geometry of the elements and using algebraic
manipulation, we are taking j dependent on i for the
calculation of quadrature points and corresponding weights.
Gauss points  and  weights  are  calculated  for  i = 1, m-1 and
j = 1, n + 1 ‒ i, where, n>m, that is for n = m; total  m m 1

1
2




points  Gaussian  quadrature  formulae  for  Eq.   10    is given
by: 

(15) 
m(m 1) 1m 1 m i 1 2

i ji
i j i r r r

i 1 j 1 r 1

11I J W W f , J L f (p ,q )
8 2




  

  

               
  

where, (pr,qr) are the new Gaussian points, Lr is the
corresponding weights for triangles. For Eq. 12, we can write: 

(16) 
m(m 1) 1m 1 m i 1 2

i i ' ' 'i
i j i r r r

j 1 i 1 r 1

11I J W W f , J L f (p , q )
8 2




  

  

               
  

The  points Gaussian quadrature formulae m m 1
1

2




(SGQTM) is now obtained which are crowding free and
calculates  points instead of m×m points. For clarity m m 1

1
2




and reference, computed Gauss points (p, q) and weights L for
different values of m are listed in Table 2. Figure 5 and 6
showed  the  distribution  of  Gaussian points for m = 10 i.e.,
54-points formula. If we interchange p and q then we obtain
(q, p) = (p', q') and G = G'. It is now clear from the Table 2 and
Fig. 5 and 6 that the method SGQTM is totally free of crowding
of Gauss points and use significantly less number of points
and weights.

APPLICATION EXAMPLES

To show the accuracy and efficiency of the derived
formulae some examples with known results are considered.
To compare  the  results,  the results obtained by using
available for Gauss 7×7 points and 13×13 points methods
and the quadrature rule of Wandzura and Xiao22  for triangle
were considered:
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Table 3: Calculated values of the integrals I1, I2, I3 and I4
Test example
----------------------------------------------------------------------------------------------------------------------------------------------------------

Methods Gauss point I1 I2 I3 I4
GQT 72 0.4001498818 0.6606860757 0.8315681219 0.6938790083

132 0.4000451564 0.6637058258 0.8501738309 0.7238717079
Wandzura 54 0.4000013492 0.6663131244 0.8737748337 0.7165794652

85 0.4000004663 0.6664725432 0.8762869137 0.7162337951
IOAT 3×72 0.4000006727 0.6664256193 0.8755247201 0.7178753416

3 ×102 0.4000001234 0.6665789279 0.8783900003 0.7180745324
SGQTS 6×6 0.40000771221 0.66562752495 0.8657422378 0.71746954052

7×7 0.4000037510 0.6659893927 0.8696444210 0.7184323903
10×10 0.4000006929 0.6664193644 0.8753981854 0.7182531970
15×15 0.4000000998 0.6665897011 0.8786337975 0.7183523751

SGQTM 54 0.4000009417 0.6663718426 0.8742865042 0.7175459725
77 0.4000003700 0.6664974532 0.8765237986 0.7179128710
90 0.4000002469 0.6665339400 0.8772635782 0.7180958214

Exact value 0.4 0.6666667 0.881373587 0.71828183

 

 

 

1
1 y1 2

1
y 0 x 0

1
1 y1 2

2
y 0 x 0

1
y1 2

2 2
3

y 0 x 0
y1

x y 1
4

y 0 x 0

I x y dxdy 0.4

I x y dxdy 0.6666667

I x y dxdy 0.881373587

I exp dxdy 0.71828183



 



 



 

 

 

  

  

  

 

 

 

 

 

Computed values are summarized in Table 3. Some
important remarks from the Table 3 are:

C Usual Gauss quadrature (GQT) for triangles e.g., 7-point
and 13-point rules or the quadrature rule22 cannot
evaluate the integral of non-polynomial functions
accurately

C Splitting any triangle into quadrilaterals (IOAT) provides
the way of using Gaussian quadrature for square and the
convergence rate is slow, but satisfactory in view of
accuracy

C The new Gaussian quadrature formula for triangle (SGQTS
and SGQTM) are exact in view of accuracy, efficiency and
rate of convergence is high also SGQTM used less
computational effort

Figure 7-10 showed the percentage error in calculation of
these integrals.
Again, this study considered the following integrals of

rational functions due to Rathod and Karim23 to test the
influences of formulae. These integrals arise in axi-symmetric
finite element method with linear triangular element as well

Fig. 7: Percentage error in I1

Fig. 8: Percentage error in I2
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Table 4: Computed results of example 1
Value of II0, r

--------------------------------------------------------------------------------------------------------------------
Methods TP r = 2 r = 4 r = 6
GQT 72 0.7288889289 0.3733333349 0.2209523767

132 0.7883351445 0.4327795803 0.2803986370
Wandzura 54 0.8643350879 0.5087793784 0.3563983634

85 0.8724167192 0.5168610964 0.3644800967
IOAT 3×52 0.8536515855 0.4980960396 0.3457150818

3×72 0.8699174296 0.5143618757 0.3619809270
3×102 0.8792029273 0.5236473748 0.3712664246

SGQTS formula 1 7×7 0.8888888942 0.5333333215 0.3809523811
9× 9 0.8888888894 0.5333333261 0.3809523861
10×10 0.8888888916 0.5333333260 0.3809523859

SGQTM formula 1 44 0.8888888823 0.5333333369 0.3809523803
77 0.8888888823 0.5333333366 0.3809523815
90 0.8888889011 0.5333333378 0.3809523782

Exact result 0.8888888 0.5333333 0.3809523

Table 5: Computed results of example 2
Value of IIr, 0

--------------------------------------------------------------------------------------------------------------------
Methods TP r = 2 r = 4 r = 6
GQT 72 0.1108333394 0.03999999911 0.02035714313

132 0.1110424771 0.03999926522 0.02040804736
Wandzura 54 0.1111100457 0.4000002506 0.2040817303

85 0.1111107885 0.4000001203 0.2040817092
IOAT 3×72 0.1111105972 0.03999999965 0.02040816318

3×92 0.1111109861 0.03999999964 0.02040816323
3×102 0.1111110426 0.03999999981 0.02040816318

SGQTS formula 2 7×7 0.111111110661 0.040000000389 0.020408163101
8×8 0.111111112185 0.040000000592 0.020408163444
10×10 0.111111110781 0.039999999951 0.020408163047

SGQTM formula 2 44 0.111111111905 0.040000000204 0.020408163391
77 0.111111111247 0.040000000031 0.020408163450
90 0.111111111107 0.040000000020 0.020408163264

Exact result 0.1111111111 0.04 0.0204081632

Fig. 9: Percentage error in I3 Fig. 10: Percentage error in I4
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Table 6: Computed results of example 3 and 4
Methods TP Example 3 Example 4
GQT 7×7 0.03669412062 0.02731705643

13×13 0.03688941523 0.02731722965
Wandzura 54 0.036947999155 0.027317238191

85 0.036948006851 0.027317231774
IOST 3×5×5 0.03694724295 0.02731723353

3×7×7 0.03694799350 0.02731723359
3×10×10 0.03694800972 0.02731723331

---------------------- ---------------------
Formula 2 Formula 1/2
---------------------- ---------------------

SGQTS 7×7 0.036948511561 0.027317233227
8×8 0.036948132905 0.027317233349
10×10 0.036948017307 0.027317233318

SGQTM 44 0.036948121605 0.27317233552
77 0.036948011096 0.027317233459
90 0.036948010012 0.027317233575

Exact value 0.03694801040 0.02731723349

Table 7: Absolute error in 
i j N1 1 x i j

x 0 y 0
x y dydx; N 30

 

 
 

n N SGQTS N SGQTM
2 1 2.775557561562891E-016 1 8.326672684688674E-016

2 1.665334536937735E-016 2 5.273559366969494E-016
3 3 8.326672684688674E-016 2 6.522560269672795E-014

4 6.106226635438361E-016 3 3.483324739761429E-014
4 5 8.760353553682876E-014 3 2.746691762922637E-013

6 5.699607452669397E-014 4 1.567912466526877E-013
6 9 8.014422459012849E-016 5 2.195711668040445E-011

10 7.042977312465837E-016 7 3.876153981119401E-010
10 17 7.693498615957139E-015 16 5.132242721084257E-012

18 6.515621375768887E-015 17 8.031917145268075E-012
16 29 6.939761265645217E-015 28 6.687792680759586E-014

30 3.499804612783208E-016 29 9.640638981567307E-014

as in finite element formulations of second order linear
differential equations by use of triangular element with two
straight sides and one curved side. Consider:

 
1 y1 p q

p,q

y 0 x 0

x yConsider II dx dy
x y



 


    

 
1 y1 r

r,0

y 0 x 0

xExample 1: II dx dy, 0
0.375 0.375x



 

     
 

1 y1 r
r,0

y 0 x 0

xExample 2:   II dx dy, 0, 0
1 y



 

     
 

1 y1
0,0

y 0 x 0

1Example 3: II dx dy, 0 0
12 21.53679831x
8.821067231y



 

      
  

1 y1
0,0

y 0 x 0

1Example 4 : II dx dy, 0
12 9.941125498(x y)



 

     
  

Results are summarized in Table 4-6. These data strongly
substantiated the influences of numerical evaluation of the
integrals described in this study. Some important comments
may be drawn from the Table 4-6. In these tables formula 1
stands for Eq. 13 and 15, whereas, formula 2 stands for Eq. 14
and 16:

C For the integrand   with $ … γ = 0 first formulae
rx

x y   
described in Eq. 13 (SGQTS) and Eq. 15 (SGQTM) are more
accurate and rate of convergence is higher, but the
formula in  Eq.  15  requires  very  less  computational
effort

C Similarly, for the integrand   with γ … $ = 0
ry

x y   
second formula described in Eq. 14 (SGQTS) and Eq. 16
(SGQTM) are more accurate and convergence is higher.
Here, also the formula in Eq. 16 requires very less
computational effort

C Similarly, for the integrand  (example-3, 4) the
1
x y   

method described in section-4 are more accurate and
convergence is higher, also SGQTM requires very less
computational afford
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C Similar influences of these formulae may be observed for
different conditions on $, γ

C The existing 7 - point, 13 - point GQT or quadrature rule22

cannot evaluate the rational integrals accurately

It is evident that the new formulae e.g., SGQTS and
SGQTM are accurate in view of accuracy and equally
applicable for any geometry that is for different values of $
and γ. The Fekete quadrature Rule24 is also tested for all the
examples and for all problems the present methods are found
the best. 
The proposed methods are also tested on the integral of

all monomials xiyj, where, i , j are non-negative integers such
that i+j<30. Table 7 presented the absolute error over
corresponding monomials integrals for each quadrature of
order between 1 and 30. The results are compared with the
previous study results19 and it is observed that the new
method SGQTM is always accurate in view of both accuracy
and efficiency and hence a proper balance is observed.

ERROR ANALYSIS

The n-point Gauss quadrature formula can evaluate
exactly the integral of polynomial of order up to 2n-1. The
total error in n-point Gauss quadrature formula to evaluate the
integral of polynomial of high order is given by:

 
   

 
42n 1

2n
3

2 n!
f x

2n 1 2n !



 
   

where, f2n(x) is the 2n-th derivative of the function at a point x
in the interval [-1, 1]. In this article the triangular domain
integral is evaluated by converting it to a square domain
integral. Consider the square domain integral:

1 1 N
i N i

E
i 0x 1 y 1

I x y dy dx

  

 
   

 
 

Integrating first with respect to x keeping y fixed, then
integrating with respect to y, using m points along x direction
and n points along y direction, the error in this method is
found to be of the form:

   
 

   
 

4 42m 2 2n 2
2m 2n
x 1 1 y 2 23 3

2 m! 2 n!
f x , y f x , y

2m 1 2m ! 2n 1 2n !

       
       

Fig. 11: Polynomial of order 15

Fig. 12: Polynomial of order 20

where,  is the 2m th partial derivative of the function 2m
x 1 1f x , y

with respect to x,  is the 2n th partial derivative of the 2n
y 2 2f x , y

function with respect to y and  and  are points 1 1x , y  2 2x , y

somewhere in the domain [-1, 1] ×[-1, 1]. 
The n-point Gaussian quadrature rule gives exact results

for polynomials of degree at most 2n-1. Thus, for n = 2 we
have a rule with 4 nodes which is exact for any polynomial of
degrees at most 3 in x and y separately, so the total degree of
this monomial  is  at  most  6. But this rule is not exact for all
monomials of degree at most 6, which includes x6, x5 y, x4 y2, x3

y3, x2 y4, x y5, y6. The p-point rule gives exact result for
polynomials of degree up to 2p-1 and q-point rule gives exact
result  for  polynomials  of  degree  up to 2q-1. But p×q -point
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Table 8: Comparison of absolute error calculated in IE using the new error formula and error in SGQTS
Points N New error formula Error in SGQTS
2×2 4 0.71111111 0.71111111
3×3 6 0.18285711 0.18285714
4×4 8 0.04643999 0.04643993
5×5 10 0.01172724 0.01172679
6×6 12 0.00295302 0.00295302
7×7 14 0.00074186 0.00074186
8×8 16 0.00018619 0.00018619
9×9 18 0.00004669 0.00004669
10×10 20 0.00001170 0.00001170

Fig. 13: Polynomial of order 25

Fig. 14: Polynomial of order 30

 rule cannot give exact result for x2p-1y2q-1, which is a monomial
of order 2(p + q)-2. Let, N be the maximum value of p+q for
each term in the monomial. Then N-point  rule  can calculate
all  the  polynomials  of  order  up  to  2p-1  or  2q-1  in x and y

separately. Hence, N×N- point rule can evaluate all the
monomials of degree at most 2(p+q)-2ie2N-2. 

The proposed methods are tested on the integral of all
monomials  xiyj  where,  i,  j are non-negative integers such
that i+j<N. Table 8 presented the absolute error over
corresponding monomial integral of order up to 30. Table 8 is
in good agreement with the above statement. The results are
compared with the results of previous studies22,25,26 and it is
observed that the new method SGQTS is accurate in view of
both accuracy and efficiency and hence a proper balance is
observed. Figure 11-14 showed the absolute error in the
integral of polynomial of order 15, 20, 25 and 30.

CONCLUSION

This paper showed first the integral over the triangular
domain can be computed as the sum of three integrals over
the square domain, then the readily available quadrature
formulae for the square can be used for the desired accuracy.
Secondly, it presented new techniques to derive quadrature
formulae utilizing the one-dimensional Gaussian quadrature
formulae and that overcomes all the difficulties pertinent to
the higher order formulae. The symmetric distribution of
Gauss points derived in these methods can minimize the
computational afford of numerical evaluation of integrals in
triangular domains. It is observed that the scheme SGQTM is
appropriate for the triangular domain integrals as it requires
less computational effort for desired accuracy and efficiency. 

SIGNIFICANCE STATEMENT

The current work is on a new triangle element type with
vertices (0, -1), (0, 1), (1, 0). Gauss points are symmetrically
distributed about the axis-line y = 0, reducing the calculation
effort significantly. Several techniques are discussed for the
domain integrals with their drawbacks, then the drawbacks
are also removed by updated findings. An error formula is
described for the integration over triangular element. The
model is verified by comparing with other existing methods.
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Analyzed the error on each step for each example types. The
findings of this study are accurate, efficient, faster with less
computational effort. Thus, they are believed to earn a better
place in the field of triangular domain integrals.
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