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Abstract

Background and Objective: Alzheimer's disease (AD) is characterized by the accumulation of beta-amyloid and Tau proteinsin the brain,
making early detection crucial for effective intervention. This study aims to develop a Matrix Laboratory (MATLAB)-based machine learning
approach to enhance the identification of these biomarkers using positron emission tomography (PET) scan data, reducing the risk of
misdiagnosis. Materials and Methods: Brain imaging data, specifically PET scans highlighting beta-amyloid and Tau protein
accumulations, were processed using MATLAB. The images were transformed into 1D RGB data tables for analysis. Machine learning
models, including Fine K-Nearest Neighbors (KNN), Support Vector Machines (SVM) and neural networks, were trained and validated using
MATLAB's Classification Learner App to classify different severity levels of protein accumulation. The study involved a total of 5,402 PET
scan images, split into training and testing datasets. Results: The MATLAB-based analysis demonstrated a high level of accuracy in
identifying protein accumulation levels, achieving a test accuracy of 97.6% with the Fine KNN model and 98.07% with neural networks
onnew, unseen data. The RGB analysis technique effectively differentiated between healthy, medium-unhealthy and unhealthy biomarker
levels, providing a reliable tool for evaluating AD progression. The automated approach significantly reduced the potential for human
error in interpreting PET scan images. Conclusion: The study showcases the potential of using MATLAB for automated analysis of PET
scans in diagnosing Alzheimer’s disease. This approach provides an efficient and accurate method for early detection, offering valuable
insights for medical professionals and contributing to advancements in AD diagnostics.
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INTRODUCTION

The AD is a neurodegenerative progressive illness
affecting millions worldwide!, characterized by cognitive
decline, memory loss and behavioral changes. Underlying
pathologies of AD include the deposition of beta-amyloid
plaques and Tau protein tangles in the brain?, which further
leads to neuronal dysfunction and death. The early detection
of these biomarkers>S will enable timely intervention, slowing
the progression of the disease and offering patients access to
clinical trials and treatments targeting the early stages of AD.

Because it is an imaging modality based on the use of
radiotracers, positron emission tomography (PET) can
demonstrate metabolic activity in the brain and, therefore,
provides extensive views for detecting abnormal metabolic
processes associated with the disease. Using a PET scan, it is
possible to detect beta-amyloid and Tau accumulation’
before significant structural changes can be observed using
computed tomography or magnetic resonance imaging.
The PET scans are also able to show both typical and atypical
metabolic activity and detect the atypical metabolism of
tracers even before the disease shows up on other
image processing techniques, such as Computerized
Tomography (CT) and Magnetic Resonance Imaging (MRI)®2,
However, the interpretation of PET usually presents a
challenge and as many as 20% of AD cases could be
misdiagnosed®'*'4, due to the semi-quantitative nature of the
visual check and workload from professional medical grading.
These challenges range from the subjective nature of
interpretation to quantitative measures that can improve the
diagnostic accuracy of PET scans.

The standard method of analyzing PET imaging depends
to a great extent on subjective visual assessments, which may
not detect subtle changes by the human eye and the extent
of pathological involvement may be misinterpreted. Advanced
image processing applications were thus introduced to
transform these PET scans into quantitative data from simple
DICOM, Digital Imaging and Communications in Medicine
Formatted images'>'¢, format images for further analysis. In
that respect, it would be possible to transform visible
information into numerical data by extracting RGB values from
images. Color intensity corresponds to the level of the tracer
uptake and hence, the extent of biomarker accumulation.

Machine learning has now emerged as a promising tool
to automate classification and analysis tasks in medical image
processing, serving to find patterns and correlations that are
notobvious through other techniques. This research study will
examine the efficacy in the improvement of detection and
classification of AD severity by applying ML techniques in

concert with RGB image zoning to PET scan data. Automation
in PET image analysis, as proposed in this study, serves as a
more objective, reliable and accurate modality for identifying
early stages of Alzheimer’s disease that could considerably
improve diagnostic precision and patient outcomes.

MATERIALS AND METHODS

Study area: This study was conducted from MATLAB' at

home and at Shrewsbury High School Computer Lab, coursed
June, 2022 to May, 2024.

Methodology: A series of methods were used to help
construct this project and collect the data necessary to
process through a pre-trained ML algorithm. One of the
primary steps needed to obtain data was through data
collection across various datasets'8, samples and possible
research and images available online of PET scans of
beta-amyloid and Tau proteins (Fig. 1a-f). There was a total
of 5,402 images'’/, where each was subdivided into three
subfolders:‘healthy’, 'medium-unhealthy’ and ‘unhealthy’. The
images were processed using MATLAB’s Image Segmenter
App to isolate Regions of Interest (ROIs)™2% in the PET scans.
Segmenting is an important preprocessing technique to
reduce unnecessary or reduced information, or noise, from
affecting the accuracy of subsequent analysis. Thresholding
was a segmenting technique used to threshold specific
RGB values. This thresholding technique was used to create
the response variable, as seen in Fig. 2, for the neural
network (NN) model and classify RGB values into a total of
three classes. More specifically, Fig. 2a created multiple
classes of intensities to create the response variable.
For example, Fig. 2b showcased a variable spectrum: A
color-based variable spectrum of infrared, red, orange, yellow,
green, cyan, blue, violetand ultraviolet with wavelengths from
700 to 400 nm were all used to set different thresholds for
each RGB color.

Multiple “labels” were used to signify an RGB color below
120, between 120 and 200 and above 200 RGB values. More
specifically, a color designation of blue or green would be
labeled as ‘healthy’, yellow and orange as ‘medium-unhealthy’
and a color of red being severely ‘unhealthy’.
‘Medium-unhealthy’ was classed by RGB values between
120 and 200 and ‘unhealthy’ was classed by RGB values
greater than 200. After segmenting images, they were
combined using the combine function in MATLAB and
combined with a total of 5,402 images to be processed by
pre-trained ML algorithms. This procedure of segmenting and
organizing the 2D images into a 1D format was repeated until
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Fig. 1(a-f): PET scan of Tau protein Images, (a-f) PET scan Images

Source: ADNI
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Fig. 2(a-b): Creating the response variable, (a) Multiple classes of intensities were created to create the response variable and
(b)Variable spectrum: Color-based variable spectrum of infrared, red, orange, yellow, green, cyan, blue, violet and

ultraviolet with wavelength from 700-400 nm

all images were able to be processed into a combined data
table. The thresholding method also allows for the removal of
any unwanted attributes, missing values and redundant
records by analyzing the frequency of the RGB colors.
Additionally, splitting the data was required for creating both
testand training data. The model was trained from training set
data and then tested upon newly unseen data to help counter
the possibility of overfitting or the ability of the algorithm to
simply memorize the training data. This was done by splitting
22% of the training data into testing data. Furthermore,
Bayesian Optimization?' wasinstrumental inimproving model

performance by efficiently selecting hyperparameters. Unlike
traditional methods such as grid search or random search,
Bayesian Optimization uses probabilistic models to prioritize
hyperparameters with the highest potential to improve
accuracy. This approach likely contributed to the Fine KNN
model achieving its superior test accuracy of 98.07%, as it
allowed the optimization process to focus on the most
impactful parameter combinations. The performance of the
ML models was assessed using standard evaluation metrics,
including accuracy, precision, recall and F1 scores. These
metrics were calculated from the confusion matrices
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generated for each model. The formulas'® used to calculate
these metrics were as follows:

. T
Precison= —2*
T +F

PP

where, T, represents true positives and F, false positives.
Precision quantifies the proportion of correctly predicted
positive observations:

-
Recall = —*
T +T

p n
where, T, represents true negatives. Recall measures the
proportion of actual positives that were correctly identified:

F. score = 2(Pregi§ionx Recall)

Precision+Recall
which provides a harmonic mean of precision and recall to
balance false positives and false negatives.

These formulas were instrumental in evaluating
model performance across the three classes (‘healthy’,
‘medium-unhealthy’ and ‘unhealthy’) and ensuring the
consistency of results.

RESULTS

This study utilized MATLAB and its suite of tools to
analyze PET scan data and develop machine learning (ML)
models for classifying Alzheimer’s disease (AD) biomarkers. A
total of 5,402 PET scan images were collected from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database.
The workflow, summarized in Fig. 3, involved segmenting and

Data
Preprocessing

Fig. 3: Workflow research algorithm

Splitting Data

augmenting these images, preprocessing them into datasets
and training ML algorithms to classify images into three
categories: Healthy individuals, individuals with AD and
individuals exhibiting various levels of disease progression.

The preprocessing phase included segmentation
techniques to isolate Regions of Interest (ROIs), thresholding
to assign RGB values and augmentation to prepare images for
efficient analysis. Image segmentation reduced noise and
ensured accurate data extraction by isolating meaningful
regions in the scans. Thresholding was applied to classify
image regions based on RGB values: Blue and green pixels
(RGB values <120) were categorized as healthy, yellow and
orange pixels (RGB values 120-200) were classified as
medium-unhealthy and red pixels (RGB values >200) were
labeled as unhealthy. The performance of various machine
learning models was evaluated based on their test accuracy
and computational cost during training, as shown in Fig. 4.
Figure 4a presents the test accuracy of Decision Trees (TREE),
Neural Networks, Support Vector Machines (SVMs) and
K-Nearest Neighbors (KNN). Among these models, the neural
network achieved the highest test accuracy at 98.07%,
followed by SVM at 96.98%, KNN at 96.74% and TREE at
96.62%.

In addition to test accuracy, the total computational cost
required for training these models was compared, as shownin
Fig. 4b. The TREE model incurred the highest computational
cost 28, while Neural Networks had a cost of 16, SVMs 25 and
KNN 27. These results demonstrate a trade-off between
computational efficiency and classification performance.
Neural Networks and SVMs consistently achieved higher
accuracy rates while maintaining moderate computational
costs. TREE models, despite requiring fewer computational
resources, exhibited slightly lower accuracy. The KNN models
showed a balance between accuracy and computational cost.

Thresholding
and
Classification

First of all, acquisition of data, then processing of data by segmentation of images and data augmentation, then splitting of data with training dataset and
testing dataset. Followed by thresholding and classification as healthy individuals and unhealthy individuals with AD. Alzheimer's disease and

healthy-unhealthy with AD
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Fig. 4(a-b): Training data of test accuracy (validation) and test cost (training), (a) Test Accuracy and (b) Test cost
(a) Testaccuracy with TREE, 96.62%, Neural network, 98.07%; Effective learning SVM, 96.98% and KNN, 96.74% and (b) Total cost data with TREE, 28; Neural
network, 16, Effective learning SVM, 25 and KNN, 27. Support Vector Machines (SVMs) and K-Nearest Neighbors (KNN)
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Fig. 5(a-b): Test data of test accuracy (validation) and test cost (tests), (a) Test Accuracy and (b) Total cost
(a) Testaccuracy with TREE, 96.03%; Neural network, 97.95%; Effective learning SVM, 95.90% and KNN 97.81% and (b) Total cost data with TREE, 29; Neural
network, 15; Effective learning SVM, 30 and KNN, 16. Support Vector Machines (SVMs) and K-Nearest Neighbors (KNN)

Once trained, the models were tested on a separate
dataset to evaluate their generalization performance. The test
accuracy for each machine learning model is summarized in
Fig.5a. Among the models, the Fine KNN model demonstrated
high test accuracy at 97.81%, closely followed by Neural
Networks at 97.95%. The Decision Trees (TREE) model
achieved a test accuracy of 96.03%, while Support Vector
Machines (SVMs) achieved 95.90%. The corresponding
computational costs for testing these models are presented in
Fig. 5b. Neural networks were the most computationally
efficient with a cost of 15, followed by KNN at 16. Decision
Trees required a computational cost of 29, while SVMs
required the highest cost at 30. These results illustrate the
trade-offs between model accuracy and computational
efficiency during the testing phase.

The confusion matrix for the Medium Neural Network
model, displayed in Fig. 6a, provides detailed counts for true
positives, false positives, true negatives and false negatives

across all three categories: Healthy, medium-unhealthy and
unhealthy. For example, the matrix shows that the true
positive rate for the healthy category was 99.1%, while the
medium-unhealthy category exhibited a precision of 81.6%
and a recall of 86.96%. These discrepancies are further
highlighted in Fig. 6a, which illustrates the distribution of
classification results. The medium-unhealthy class had the
highest proportion of false positives, with 0.8% of samples
being misclassified as unhealthy, compared to 0.9% for the
healthy class and 0.8% for the unhealthy class. Additionally,
the medium-unhealthy category showed a false negative rate
of 13.4%, indicating that a significant proportion of actual
medium-unhealthy samples were incorrectly classified as
either healthy or unhealthy. These results demonstrate that
while the model performed well overall, the intermediate
medium-unhealthy category posed the greatest challenge,
likely due to its overlap with the healthy and unhealthy
categories.
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Fig. 6(a-c): Confusion matrix for the medium neural network, (a) Comparison of observations made for false positives, (b) Total
observations made regarding the medium neural network and (c) Confusion matrix analysis of precision, recall and

F1 score

The classification performance of the model was
evaluated using precision, recall and F1 scores for the three
classes: Light (healthy), medium (medium-unhealthy) and
not light (unhealthy), as illustrated in Fig. 6¢c. The model
demonstrated excellent performance for the light and not
light classes. For the light class, the precision was 99.07%, the
recall was 98.77% and the F1 score was 98.92%. Similarly, for
the not light class, precision, recall and F1 scores were all
99.24%, indicating highly reliable classification for these
categories.

In contrast, the performance for the medium class was
comparatively lower. The precision for this class was 76.92%,
the recall was 86.96% and the F1 score was 81.63%. These
metrics indicate thatthe model was less effective in accurately
identifying medium instances compared to light and not light
categories, likely due to overlapping features or ambiguities
between classes. Despite this, the overall results confirm the
robustness of the model in distinguishing the majority of
instances across the three classes.

Thereceiver operating characteristic (ROC) curve analysis,
shown in Fig. 7a, further validated the model’s classification
performance. The curve shows the trade-off between true
positive rates and false positive rates across all thresholds. The
area under the curve (AUC) was 0.971, indicating excellent
classification performance. Figure 7a illustrates the true
positive rates (TPR) for each category, with the healthy class
achieving the highest TPRat 97.2%, followed by the unhealthy
class at 99.93%. However, the medium-unhealthy class
exhibited a slightly lower TPR 0f 89.91%, reflecting the model’s
difficulty in correctly classifying intermediate cases. This
discrepancy highlights a potential need foradditional training
data or further refinement of the model for this category.
Figure 7b exemplifies lower classfiication errors and
improvements of the model. Overall, the lower minimum
classfication error after multiple iterations displays the ability
of classifying new batches of data and scans with higher
accuracy. Additionally, Fig. 7c demonstrates the impact of
optimization techniques on overall classification performance.
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Fig. 7(a-c): Minimum classification plot and ROC curve validation, (a and c) ROC curve validation which makes the accuracy, or
validation, of the specified model and the ability for the model to classify the data, represents a fine KNN model that
is being compared against evidently and lacks the classification accuracy of (a) in classifying a ‘medium’ RGB.
(b) Minimum classification plot of the optimized neural network. The plot is a result of changing optimization

techniques and fine-tuning

After fine-tuning the model using Bayesian Optimization, the
medium neural network achieved an area under the curve
(AUQ) score of 0.987 and an accuracy improvement of 2.5%
compared to the unoptimized version. The optimization
processfocused on key hyperparameters, such as learning rate
and number of layers, enabling the model to achieve robust
performance while maintaining computational efficiency.

In summary, MATLAB's segmentation, thresholding and
augmentation tools, combined with advanced ML algorithms,

enabled the precise classification of AD biomarkersin PET scan
images. The Fine KNN model achieved the highest accuracy,
while Bayesian Optimization and ROC curve analysis
highlighted the robustness of the Medium Neural Network
model. Figure 4-7 collectively demonstrate the balance
between accuracy, computational cost and optimization
across various models, underscoring the potential of ML-based
approaches for analyzing AD biomarkers and improving
diagnostic methodologies.
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DISCUSSION

In the first batch of 200 images, the training and testing
data were as follows. Figure 4a, displayed test accuracy with
TREE, 96.62%; neural network, 98.07%; effective learning SVM,
96.98% and KNN, 96.74%. Overall, as shown in Fig.4b, the total
cost of data with TREE was 28; neural network, 16; effective
learning SVM, 25 and KNN, 27. The approach taken in this
study is novel, using MATLAB-based machine learning as a
means of analyzing PET for the detection and classification of
beta-amyloid and Tau protein accumulations seen in AD.
During the second batch of 350 images, in Fig. 5a-b, the test
accuracy with this approach was effective with new data, at
97.81% using the Fine KNN model and 97.95% using neural
networks, thus distinguishing very well between states
of health, medium-unhealthy and unhealthy biomarker
accumulation levels. These findings demonstrate the power
of this method in the automation of complicated imaging
analyses and in reducing human errors for earlier and more
accurate diagnosis of AD.

The findings align with and build upon previous
work in the field. Among these is the work of
Barragan-Montero et a/'°, regarding the use of Al to improve
such diagnostic performance at the level of medical imaging,
identifying machine learning as one of the strategic
technologies that work for the reduction of errors in manual
analysis. Indeed, the present study confirms these
observations and extends them with an application of
machine learning in the field of PET scan analysis for
Alzheimer’s biomarkers, representing a practical solution to
the big clinical challenge. Similarly, Bao et a/'® highlighted
how valuable it is for radiotracers to map out changes in AD
with PET imaging and hence proved that this decision to use
PET as a base modality was not wrong. Combining this
imaging with modern machine learning brings a large step in
this work toward leveraging PET scan data for early-stage
diagnosis.

These findings are also in agreement with those of
Zukotynski et a/'* who, while explaining the value of PET/CT
for dementia diagnosis, underlined that combining imaging
modalities will be important for enhancing the sensitivity of
diagnoses. In this respect, the strategy of the present studyis,
approaching the analysis of PET data in a very accurate way
through MATLAB-can represent a complementary method to
such diagnostic techniques. Prasath and Sumathi® indicated
“there is a dire need for early detection techniques in AD for
arresting the disease progress and its management”. This
objective directly becomes the aim of this study by
implementing correct machine learning models. In turn,
Reiman and Jagust® described weaknesses in manual analysis

within the framework of early diagnosis of AD due to a failure
to usually observe subtle changes in analyzed scanned PET
images because of human fatigue and error. The automation
of the process of image analysis, as this method does,
overcomes such limitations and provides proof that machine
learning may greatly enhance this process of detection.
Similarly, an article by Therriault et a/'? also indicated the
usefulness of Tau PET imaging for the understanding and
progression of AD. This study’s emphasis on both imaging
features of Tau and beta-amyloid imaging promotes this
understanding in the development of a comprehensive
method to evaluate different biomarkers. Secondly, in
agreement with Cheng et a/> who focused their work on
the predictive capability of plasma biomarkers, are further
supported by Therriault et a/'?> which complements this
work with imaging-based biomarkers. In that respect, these
approaches can be integrated to establish a more holistic
diagnostic framework, which considers both blood-based and
imaging biomarkers.

The implications brought about by this study are
significant as it focuses on a MATLAB-based framework for
automating the analysis of PET scans, hence addressing one of
the big bottlenecks in the diagnostics of AD, which is manual
interpretation. This would enhance the coherence of diagnosis
and provide a standardized means that is susceptible to less
subjective bias which may lead to better patient outcomes.
Furthermore, the fact that this study was able to achieve such
high accuracy using a relatively small data set speaks to the
robustness of the model. Italso underlines the need for further
validation with larger sample sizes. Thatis because a limitation
is dependency on high-quality imaging data since model
performances can be different depending on the variable
image resolution and image quality. However, this constitutes
a common challenge in imaging research, which can be
mitigated through standardized imaging protocols.

This MATLAB-based methodology can easily be extended
to the study of other neurodegenerative disorders such as
Parkinson’s disease or multiple sclerosis, where similar
imaging problems are observed. This could be extended to
diagnose other biomarkers or the use of various imaging
techniques, such as MRI. It could be further fine-tuned with
deep learning techniques, such as CNN, which would give
more subtle pattern recognition with higher accuracy.

It has been pointed out by Wang et a/> that as PET
and MRI may complement each other in imaging AD’s
pathophysiology, this might be a direction for the future of
this study. Future studies should be conducted to enhance the
size of the dataset by diversifying the PET scans to ensure the
generality of the models across multiple demographic groups
and at different stages of the disease. Such would also tend to
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mitigate against the possibility of overfitting and improve
predictive performance in more realistic scenarios. There could
also be a collaboration with clinical research institutions to
ensure that trials using real-world data are conducted to
verify the utility of the technique in practical, everyday clinical
applications, enabling translation into every day diagnostics
far more quickly than might otherwise be possible with
automated analysis. Advancements like these could mean a
sea change in the diagnosis and treatment of Alzheimer’s
disease, offering for the first time a clear route to more
effective interventions and improved patient care.

CONCLUSION

The present study illustrates that the proposed machine
learning algorithm could determine biomarkers for
Alzheimer's disease, including beta-amyloid and Tau proteins,
from PET scan data interpretation with much higher accuracy
and speed. This automated technique eliminates the
possibility of errors caused by human intervention and
represents a very useful diagnostic aid for early diagnosis,
which is highly important for the effective treatment and
management of Alzheimer’s disease. Future studies should be
directed at the validation of this approach on larger datasets
and its extension to other neurodegenerative disorders. The
inclusion of other imaging modalities like MRI will further
enhance the diagnostic capability and provide a more
integrated framework for clinical use.

SIGNIFICANCE STATEMENT

The study enhances early detection of Alzheimer’s disease
through MATLAB-based machine learning techniques,
analyzing PET scan data to identify key biomarkers like
beta-amyloid and Tau proteins. This approach offers a more
accurate and automated analysis of brain images, reducing
the risk of misdiagnosis and enabling timely intervention. The
results demonstrate that this machine learning algorithm can
accurately classify protein accumulation with a 97.6% test
accuracy, showcasing its potential as a reliable tool for
diagnosing Alzheimer's disease and contributing to the
development of advanced diagnostic methods.
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