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Abstract: Additive-dominance genetic model was employed for eight inbred lines by mating design of modified
diallel crosses with F,’s and reciprocal F,’'s, F;’s and reciprecal F ;'s. Monte Carle simulations vwere conducted to
compare specific effects and their interactions in single environment and in multiple environments when GE exits,
when GenotypeEnvironment (GE) is ignored and when it is null. Estimation of variance components and genetic
prediction vvere computed by using respectively minimum norm quadratic unbiased estimation (MINQUE (1) and
adjusted unbiased estimation {AUP). The genetic models in single and multiple environments vwere robust and gave
unbiased estimates with high efficiencies. The variance residual o°c was significantly smaller and more efficient
when GE interaction effects were considered in the full model. Whereas d%,, 0% and g%t were overestimated
when 0% and 0. were ignored in the full model. If there are no genotype by environment interaction (GE) effects
{0°AE =°DE= 0J, 0°, and wvere estimated with similar bias, MSE and power value as when GE interaction effects
arepresent. AUP method gave extremely low biases for mean of predicted genetic effects with absolute value
between 8.10°°~12.10"*. When GE is not ignored, variance of prediction is significantly similar to the true value.
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Introduction

Manvy species of plants and animals continue to be
degraded or disappeared for many reasons essentially
involved by genetic effects related to the environment. In
plant and animal breeding, few research projects were
donein this field in spite of the importance of the subject.
Most certainly, it is known that phenotypic variation of
quantitative traits is attributed to segregation of some loci
and for another part due to the minor effects of the
undetermined number genes (Falconer, 19968). Howewver
phenotypic variation of quantitative traits cannot only due
to the genetic effect side. Environment effects and
genotype by environment interaction effects can be other
important causes of this variation. The statistical analysis
of both effects was practically impossible for some genetic
models with mixed effects. Cockerham, 1980, resolved
this problem and proposed methodology for constructing
general genetic models and set up fundamental principles
in developing many kinds of complicated genetic models.
Nowadays, the development of statistical methods applied
to biometrics {Hartley and Rao, 1967; Rae, 1971 a, b;
Henderson, 1988; Weir, 1998) merged progressively to the
computational metheds in data analysis (William et al.,
1992) handle AD genetic model with more complicated
effects. Applications o f AD models were also reinforced by
using experimental designs and some mating designs
appropriately conceivable for genetic issues. Nested
design, factorial design and diallel designs [(Griffing, 1966,
Gardner and Eberhart, 1966) are the most employed
mating designs. Many kinds of genstic models were used
to study the differences and relationships of phenotypic
traits {(Zhu, 1 997]. Cockerham and Weir {1977] developed
a bio-model including additive, dominance, maternal and
paternal effects for Fq's from diallel mating. Zhu and \Weir
{1996) proposed an animal model, which is a modification
of Eisen’s model. Simple additive-dominance {AD] genetic
models, without environment effects, were used from
1960's for the study of quantitative traits economically
important such as yield, seed quality and resistance to
disease, rate growth of the animals, stc.

Forthe analysis of the phenotypic variation of quantitative
traits, the purpose of this research is centered particularly
on the influence of the environment and on the interaction
b etween genetic and environment effects. An
understanding of the inheritance of these differencesis of
fundamental significance in the study of evolution and in
the application of genetics to animals and plant breeding.

Materials and Methods

AD genetic model was employed for genetic entries | xj for
{1=1,2...,8;j=1,2,...,8). In single environment the genetic
model of diallel analysis for parent (I = j] F, and F, with Il
# jlin the /th block of the kth mating type of genetic entry
can be translated as:

Vi = #+Gip+ By +gy

The expression of the phenotypic values for P$,F1§,Fs:
generations can be written as,

(P xPi): Yo =+ 2A+D;+B + 8

(Fid =(PxP )y = p+ A +A +D; +B + g

(Fyd= (Fiyx Fyliyyza= u +A +A + %D, + %D, + 12D+
B + &

For the different mating types, the general genstic AD
moedels in single environment can be wvritten as mixed
linear model.

y = Tu+U,e, +Upe,+Ugeg +e;

where 14, Qg e and e, are the random effects
correspondifig to the additive, dominance, block and
residual effects, U,, Uy, Uy, U, arethe known coefficient
matrix relating to the random vector e,.

In multiple environment, the general genetic model for
parent (I = j)and F or F> with {l # j) in the {fth block within
the hth environment is:
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Yo = # By + Gy +GEnp + By + e

The phenotypic values of the three following generations
can be written as,

(Pix P Whint = g +En+ 24 +Di+ 2AEn+ DEni+ B + Enjol
Fii)= P xPlwv + o+ E+ A+ A+ D;+ AE, + AE,; +
DEw; + Byny + &

Fad= FryxF )i ea= » + B+ A+ WD+ %D+ D+
AE,; + AE + “DE; + %DE;
+ % DEy; +Bypy + &2

In multiple environments, these general genetic AD models
can be expressed as matrix form of mixed linear model,

y=Tu+Use, +Upep +Uppepe +Upeepe + Upes +e;

where U, is the known coefficient matrix relating to the
random veeﬁp{_ ‘lJtP assumed that the random effects are
not correlated (11" and (2}, so the random vectar y has
multi wvariate distribution with mean « and wvariance-
covariance

¥

2
AD g?aimglgﬂ?er[flgefd for genetic entries | xj for
il= 1,2...°8; j&%.2,..8) by using mating design of
modified diallel crosses with F,’s and reciprocal F,’s, F,’s
and reciprocal F,’s. Randomized complete block design of
three blocks was used with a total of 120 genetics entries
per block in single environment, and a total of 360 genetics
entries per block in multiple environments. The
envronmental effects were assumed fixed effects with
wvalue of 100in single environment. Thethree environments
were assumed fixed with wvalues of 50, 100, 150
respectively for the first, second and third environments.
Additive and dominance genetic effects were assumed
independent and random. The genetic entries were
assigned at random within each block. Variance
components were estimated by Minimum Norm Quadratic
Unbiased Estimation method (MINQUE ) (Rao, 1971 a, b;
1972) and predicted of genetic effects by AUP method.
Jackknifing over block method (Miller 1974; Efron, 1982)
conducted for estimating standard error. Pseudo-random
normal deviates with zero mean and unit variance {O,1]
were generated by the method of Kinderman and Monathan
{1977). Given the true values of the specific effects of the
wvariance components, balanced data were generated for
additive dominance genetic model in single and multiple
environments. BO0 Simulations was used for computing
sample mean of estimate, bias, Mean Squared Error (MSE)
and power for genetic variance component of each specific
effect of the studied model. Predicted mean, predicted
variance and power were also computed for the prediction
of the genetic effects for each specific effect of the AD

- ) 2
model. MSE is calculated by Var, which VA (8) + (bias )
is usually used as a main criterion for comparing efficiency

of estimation methods. Bias is calculated as © — 8 | |f

~

; 0
Bias/8 < 5% , the estimate 6 is considered as unbiased
(Graybill and Wortham, 1956). Sampling variance of

Py g a2
estimates is calculated by Var (0) 1= Z (6 -9) . The
coefficient of

efficiency (Zhu and Weir, 1994 b) is

~MSE

e[+ |Bias | |

defined as:

C.E.

Results

Simulation results of bias, C.E, MSE and power value for
one ftrait wvariance are listed in Table 1. In single
environment with 8 inbred linesin modified diallel crosses,
varance components 0%,, 0%, and 0%, were unbiased with
respective value of bias equalto 4.98, 1 and 0.4 % of the
parameter wvalue. 92% of the mean square error is
belonging to additive effects, more than 7% to dominance
and less than 1% to residual effects. Higher is the
efficiency, less is the MSE. It implies that efficiency of
additive variance in single environment is appreciable but
less good than that of dominance and particularly that for
residual variance. The significance of non-zero a2,, 0%, and
a’, can be detected with a probability of over 99%.
Robustness of estimating one-trait variance is tested by
simulation under the conditions of no specific variation.
When the true value is zero for a specific parameter, the
conclusion of non-significance can be drawn with a
probability around 95 % by the t-test. If the null hypothesis
of zero variance is true, the probability of rejecting the null
hypothesis of no variation is 5%. Non-significance of the
additive and dominance can be respectively detected with
probabilities around 95 and 99%. Probability of non-
significance of the residual variance can be over 99%.
Table 1: Estimation of variance components for AD modelin
single environment

Variance True Estimate Bias MSE C.E. Power
companent Value
o, 80 83.98 398 2370.82 058 1.00

=2 50 50.67 0.67
0? 10 9.96

198.55 0.28 1.00
-0.04 061 0.08 1.00

However in multiple environments when GE interaction
effects are considered, o°, became highly unbiased with
bias around 1% of the parameter value and with power
value more than 97 %. The changing of dominance variance
is relatively small. Comparing to the results obtained in
single environment bias of additive variance component
decreased. MSE and C.E of additive and dominance
variances increased but that of residual variance decreased
significantly. &, and 02,; were highly unbiased with small
biases and their significance can be detected with
probability of over 99%. It can concluded that the effects
of GE interaction effects in multiple environments tend to
provide better estimation of additive variance component
and particularly involve unbiased estimation of residud
variance compenent which presents very small bias and
MSE, and high efficiency and power value.

Under the assumption of no genotype by environment
interaction effects (GE=0], all estimated wvariance

components present minimum bias and MSE by the model
of eight parent modified diallel crosses (Table 3). Bias of
@, was around 0.15% of the parameter valueand 0.01%
for that of 0%,. Bias, MSE and power value of 0% (Table
3lwere exactly similar to that of genetic full model with
significant GE interaction effects (Table 2). %, 0°%p and
a?, were significant with high powver value and efficiency.
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Table 2: Estimation of variance components for full model
including GE interaction effects

Variance True Estimate Bias MSE C.E.

component Value

Power

o°, 80 81.19 1.19 2839.40 0.65 0.98
s 50 49.03 -0.97 259.14 0.31 1.00
0%, 40 39.24 -0.76 267.05 0.40 1.00
02, 25 24.68 -0.32 25.67 0.20 1.00
g* 10 10.01 0.01 0.21 0.04 1.00

Table 3: Estimation of variance components when GE=0 in the

full model

Variance True Estimate Bias MSE C.E. Power
companent Value

az, 80 80.12 0.12 2143.28 0.58 1.00
gz, 50 49.75 -0.25 193.28 0.27 1.00
0%, o} 0.01 0.01 0.01 10 0.03
s o} 0.02 0.02 0.16 20 0.01
o°. 10 10.01 0.01 0.21 0.04 1.00

Table 4: Estimation of variance components for full model
ighoring GE interaction effects

Variance True Estimate Bias MSE C.E. Power
companent Value

o°, 80 91.01 11.01 2949.69 0.59 0.98
a2, 50 54.87 4.87 280.80 0.30 1.00
07, - - - - — -

(s e J— J— J— J— N J—
a? 10 71.41 61.41 4186.08 0.90 1.00

Table 5: Evaluation of genetic predictor in AD models

Predictor Variance Mean of Variance of Power
Predictor Predictor

Single Env.

&, 80 -0.0012 84.10 1.00

&, 50 -0.0001 52.20 1.00

Multiple Env.

&, 80 -0.0027 81.30 0.98

& 50 -0.0003 49.63 1.00

& 40 -0.0009 39.37 1.00

[ 25 -0.0001 26.42 1.00

Multiple Env.

&, g0 -0.0007 94.34 1.00

&, 50 -0.0000 857.33 1.00

Multiple Env.

8, g0 -0.0030 80.17 1.00

& 50 -0.0003 50.39 1.00

Robustness of estimating one-trait variance components
was also tested by simulation under the conditions of no
specific variation. The non-significance of GE interaction
wvariance components was detected with a probability of
97% for o' and 99% for 0%, (Table 3). It indicated that
no matter whether or not genotype by environment
interaction effects exit correct conclusions can be obtained
for o%,, 0%, and o°,.

In the opposite, when GE interaction effects were ignored,
the additive and dominance variances were respectively
overes timated with values of bias 14 and 10% of the
corresponding parameter wvalues. Residual wvariance
component was particularly overestimated with the highest
value (61.41) of bias (Table 4).

Significance of 0°,, 0%y and 02 can be detected with

pr obability of over 97 %. Ignored effects of GE interaction
affected residual variance 02¢ in particular,then o°,. Bias
of 0%, increased from 1 to 614% of the parameter value.
Note that MSE of o, also increased from 0.006 to 56.4%

of the total value. However power value was still the same
for all the components.

Simulation were conducted to predict the different specific
effects in single and in multiple environment when GE exit
or ignored and also under the assumption GE = 0. Mean
and variance of predictor and power value were calculated.
Extremely low biases for mean prediction of genetic effects
were obtained with absolute values around
8.10°°~12.10"* (Table 5). Both in single and multiple
environments, additive and dominance variances of the
genetic predictors wvere closed to the true value. The
probability for detecting significance of additive and
dominance variance of predictors was more than 99 %.
Additiveand dominance variances of the predicted genetic
interaction effects were alsc near the true value and were
represented with high power value. When GE interaction
effects were ignored, the values of additive and dominance
genetic variances of prediction increased. However under
the assumption GE=0, that two variances decreased and
the results were better to those obtained before.

Discussion

Results obtained in single environment (Table 1} and that
of multiple environments (Table 2 and 3} gave unbiased
estimates for 0%,, 0%, 0%, 0%, 0%, . According to the
robustness of estimating one trait variance, it is indicated
that, nho matter whether or not GE interaction effects exit,
correct conclusion can be obtained for wvariance
components. In multiple environments when o2, and 07
were highly significant with power value of over. 99%, a?,
and 0%, became highly unbiased with bias around 1 and
0.15% of the parameter value, respectively. Compared to
the results obtained in single environment bias of 02, and
o, decreased significantly. It is concluded that the effects
of GE interaction effects in multiple environments tend to
provid e better estimation for additive variance component
and particularly for residual variance component which
involve very smallbias and MSE. If there are no interaction
effects when GE effects is ignored, values of 0%, and 0%
should be around zero. In this condition, genotype and
environment effects should not be interdependent. The
equation form of the genetic model of the full model in
multiple environments became identical to that in single
environment. The results can be similar to those in multiple
environment with GE=0 (Table 3}, where all variance
components were more unbiased and MSE smaller than
those in single environment. When the significance of GE
interaction was ighored in the model giving the results in
Table 4, effects were distributed particularly to the residual
then to the additive and dominance wvariances of the
reduced model. Consequently, variances of the specific
effects were overestimated. When the full model was used
with eight parents modified diallel crosses, the adjusted
unbiased prediction with priorwvalue 1 for all variances gave
unbiased predicted effects with extremely small biases of
mean prediction. The model in single environment is
preferred to that of multiple environments when GE
interaction effects are known as non-significant for the
studied trait. Therefore, before the starting of experiment,
previous information is necessar y about the specific effects
and GE interaction effects. By default, the appropriate
madel must be the full genetic model.
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