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Abstract
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INTRODUCTION

Gamma distribution is a two-parameter family of
continuous distributions that has its origin from the work of
Karl Pearson 1895. Gamma family of distribution has a
relationship with commonly encountered probability
distributions in practice. Such distributions among others
include Erlang, normal, poison, negative binomial, Weibull and
exponential distributions1. An exponential distribution is a
special  case  of  the  gamma  family  known  for  modelling 
the  time  interval  between  two  successive  Poisson events2.
Gamma distribution is useful in finding the joint probability
distribution   of   hydrological   events   (frequency   analysis).
For example, modelling the amount of rainfall, floor and
storms  over  a  given  time  interval  can  easily  be  achieved
with this continuous distribution. Also, gamma distribution
serves as a conjugal prior in Bayesian analysis to distributions
from the same exponential family of distributions, such as
exponential and Poisson distributions. It can also serve as a
prior to  scale parameter of a normal distribution. The conjugal
of Poisson-gamma distributions give rise to the negative
binomial distribution for count outcomes. It gives the
probability distribution on the amount of time required for a
certain number of events or occurrences in a Poisson process.
Poison models the number of events for a given time interval,
such as the number of calls received by a company in an hour.
Erlang distribution is a special case of gamma distribution in
which the shape parameter can only take integer values.
Erlang distribution is handy in queue systems, economics and
risk analysis as well as inventory theory.

Bayesian estimation of unknown parameters from any
given distribution is common in literature and gamma
parameter are not exempted3,4. There are quite a several
authors who consider gamma parameters from a Bayesian
perspective5. For instance, Son and Oh6 considered estimation
of gamma parameters using the Gibbs sampling procedure.
The  authors  compared  the  Bayes  estimates  using  non-
informative  prior  with a classical  Maximum  Likelihood
Estimation (MLE). Also, Pradhan and Kundu7 estimated
parameters of gamma with informative priors (gamma and 
log-concave priors for both the scale and the shape
parameters, respectively). The authors adopted Lindley
approximation techniques for the computation of Bayes
estimates and Gibbs sampling for the posterior credible
interval. Likewise, Moala et al.8,  considered a Bayesian
estimation of the parameters of the gamma distribution,
captured the dependence structure in the two parameters.
The study assessed the performance of two-parameter
gamma distribution with non-informative priors via Markov
chain Monte Carlo (MCMC) algorithms.

Though  there  are   numerous   documented   literature
on  the Classical  and  Bayesian  methods  of estimating
gamma  family   of   distribution  via  MLE  methods but work
on the  Bayesian  estimation  of  the Erlang parameters is still
of interest9. Therefore,   the   objective   of   the present study
is  to  find  the  Bayesian  estimate  of  the  unknown scale
parameter of Erlang distribution under different priors’
probabilities and comparison made with the classical MLE
method.

If random variable is distributed as exponential
distribution with parameter ", the exponential density is thus
given in Eq. 1:

(1)
X
α1F (X;α) = e α > 0; X > 0

α




Then, if X1, X2, ..., Xn are independently and identically
distributed random variables that are exponentially
distributed. It follows that X = X1+X2+...+Xn is gamma
distributed with parameters n and ". The probability density
function (pdf) of the gamma distribution is given under
different shape and scale parameter values in Fig. 1. The
gamma  parameter  values  used  for  the  different  pdf plots 
were (1, 1), (2, 1), (3, 1), (7, 1) and (8, 1). The density function
varies markedly based on values assumed by the shape
parameters.

The generalized gamma distribution is given in Eq. 2:

(2)
p/α

pn X
n

pf (X; n,α, p) = X e X > 0; n,α,p > 0
Γ(n)α

  1

The Cumulative Distribution Function (CDF) of (2) is given
by Eq. 3:

(3)
pXn,

F(X; n, , p) 1
( )

 
    
 

When parameter p = 1 in (2), it is reduced to two-
parameter gamma distribution in Eq. 4:

(4)   
X

n 1
n

1f X; n, X e X 0; n, 0
n

      
 

where, " and n are the scales and the location (shape)
parameters, respectively. 

is the  gamma   function  with  Γ("+1) =  1 x

0
n x e dx

     
"Γ(") and Γ(") = ("-1)!
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Fig. 1: Erlang distribution under different shape parameters (1, 2, 3, 7, 8) and scale parameter of 1

If the shape parameter n assumes positive integers value
only, then the random variable X is distributed as an Erlang
distribution in Eq. 5:

(5) 
X

n 1
n

1f (X; n, ) X e X 0; n 1,2,3,....,; 0
n 1 !

       
 

The CDF of Erlang is the series expansion given in Eq. 6:

(6)

i

X X
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i 0 i 0

xX

F(X; n, ,p) 1 e e
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Classical approach to parameter estimation
Maximum likelihood estimation: The conventional approach
to parameter estimation is the one propounded by R.A. Fisher
around 1930. It adopts the maximum likelihood estimation
method for parameter estimation.  This method assumes fixed
values for the parameter within an estimated interval while
prior information is ignored. 

If X = X1+X2+...+Xk are  random  samples  of  size  k  having
an Erlang distribution, the maximum likelihood estimator of
the Erlang parameters assuming a known shape parameter
and an unknown scale parameter is as follows:
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Taking partial derivatives of log-likelihood for " and
equate to zero:
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Loss function: For this study, the following loss functions will
be used. Both the symmetric and asymmetric loss functions
are considered. The quadratic error loss (QEL), entropy loss
(ELF) and linear exponential (LINEX) functions are used. The
estimated and actual parameter values are denoted by "̂ and
", respectively.

Quadratic error loss (QEL):

(8)   2
QEL ˆ ˆL ,    
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Entropy loss function (ELF): 

(9) ELF
ˆ ˆˆL , log 1            

Linear exponential (LINEX):

(10)
ˆ

a 1

LINEX
ˆ

L e a 1 1
   

          

Bayesian estimation: This method is the second philosophical
approach to statistics, named after the famous scientist
‘Reverend Thomas Bayes’. The Bayesian method forms the
alternative approach to the classical MLE method. It assumes
a prior probability for the unknown parameter of interest
which serves as the random variable for Bayesian analysis. The
kernel in Bayesian inference is the product of the likelihood
and the prior to form the posterior density with normalizing
constant.

Posterior distribution under Jeffrey prior: If given a random
sample X1, X2, ..., Xk of size k with the distribution of the form
Eq. 5 and the corresponding likelihood function from Eq. 7. It
follows from Bayes theorem that:

P (α|X) % L (X|α) g (α)

where, g (") = ">0. g (") is the prior probability:1;
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where, A is a constant multiplier such that the posterior
distribution is a standard probability density function (PDF)
with : 

0
P X 1
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Equation 11 gives the probability distribution of the
posterior distribution which is an inverse gamma distribution

with parameters nk and ΣXi. The posterior has the following
properties to their first two moments: 
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Bayesian estimation with a combination of Jeffrey prior
under different loss function
Jeffrey prior for the scale parameter and square error loss
function: If the risk function of obtaining the estimator " is
given by R ("̂). By definition, it follows that: 

(13)     
0

ˆ ˆR , P X d


      l

where, l ("̂, ") = ("̂-")2; L (X; n, ") and P ("*X) are as are given
in Eq. 7 and 11, respectively:
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The optimal estimator is obtained by minimizing the risk 
R ("̂) w.r.t. "̂:

(14)ii
X

ˆ
nk 1

 




Jeffrey prior for the scale parameter and entropy loss
function: If the risk function of obtaining the estimator " is
given by R ("̂). By definition, it follows that:

     
0

ˆ ˆR , P X d


      l

Where:

   ˆ ˆˆ , log 1 ,L X; n,              
l

and P ("*X) are as given in Eq. 7 and 11, respectively:
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The optimal estimator is obtained by minimizing the risk  R ("̂) w.r.t. "̂:

(15)ii
X

ˆ
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Jeffrey prior for the parameter and linear exponential loss function: If the risk function of obtaining the estimator " is given
by R ("̂). By definition, it follows that: 
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The optimal estimator is obtained by minimizing the risk  R ("̂) w.r.t. "̂:
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Therefore:
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Posterior  distribution under uniform prior: If given a
random sample X1, X2, ..., Xk of size k with the distribution of
the form Eq. 5 and the corresponding likelihood function in
Eq. 7. It follows from Bayes theorem that:

P (α|X) % L (X|α) g (α)

where, g (")%1; ">0, is the prior probability:
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where, A is a constant multiplier such that the posterior
distribution is a standard PDF with : 

0
P X 1
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Equation 17 gives the probability distribution of the
posterior distribution which is an inverse gamma distribution
with parameters nk-1 and ΣXi. The posterior has the following
properties concerning their first two moments:
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Uniform prior for the parameter and square error loss
function: If the risk function of obtaining the estimator " is
given by R ("̂). By definition, it follows that: 

     
0

ˆ ˆR , P X d


      l

where, l ("̂, ") = ("̂-")2, L (X; n, ") and P ("*X) are as given in
Eq. 7 and 17, respectively:
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The optimal estimator is obtained by minimizing the risk 
R ("̂) w.r.t. "̂:

(19)ii
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Uniform prior for the parameter and entropy loss function:
If the risk  function  of  obtaining  the  estimator  "  is given by
R ("̂). By definition, it follows that:

     
0

ˆ ˆR , P X d


      l

Where:

   ˆ ˆˆ , log 1 ,L X; n,              
l

and P ("*X) are as given in Eq. 7 and 17, respectively:
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The optimal estimator is obtained by minimizing the risk  R ("̂) w.r.t. "̂:
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Uniform prior for the parameter and linear exponential loss function:  If the risk function of obtaining the estimator " is given
by R ("̂). By definition, it follows that: 
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Where:
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and P ("*X) are as given in Eq. 7 and 17, respectively:
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The optimal estimator is obtained by minimizing the risk R ("̂) w.r.t. "̂:
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Posterior  distribution  under  quasi  prior:  If  given  a  random  sample  X1,  X2, ..., Xk of size k with the distribution of the form
Eq. 5 and the corresponding likelihood function in Eq. 7. It follows from Bayes theorem that:

P (α|X) % L (X|α) g (α)

where,  is the prior probability:c
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where, A is a constant multiplier such that the posterior distribution is a standard PDF with : 
0

P X 1
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Equation 22 gives the probability distribution of the posterior distribution which is an inverse gamma distribution with
parameters nk-c-1 and ΣXi. The posterior has the following properties for their first two moments:
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Quasi prior for the parameter and square error loss function: If the risk function of obtaining the estimator " is given by R ("̂).
By definition, it follows that: 
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where, l ("̂, ") = ("̂-")2; L (X; n, ") and P ("*X)  are as given in Eq.  7 and 22, respectively:
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The optimal estimator is obtained by minimizing the risk  R ("̂) w.r.t. "̂:
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Quasi prior for the parameter and entropy loss function: If the risk function of obtaining the estimator " is given by R ("̂). By
definition, it follows that: 

     
0

ˆ ˆR , P X d


      l

Where:

   ˆ ˆˆ , log 1 ,L X; n,             
l
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and P ("*X) are as given in Eq. 7 and 22, respectively:
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The optimal estimator is obtained by minimizing the risk  R ("̂) w.r.t. "̂:
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Quasi prior for the parameter and linear exponential loss function: If the risk function of obtaining the estimator " is given
by R ("̂). By definition, it follows that:
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The optimal estimator is obtained by minimizing the risk R ("̂) w.r.t. "̂:
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SIMULATION AND RESULTS

Random samples of sizes: 25, 50, 200 and 500 were
generated from an Erlang distribution in the R Statistical
package. For each pair  (n, "),  the   simulation   study   was 
iterated 3000  times. The Erlang parameter values used are (1,
2) and (2, 3). For the quasi hyper-parameter values, the
following values were assumed: c1 = 0.5 and c2 = 1. For LINEX
loss parameters, the assumed values were:  d1 = -0.5 and d2 =
0.5. The  simulation  study  was  carried  out under three
different prior probabilities (Jeffrey, uniform and quasi) and
three different loss functions spanning both symmetric and
asymmetric loss functions.

Table 1 shows the results of Jeffery prior at different
sample sizes under different loss functions. When the sample
size is 25 and the scale parameter is equal to 2, MLE and ELF
returned the same value of 2.0047 as the estimated scale
parameter. The SEL estimated value was 2.0882, LINEX gave
1.9462 and 1.9092 for LINEX loss parameters d1 and d2,
respectively. When the scale parameter " = 3, MLE and ELF
returned the same scale parameter value (2.9990), SEL gave
3.0602 while, LINEX values were 2.9547 and 2.9259 for LINEX
loss parameters d1 and d2, respectively. When the  sample  size
is 50 and scale parameter " = 2, MLE and ELF estimated scale
parameter values were 1.9978 and 2.0385, respectively, SEL
value   was   1.9978   and  LINEX  gave  1.9682  and  1.9490  for
LINEX  loss  parameters  d1  and  d2,  respectively.  When   scale 
parameter " = 3, MLE and ELF estimated 2.9966 as the scale
parameter, SEL estimated value was 3.0269 while, LINEX
returned 2.9743 and 2.9596 for LINEX loss parameters d1 and
d2, respectively. When the sample size is 200 and scale
parameter " = 2 and 3, MLE and ELF gave the same estimated
value of 1.9995 for " = 2 and 2.9982 for " = 3. The SEL
estimated values were 2.0096 and 3.0057, respectively while,
LINEX values were 1.9921 and 2.9926 for LINEX loss parameter
d1 at " equal to 2 and 3, respectively and for LINEX loss
parameterd 2 = 1.9871 at " = 2 and 2.9889 at " = 3. When the
sample is 500 and the scale parameter equal to 2, MLE and ELF
returned 2.0007, SEL estimated value was 2.0047 and LINEX
returned 1.9977 and 1.9957 for LINEX loss parameter d1 and d2,
respectively. The results indicated that square error loss has a
more precise estimate at small and large sample sizes while
linear exponential loss function estimate was unbiased as
sample size increases.

Table 2 presents the simulation results of a uniform prior
at different sample sizes under different loss functions. When
the sample size is 25 and the scale equal to 2, MLE estimated
value of the scale parameter was 2.0047, SEL gave 2.1790, ELF
returned  2.0882  as  the estimated scale parameter value and

LINEX gave 1.9462 and 1.9092 for LINEX loss parameters d1
and d2, respectively. When " = 3, MLE estimated value was
2.9999, ELF gave 2.0882, SEL returned 3.1240 while LINEX
estimated values were 3.0141 and 2.9841 for LINEX loss
parameters d1 and d2, respectively. Also, when the sample is 50 
at " = 2, MLE estimated value was 1.9978, ELF gave 2.0385,
SEL was 2.0810 and LINEX gave 2.0078 and 1.9878 for LINEX
loss parameters d1 and d2, respectively. When " = 3, MLE gave
2.9966, ELF estimated value was 3.0269, SEL estimated 3.0578
as the scale parameter value and LINEX returned 3.0041 to
2.9891 for LINEX loss parameters d1 and d2, respectively. When
the sample size is 200 and " =2 MLE gave 1.9995, ELF was
2.0096, SEL returned 2.0197 as the estimated scale parameter
value  and  LINEX   estimated values were  2.0020  and 1.997
for LINEX loss parameters d1 and d2, respectively. The results
showed that entropy loss function has a more precise estimate
at small and large sample sizes while square error loss
estimated results were unbiased as sample size increases.

Also, in Table 3, the results from the simulation using
quasi prior at different sample sizes under different loss
functions were shown. When the sample size is 25 and the
scale parameter " = 2, MLE gave 2.0047, SEL estimated values
were 2.1327 and 2.0882 for quasi hyper-parameter values C1
and C2, respectively while, ELF gave 2.0456 and 2.0047 for
quasi hyper-parameter values C1 and C2, respectively. The
LINEX estimates were 1.9848 for C1d1 and1.9462 for C2d1 and
1.9462 for C1d2 and 1.9092 for C2d2. When the sample size is 50
and the scale parameter " = 2, MLE returned 1.9978 as the
estimated value while SEL gave 2.0596 and 2.0385 for quasi
hyper-parameter values C1 and C2, respectively. The ELF
returned 2.0180 and 1.9978 for quasi hyper-parameter values
C1 and C2, respectively. Also, for LINEX estimates, the values
were 1.987 for C1d1, 1.9682 for C2d1, 1.9682 for C1d2 and 1.9490
for C2d2. When the scale parameter " = 3, MLE returned 2.9966
as the estimated  value,  SEL  gave 3.0422 and 3.0269 for quasi
hyper-parameter values C1 and C2, respectively. ELF estimated
value was 3.0117 for  C1 and 2.9966 for C2. For LINEX estimates,
the values were 2.9891 for C1d1, 2.9743 for C2d1, 2.9743 for C1d2
and 2.9594 C2d2.

The results revealed that the maximum likelihood
estimator has a more precise estimate at different sample sizes
while the square error loss and entropy loss functions'
estimates were approximately unbiased as the sample size
increased. Therefore, the mean estimates of the scale
parameter of an Erlang distribution approach the original
mean value as sample size increases.

Table 4-6 displays the mean square errors of the various
estimates. In Table 4, LINEX has a minimum mean square error 
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Table 1: Estimate for the scale parameter with Jeffery prior under different loss functions
"LINEX

---------------------------------------
S n " "MLE "SEL "ELF d1 d2
25 1 2 2.0047 2.0882 2.0047 1.9462 1.9092

2 3 2.9990 3.0602 2.9990 2.9547 2.9259
50 1 2 1.9978 2.0385 1.9978 1.9682 1.9490

2 3 2.9966 3.0269 2.9966 2.9743 2.9596
200 1 2 1.9995 2.0096 1.9995 1.9921 1.9871

2 3 2.9982 3.0057 2.9982 2.9926 2.9889
500 1 2 2.0007 2.0047 2.0007 1.9977 1.9957

2 3 2.9985 3.0015 2.9985 2.9963 2.9948
ELF: Entropy loss function, LINEX: Linear exponential loss function, MLE: Maximum likelihood estimator and SEL: Square error loss

Table 2: Estimate for the scale parameter with uniform prior under different loss functions
"LINEX

---------------------------------------
S n " "MLE "SEL "ELF d1 d2
25 1 2 2.0047 2.1790 2.0882 2.0249 1.9848

2 3 2.9990 3.1240 3.0602 3.0141 2.9841
50 1 2 1.9978 2.0810 2.0385 2.0078 1.9878

2 3 2.9966 3.0578 3.0269 3.0041 2.9891
200 1 2 1.9995 2.0197 2.0096 2.0020 1.9970

2 3 2.9982 3.0133 3.0057 3.0001 2.9963
500 1 2 2.0007 2.0087 2.0047 2.0017 1.9997

2 3 2.9985 3.0045 3.0015 2.9993 2.9978
ELF: Entropy loss function, LINEX: Linear exponential loss function, MLE: Maximum likelihood estimator and SEL: Square error loss

Table 3: Estimate for the scale parameter with quasi prior under different loss functions
"SEL "ELF "LINEX

---------------------------- ----------------------------- --------------------------- -----------------------------------------
S n " "MLE d1 d2 d1 d2 d1d1 d2d1 d1d2 d2d2
25 1 2 2.0047 2.1327 2.0882 2.0456 2.0047 1.9848 1.9462 1.9462 1.9092

2 3 2.9990 3.0918 3.0602 3.0293 2.9990 2.9841 2.9847 2.9547 2.9259
50 1 2 1.9978 2.0596 2.0385 2.0180 1.9978 1.9878 1.9682 1.9682 1.9490

2 3 2.9966 3.0422 3.0269 3.0117 2.9966 2.9891 2.9743 2.9743 2.9594
200 1 2 1.9995 2.0146 2.0096 2.0045 1.9995 1.9970 1.9921 1.9921 1.9871

2 3 2.9982 3.0095 3.0057 3.0020 2.9982 2.9963 2.9926 2.9926 2.9889
500 1 2 2.0007 2.0067 2.0047 2.0027 2.0007 1.9997 1.9977 1.9977 1.9957

2 3 2.9985 3.0030 3.0015 3.0000 2.9985 2.9978 2.9963 2.9963 2.9948
ELF: Entropy loss function, LINEX: Linear exponential loss function, MLE: Maximum likelihood estimator and SEL: Square error loss

Table 4: Mean square error for scale parameter under Jeffrey prior
"LINEX

--------------------------------------------
S n " "MLE "SEL "ELF d1 d2
25 1 2 2.6375 (-05) 4.7212 (-05) 2.6375 (-05) 1.5376 (-05) 0.0058

2 3 6.4209 (-05) 4.9826 (-05) 6.4209 (-05) 7.5767 (-05) 0.0100
50 1 2 1.9325 (-05) 2.7363 (-05) 1.9325 (-05) 1.4373 (-05) 0.0058

2 3 1.8768 (-07) 1.3376 (-08) 1.8768 (-07) 7.0197 (-07) 0.0117
200 1 2 7.5323 (-07) 4.7439 (-07) 7.5323 (-07) 1.0021 (-06) 0.0051

2 3 5.1866 (-07) 7.3833 (-07) 5.1866 (-07) 3.7985 (-07) 0.0121
500 1 2 7.5592 (-06) 7.1922 (-06) 7.5592 (-06) 7.8404 (-06) 0.0049

2 3 9.2538 (-07) 8.2465 (-07) 9.2538 (-07) 1.0046 (-06) 0.0117
ELF: Entropy loss function, LINEX: Linear exponential loss function, MLE: Maximum likelihood estimator and SEL: Square error loss

when the sample size is 25 and 50 at scale parameter " = 2
and LINEX loss parameter d1 with 1.5376E-05 and 1.4373E-05,
respectively under Jeffery prior. Also, SEL has a minimum
mean  square  error  when  the  sample  size  is  50, 200 and
500 both at  "  = 2  and  3  with  the  following  estimated

values 1.3376E-08, 4.7439E-07, 7.1922E-06 and 8.2465E-07,
respectively under  Jeffery  prior.  Under uniform prior with
scale parameter equal to 2, LINEX has a minimum mean 
square  error  of  2.2296E-05  and  1.7595E-05  when sample
size is 25  and  50,  respectively   while,   SEL  has  a  least  mean 
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Table 5: Mean square error for scale parameter under uniform prior
"LINEX

---------------------------------------------
S n " "MLE "SEL "ELF d1 d2
25 1 2 2.6375 (-05) 7.6693 (-05) 4.7212 (-05) 3.0857 (-05) 2.2296 (-05)

2 3 6.4209 (-05) 3.6789 (-05) 4.9826 (-05) 6.0505 (-05) 6.7998 (-05)
50 1 2 1.9325 (-05) 3.7219 (-05) 2.7330 (-05) 2.1172 (-05) 1.7595 (-05)

2 3 1.8768 (-07) 4.5666 (-07) 1.3376 (-08) 8.8296 (-08) 3.2358 (-07)
200 1 2 7.5323 (-07) 2.5788 (-07) 4.7439 (-07) 6.7781 (-07) 8.3250 (-07)

2 3 5.1866 (-07) 9.9808 (-07) 7.3833 (-07) 5.6984 (-07) 4.6993 (-07)
500 1 2 7.5592 (-06) 6.8324 (-06) 7.1922 (-06) 7.4671 (-06) 7.6528 (-06)

2 3 9.2538 (-07) 7.2954 (-07) 8.2465 (-07) 8.9968 (-07) 9.5144 (-07)
ELF: Entropy loss function, LINEX: Linear exponential loss function, MLE: Maximum likelihood estimator and SEL: Square error loss

Table 6: Mean square error for scale parameter under quasi prior
"SEL "ELF "LINEX

------------------------------------ ------------------------------------- --------------------------------------------------------------------------------
S n " "MLE d1 d2 d1 d2 d1d1 d2d1 d1d2 d2d2
25 1 2 2.6375 (-05) 6.0750 (-05) 4.7212 (-05) 3.5828 (-05) 2.6375 (-05) 2.2297 (-05) 1.5376 (-05) 1.5376 (-05) 9.9298 (-06)

2 3 6.4209 (-05) 4.3124 (-05) 4.9826 (-05) 5.6863 (-05) 6.4209 (-05) 6.7998 (-05) 7.5768 (-05) 7.5767 (-05) 8.3794 (-05)
50 1 2 1.9325 (-05) 3.2051 (-05) 2.7363 (-05) 2.3130 (-05) 1.9325 (-05) 1.7575 (-05) 1.4373 (-05) 1.4373 (-05) 1.1546 (-05)

2 3 1.8768 (-07) 1.5545 (-07) 1.3376 (-08) 2.5651 (-08) 1.8768 (-07) 3.2358 (07) 7.0197 (-07) 1.0197 (-07) 1.2192 (-06)
200 1 2 7.5323 (-07) 3.5822 (-07) 4.7439 (-07) 6.0614 (-07) 7.5323 (-07) 8.3250 (-07) 1.0021 (-06) 1.0021 (-06) 1.1866 (-06)

2 3 5.1866 (-07) 8.6316 (-07) 7.3833 (-07) 6.2352 (-07) 5.1866 (-07) 4.6993 (-07) 3.7985 (-07) 3.7985 (-07) 2.9954 (-07)
500 1 2 7.5592 (-06) 7.0113 (-06) 7.1922 (-06) 7.3750 (-06) 7.5597 (-06) 7.6528 (-06) 7.8404 (-06) 7.8404 (-06) 8.0298 (-06)

2 3 9.2538 (-07) 7.7693 (-07) 8.2465 (-07) 8.7432 (-07) 9.2538 (-07) 9.5144 (-07) 1.0046 (-06) 1.0046 (-06) 1.0591 (-06)
ELF: Entropy loss function, LINEX: Linear exponential loss function, MLE: Maximum likelihood estimator and SEL: Square error loss

square  error  of  2.5788E-07   and 6.8324E-06 when the
sample size is 200  and  500,  respectively.  At  scale  parameter
" = 3, SEL (3.6789E-05),  ELF  (1.3376E-08),  LINEX  (4.6993E-07) 
and SEL (7.2954E-07) were  observed  as the minimum  mean 
square  error  when  sample sizes were 25, 50,  200  and  500, 
respectively  (Table  5). Square error loss has the highest
number of  estimators   with   minimum values  of   mean 
square  errors  under  quasi  prior in Table  6.  The  SEL 
estimated   values  at  "  = 3 were 4.3124E-05 and 4.9826E-05
for quasi hyper-parameter values C1 and C2, respectively  at 
sample size 25. When the sample size is 50 and the scale
parameter " = 3, SEL returned 1.5545E-07 and 1.3378E-08 as 
the  estimated  scale parameter for quasi hyper-parameter
values C1 and C2, respectively. The estimated values of SEL with
the scale parameter " = 3 were 7.7693E-07 and 8.2465E-07 for
quasi hyper-parameter values C1 and C2, respectively at sample
size 500.

CONCLUSION

In this study, the scale parameter of Erlang distribution
was estimated based on simulated data in the R package. The
study examined the distribution of the various estimates
based on different  sample sizes under different loss functions
and prior  probabilities.  Using  the  mean  square  error  of  the
estimates,  the  study  identified  square  error   under  Jeffrey,

entropy and LINEX ("1 = -0.5) loss functions under uniform
and square error loss for quasi prior as the optimal estimator
of the parameter.

SIGNIFICANCE STATEMENT 

This study explored the Bayesian method that can be
used in fitting data to an Erlang distribution. This study will
assist intending researchers in parameter estimation of
probability distribution especially from family of Gamma
distribution using non-informative priors. Thus,
non-informative prior can be adopted in estimating a scale
parameter of an Erlang distribution.
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