

Journal of Biological Sciences

ISSN 1727-3048

Use of Industrial Waste and By-products as a P Source for Improving Crop Production. III: Effect of Applied and Residual Phosphorus from Two Sources on Three Crop Species

S.M. Alam, Muhammad Akhtar, Zafar Iqbal and A. Latif Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan

Abstract: Effect of applied and residual P from two sources, di calcium phosphate (DCP) and single super phosphate (SSP), were evaluated by growing wheat, brassica and berseem crops in a pot experiment. The criteria used were plant yield and P uptake. Both of the P sources for grain and straw yield of brassica, residual as well as applied P did not improve the yield. However, grain yield of wheat, fodder yield of berseem and total P uptake by these crops were found to improve significantly due to residual and applied P as DCP compared to SSP. A heavy P application from DCP showed positive residual effect and resulted in increased yield and P uptake by wheat and berseem. These results, therefore, strongly advocate the suitability of DCP as a P fertilizer source.

Key words: Brassica, berseem, P sources, residual P, wheat

Introduction

In intensive agriculture, crops are grown one after the other and fertilizers are applied at higher doses to maximize crop production. Repeated application of P fertilizer may result in "P built up" due to increase in phosphorus concentration in the soil solution, particularly when the amount of P added to soil as fertilizer exceeds removal by the crop (Tisdale et al., 1985; Memon, 1996). Positive effects of residual phosphorus on succeeding crops have been reported by (Hussain et al., 1992; Khan and Makhdum, 1990; Saeed et al., 1992). In a pot study two phosphatic fertilizers, DCP and SSP were repeatedly applied at 0, 22, 44, 88 and 176 mg kg⁻¹ to three successive crops grown to various periods of time (Alam et al., 2001; Latif et al., 1998). Analyses of soil showed increase in available P content after each crop harvest, depending on source and rate of P applied. However, the cumulative mean available P, after three crop harvests, were found to be higher in DCP. Repeated applications of P upto 44 mg kg⁻¹ rate resulted in equivalent available P (about 20 mg kg⁻¹) from both the sources, but higher application rates showed 2-3 times more P in DCP as compare to SSP supplied treatments. It was postulated that heavy P application as DCP may maintain relatively more available P in soil for a longer period of time and thus may have a greater residual effect than SSP. Fresh additions of P fertilizer from either source may also result in variable response by crops depending on their P requirements. By this experiment effect of applied and residual P from two sources, DCP and SSP, on yield and P uptake by three crop species, brassica, wheat and berseem was assessed.

Materials and Methods

To determine the effect of applied and residual P on crop growth, the treatments having 22 and 88mg P $kg^{-1}\ from$ previous applications (Alam et al., 2001) were given 44 mg P kg⁻¹ from the DCP and SSP, while the other treatments were kept as residual. Ten seeds of brassica (CV. Inmol), wheat (CV. Punjab-96) and berseem (CV. Local) were sown in each pot and after germination thinned to maintain 5 plants per pot. A basal dose of 25 mg N kg⁻¹ as urea solution was applied to brassica after 4 weeks growth while 100 mg N kg⁻¹ was applied to wheat, 3 weeks after sowing and again 100 mg N kg⁻¹ was added after 8 weeks. Brassica and wheat were grown upto maturity for grain and straw yield (growth period 129 and 154 days respectively) while 4 cuttings of berseem were obtained for the estimation of fodder yield (growth

period 147 days). Plant samples were dried in oven at 70°C for 3 days to record dry weight. The samples for wheat and berseem were then ground to fine powder in a wiley mill and 1g portions were digested in triacid mixture and analyzed for P concentration using Barton's reagent (Jackson, 1962). Data was analyzed statistically using MSTAT software. Duncan's multiple range test was used to compare the means.

Results and Discussion

Brassica: The effect of residual and applied P on straw and grain yield of brassica were not significantly different from control (Table 1). The two P sources, DCP and SSP were also not found to differ for the production of dry matter yield. Thus the native soil P was fairly adequate for growth and yield of brassica, indicating its low P requirement. The results agree with earlier report by Alam *et al.* (2001).

Wheat: Residual as well as applied P increased (p<0.05) wheat straw and grain yield over control (Table 2). Application of 44 mg P kg $^{-1}$ to residual P from a lower P rate (T $_{2}$) produced grain and straw yield equivalent to residual P from higher P rates (T $_{3}$ and T $_{5}$). Application of the same 44 mg P kg $^{-1}$ at a relatively higher residual P (T $_{4}$) had beneficial effect for both straw and grain yield compared to control but resulted in similar yield as obtained by higher residual P (T $_{5}$). Thus heavy P application had more residual effect and persisted for a longer period of time than a normal or low P application rate.

Grain yield due to applied and residual P from DCP was higher (p < 0.05) than that from SSP, the difference in grain yield was only significant at the highest residual P rate (T_5), otherwise, the behavior of the two sources were almost similar for both straw and grain yield at each P rate. Similar results were earlier reported for applied DCP and SSP on wheat growth (Latif *et al.*, 1998).

Application of 44 mg P kg $^{-1}$ to lower (T_2) or higher (T_4) residual P treatments increased (p < 0.05) P concentration over control in grain while the increase in straw was significant only for the higher rate (T_4). The residual P from lower (T_3) and higher (T_5) rates also had a positive effect on P concentration in grain and resulted in significantly (p < 0.05) improved P concentration where the source was DCP. Total P uptake increased over control due to applied and residual P.

Alam et al.: Use of industrial waste and by-products as a P source

Table 1: Effect of applied and residual P on grain and straw yield of brassica

Treatment		Grain yield (g pot ⁻¹)			Straw yield (g pot ⁻¹)		
No.	Status	DCP	SSP	Mean	DCP	SSP	Mean
T ₁	Residual	1.21	1.43	1.32	12.2	11.4	11.8
T ₂ *	Applied + Residual	2.66	2.21	2.43	10.2	8.4	9.3
T ₃	Residual	1.36	1.88	1.62	7.6	9.1	8.4
T ₄ *	Applied + Residual	1.69	1.95	1.82	8.1	8.6	8.3
T ₅	Residual	2.85	1.80	2.32	12.0	9.0	10.5
Mean		1.95	1.85		10.0	9.3	

^{*} Additional 44mgPkg⁻¹ was applied as DCP or SSP to respective pots, Source rate and SxR interaction were all nonsignificant

Table 2: Effect of applied and residual P on grain and straw yield of wheat

Treatment		Grain yield	Grain yield (g pot ⁻¹)		Straw yield		
No.	Status	DCP	SSP	Mean	DCP	SSP	Mean
T ₁	R	4.48d	2.84d	3.66C	9.59c	9.74c	9.66C
T ₂ *	A + R	21.62abc	22.17ab	21.89AB	39.57a	40.26a	39.82A
T_3^-	R	20.82bc	17.33c	19.07B	35.76ab	34.14b	34.95B
T ₄ *	A + R	23.77ab	22.37ab	23.07A	37.96ab	37.54ab	37.75AB
T ₅	R	25.42a	19.60bc	22.51A	38.16ab	40.70a	39.43A
Mean		19.22A	16.86B		32.21A	32.43A	

Source x rate interaction was not significant for grain or straw yield, *R-residual; A-Applied P @ 44 mg kg⁻¹.

Table 3: Effect of applied and residual P on P concentration in grain and straw and total P uptake by wheat

Treatment		P source		
No.	Status	DCP	SSP	Mean
P conc. g	grain (mg kg ⁻¹)			
T ₁	R	2283 d	2795 с	2539 C
T ₂ *	A + R	3506 b	2957 с	3232 B
T ₃	R	3169 bc	3120 bc	3145 B
T_4^*	A + R	4593 a	3494 b	4043 A
T ₅	R	4604 a	3182 bc	3893 A
Mean		3631 A	3110 B	
P conc. s	straw (mg kg ⁻¹)			
T ₁	R	125 bc	129 bc	127 B
T ₂ *	A + R	144 b	117 bc	131 B
T_3	R	101 c	115 bc	108 B
T ₄ *	A + R	241 a	123 bc	182 A
T ₅	R	253 a	110 bc	182 A
Mean		173 A	119 B	
Total P u	ptake (mg pot ⁻¹)			
T ₁	R	11.44 d	9.54 d	10.50 D
T_2^*	A + R	79.77 b	70.14 bc	74.96 B
T_3	R	69.51 bc	57.95 c	63.73 C
T ₄ *	A + R	118.10 a	82.79 b	100.44 A
T ₅	R	126.72 a	66.71 bc	96.71 A
Mean		81.11 A	57.43B	

Sources x rate interaction for P uptake was highly significant (p < 0.01) as determined by DMR test. * R-residual, A-applied P @ 44 mg kg^{-1}

For P uptake DCP appeared significantly better than SSP. Source x rate interaction effect for total P uptake was also highly significant (p < 0.01). Thus application of $44\ mg\ P\ kg^{-1}$ as DCP at a lower (T2) or higher (T4) residual P resulted in equivalent or higher P concentration as well as P uptake compared to applied and residual higher P rate from SSP. This may be attributed to increased availability of P in soil from DCP compared to SSP at equivalent rates of applied and residual P. Akhtar and Alam (2001), reported increased availability of P in DCP compared to SSP from a clay loam soil incubated for 120 days (Table 3).

Berseem: The effect of applied and residual P on fresh and dry

fodder yield of berseem is given in Table 4 and Fig. 1. Applied P increased fresh and dry fodder yield over control. Application of 44 mg P kg $^{-1}$ to lower (T $_2$) or higher (T $_4$) residual P produced dry fodder yield equivalent to dry fodder yield from relatively high residual P (T $_5$). Residual P from a lower rate (T $_3$), however, could not increase the dry fodder yield over control. The DMY obtained from applied and residual P from DCP was significantly higher than that from SSP and this was particularly true for treatments T $_4$ and T $_5$ where the DMY was almost 2 times higher. In addition to increase in DMY, applied and residual P increased (p < 0.05) P concentration in plants. Residual P had more pronounced effect compared to applied P (Table 5) and in this case again DCP proved better than

Table 4: Effect of applied and residual P on dry fodder yield and total P uptake by berseem

Treatment		Grain yield (g pot ⁻¹)			Straw yield (
No.	Status	DCP	SSP	Mean	DCP	SSP	Mean
T ₁	R	8.64 c	6.40 c	6.52 C	15.78 с	15.13 с	15.46 C
T,*	A + R	11.34 b	9.79 bc	10.56 AB	36.40 b	32.47 b	34.43 B
T ₃	R	9.78 bc	7.62bc	8.70 BC	37.86 b	24.17 bc	31.01 B
T_4*	A + R	17.42 a	9.21 bc	13.31 A	63.75 a	33.03 b	48.40 A
T ₅	R	16.84 a	8.85 bc	12.84 A	69.18 a	31.11 b	50.14 A
Mean		12.40 A	8.37 B		44.60 A	27.18 B	

^{*}R-residual, A-applied P @ 44 mg kg⁻¹; source x rate interaction for DMY and P uptake was significantly different at P<0.01 as determined by DMR test respectively.

Table 5: Effect of applied and residual P on P concentration (mg kg⁻¹) in berseem

Treatment		2nd cuttir	9		3rd cutting	g		4th cutting		
No.	Status	DCP	SSP	Mean	DCP	SSP	Mean	DCP	SSP	Mean
T1-	R	3270c	3208c	3239C	3272b	3452b	3262B	1891f	1680f	1785C
T2*-	A + R	3538c	3428c	3443C	3214b	3082b	3148B	3188d	3637bc	3413B
T3-	R	4433ab	3737bc	4084AB	4392a	3981a	4187A	3981ab	2725c	3353B
T4*-	A + R	3560c	3770bc	3665BC	4101a	3982a	4041A	3637bc	3492cd	3565AB
T5-	R	5038a	3585c	4311A	4444a	4114a	4279A	4021a	3466cd	3744A
Mean		3968A	3546B		3884A	3722A		3344A	3000B	

^{*} R-residual, A-applied P at 44 mg kg⁻¹

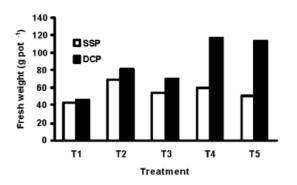


Fig. 1: Effect of applied and residual P on fresh fodder yield of berseem

SSP. The concentration of P decreased in plants with subsequent cuttings, that may be attributed to increased dry matter yield, because P uptake increased at each cuttings and total accumulative P uptake also increased over control. Application of 44 mg P kg^{-1} to residual P (T_2 and T_4) resulted in increased P uptake and was equivalent to P uptake of the next higher residual P (T₃ and T₅), respectively. Thus heavy P application showed a positive residual effect and resulted in increased P uptake and the dry matter yield of berseem. Source x rate interaction was also significant for both DMY and P uptake. The dry matter yield and P uptake by berseem was significantly higher (p < 0.05) in treatments receiving P as DCP compared to SSP. It may be observed that application of 44 mg P kg⁻¹ as DCP on low residual P (T₂) produced DMY and P uptake equivalent to that recorded from applied and residual higher P from SSP. This indicates that where DCP was applied, the P content in soil was maintained consistently available for plant uptake, as compared to SSP, where it was largely fixed in the soil and was not available for crop.

Brassica, a low P responsive crop did not respond to higher residual P from previous application nor to the fresh P addition from the two P sources. However, wheat, a moderately responsive crop, showed significantly higher response of grain yield from residual DCP at the highest rate only while berseem, a high responsive crop to P, produced 2 times

higher dry matter yield and P uptake in both applied and residual higher P compared to SSP. Thus we may conclude that DCP proved to compete favourably with SSP as a P fertilizer source. The increased availability of P in soil from DCP compared to SSP at equivalent rates of applied and residual P could make it a favorable choice for long term benefits.

References

Akhtar, M. and S.M. Alam, 2001. Effect of incubation period on phosphate sorption from two P sources. J. Biol. Sci., 1: 124-125.

Alam, S.M., Z. Iqbal, A. Latif and M. Akhtar, 2001. Use of industrial waste and bye-products as a P source for improving crop production II. Effect of source and rate of P application on growth and P uptake by six crop species. Pak. J. Biol. Sci., 4: 593-596.

Hussain, T., G. Jilani, M. Sarwar, S. Islam and M. Saleem, 1992. Comparative efficiency of phosphorus sources for rice. Proceedings of the Symposium on the Role of Phosphorus in Crop Production, (RPCP'92), NFDC, Islamabad, pp: 465-470.

Jackson, M.L., 1962. Soil Chemical Analysis. 1st Edn., Prentice Hall, New Jersery, USA., Pages: 498.

Khan, M.S. and M.I. Makhdum, 1990. Direct and residual effects of phosphorus on rice and wheat in a long-term trial under irrigated conditions of Sargodha (Pakistan). Proceedings of the Symposium on Role of Phosphorus in Crop Production, July 15-17, 1990, NFDC, Islamabad, Pakistan, pp: 451-463.

Latif, A., S.M. Alam, Z. Iqbal and A. Hamid, 1998. Use of industrial waste and bye-product as a P source for improving crop production. I. Effect of P rates and sources on wheat chickpea and lentil crops. Proceedings of the Symposium on Plant Nuitrition Management for Sustainable Agricultural Growth, (SPNMSAG'98), NFDC, Islamabad, pp. 267-273.

Memon, K.S., 1996. Soil and Fertilizer Phosphorus. In: Soil Science, Bashir, E. and R. Bantel (Eds.). National Book Foundation, Islamabad, pp: 291-316.

Saeed, M., Z.A. Ahmad and M.Y. Nadeem, 1992. Residual effect of Phosphorus applied to rice on wheat and vice versa. Proceedings of the Symposium on Role of Phosphorus in Crop Production, July 15-17, 1992, NFDC, Islamabad, Pakistan, pp: 415-423.

Tisdale, S.L., W.L. Nelson and J.D. Beaton, 1985. Soil Fertility and Fertilizers. 4th Edn., Macmillian Publishing Co., New York, pp: 189-248