

Journal of Biological Sciences

ISSN 1727-3048

Calcium Signaling in Human Platelet Aggregation Mediated by Platelet Activating Factor and Calcium Ionophore, A23187

Huma Rasheed, Afshin Hasan Tirmizi, Farah Salahuddin, Nida Batool Rizvi,
Mehreen Arshad, Saadia Zohra Farooq and Sheikh Arshad Saeed
Department of Biological and Biomedical Sciences, The Aga Khan University, Karachi-74800, Pakistan

Abstract: The present study was carried out to examine the mechanisms of the synergistic interaction of PAF and A23187 mediated platelet aggregation. We found that platelet aggregation mediated by subthershold concentrations of PAF (5-40 nM) and A23187 (0.5- 1 μ M) was inhibited by PAF receptor blocker (WEB 2086; IC₅₀=0.65 μ M) and calcium channel blockers, verapamil (IC₅₀=18 μ M) and diltiazem (IC₅₀=13 μ M). While examining the role of the down stream signaling pathways, we found platelet aggregation induced by the co-addition of PAF and A23187 was also inhibited by low concentrations of phospholipase C (PLC) inhibitor (U73122; IC₅₀=10 μ M), a cyclooxygenase inhibitor (indomethacin; IC₅₀=0.2 μ M) and inhibitor of TLCK with IC₅₀ value of 5 μ M. The effect was also inhibited by a specific TXA₂ receptor antagonist (SQ 29, 548), with very low IC₅₀ value of 0.05 μ M. However, The inhibitors of MAP kinase (PD 98059) and, protein kinase C (chelerythrine) had no effect on PAF and A23187-induced platelet aggregation. These data suggest that the synergism between PAF and A23187 in platelet aggregation involves activation of PLC/Ca²⁺, TLCK and COX pathways.

Key words: Platelet aggregation, platelet activating factor, A23187, phospholipase C, cyclooxygenase

INTRODUCTION

A number of platelet agonists such as epinephrine, 5-HT, ADP and platelet activating factor (PAF) act synergistically in platelet aggregation and up to date, few studies have been carried out in human platelets on the cooperative effects of platelet activating factor (PAF) and calcium ionophore A23187. It is well documented that most of the platelet agonists act largely through the stimulation of G-protein coupled receptors (GPCRs).

PAF, a phospholipid mediator, is a very strong platelet activator and human platelets show high affinity binding sites for this agonist. It also induces adhesion of platelets to the endothelium in the presence of activated leukocytes^[1]. PAF is also known to play an important role in various pathophysiological conditions that include modulation of blood pressure, hypotension, cardiac dysfunction, in cardiac anaphylaxis, hemorrhagic, traumatic and septic shock syndromes^[2,3]. Because of its ability to stimulate endothelial migration and angiogenesis, a potential role of PAF is also known as a potent stimulator of thromboxane A₂ (TXA₂) production in human platelets^[4]. It is reported that PAF acts through the stimulation of pertussis toxin insensitive G-proteins (Gq/11) resulting in the stimulation of phospholipase C

(PLC) and thus generation of second messenger diacylglycerol (DAG) and inositol-1, 4,5-triphosphate (IP₃), which results in the activation of protein kinase C (PKC) and the mobilization of intracellular Ca^{2+} , respectively^[5]. Both Ca^{2+} and PKC stimulate platelet aggregation and also elicit synergism in platelets^[6]. Consistent with the potential involvement of G_q /PLC pathway, the deficiency of G_q protein in transgenic mice leads to impairment of agonist-induced platelet aggregation^[7].

In platelets, calcium plays a pivotal role in platelet aggregation^[8]. An increase in cytoplasmic Ca²⁺ can be brought about by either enhanced Ca²⁺ influx from the external medium or release from internal stores^[9]. Ca²⁺ ionophores, such as A23187, induce platelet aggregation. It stimulates the procoagulant activity of cells, which is thought to be mediated by scrambling of the plasma membrane phospholipids. This results in the exposure of phosphatidyl inositol serine and other negatively charged phospholipids in the outer leaflet of the plasma membrane^[10].

In addition, PAF also stimulates TXA₂ production in human platelets. It enhances vasoconstriction of the coronary arterioles^[11] and at the inflammatory coronary lesions *in vivo* by itself as well as in a synergistic manner

Corresponding Author: Professor S.A. Saeed, Department of Biological and Biomedical Sciences, The Aga Khan University, Karachi-74800, Pakistan, Tel: (92) 21 4859-4562, Fax: (92) 21 493-4294 E-mail: arshad.saeed@aku.edu

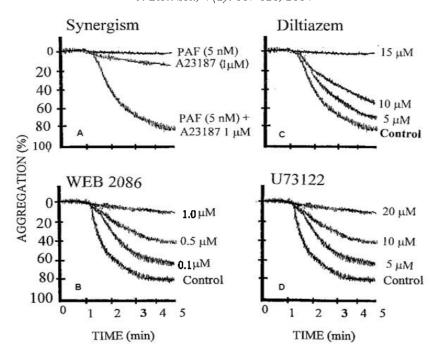


Fig. 1: (A)Tracings from representative experiments showing synergism of PAF (5 nM) and A23187 (1 μM) (B). The synergistic effect of PAF and A23187 on platelet aggregation is blocked by PAF receptor antagonist, WEB 2086.
 © calcium channel blocker, diltiazem. Inhibitors were added one minute before the agonists and (D) phospholipase C inhibitor, U73122. Control means platelet aggregation induced by PAF (5 nM) and A23187 (1 μM). n=5

with other agonists like epinephrine and 5-HT^[12,24]. Because of the close interaction between many agonists and their importance in thrombosis, hypertension and atheroscelrosis, this study was conducted to examine the synergism between PAF and A23187 to elucidate the possible signaling mechanism(s) involved during this synergism.

MATERIALS AND METHODS

PAF, calcium ionophore, A23187, diltiazem, verapamil, herbimycin A, PD98059 and chelerythrine were purchased from the Sigma Chemical Co. (St. Louis, Mo., USA). U73122 was from Alexis LC Labs (UK). All other chemicals used were of the highest purity grade available.

Preparation of human platelets: Blood was taken by vein puncture from normal human volunteers reported to be free of medication for one week. Blood samples were mixed with 3.8% (w/v) sodium citrate solution (9:1) and centrifuged at 260 g for 15 min at 20°C to obtain platelet rich plasma (PRP). Platelet count was determined by phase contrast microscopy and all aggregation studies were carried out at 37°C with PRP having platelet counts between 2.5 and 3.0 x10⁸ ml⁻¹ of plasma^[25].

Measurement of platelet aggregation: Aggregation was monitored using Dual-channel Lumi-aggregometer (Model 400 Chronolog Corporation, Chicago, USA) using 0.45 ml aliquots of PRP. The final volume was made up to 0.5 ml with the test drug dissolved either in normal saline or appropriate vehicle known to be devoid of any effect on aggregation. Aggregation was induced with PAF and sub-threshold concentration was determined. To obtain the synergistic effect of PAF and A23187, we added low concentrations of these agonists. The anti-aggregatory effects of different compounds were studied by pretreatment of PRP with various inhibitors for one min followed by addition of the sub-threshold concentrations of PAF and A23187. The resulting aggregation was recorded for 5 min after challenge by the change in light transmission as a function of time. Once the anti-platelet activity of various inhibitors against agonists was established, dose-response curves were constructed to calculate the IC_{50} values of the agonists and inhibitors.

Data analysis: IC_{50} =Concentration (μ M) producing 50% inhibition of platelet aggregation (control response taken as 100%). The 50% inhibitory concentrations (IC_{50}) values were calculated as means±SEM of 5-6 independent experiments.

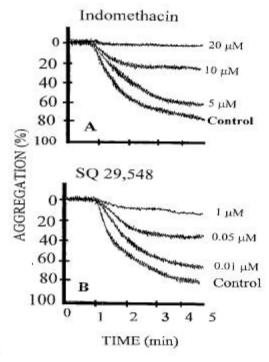


Fig. 2: (A)Concentration-dependent effects of cyclooxygenase inhibitor, indomethacin and (B) TXA₂ receptor antagonist, SQ 29,548 on platelet aggregation induced by co-addition of PAF and A23187. Control means platelet aggregation induced by PAF (5 nM) and A23187 (1 μM). n=6.

Differences between control and test measurements were assessed by student's t-test.

RESULTS

The results demonstrated that treatment of PRP with PAF (5-800 nM) and A23187 (1 µM) showed concentration-dependent increase in platelet aggregation. However, simultaneous addition of subthreshold concentrations of PAF (5 nM) and A23187 (1 µM) exhibited a synergistic effect (Fig. 1A). Such an effect was comparable to that obtained by higher concentrations of PAF (800 nM) or A23187 (10 µM) alone. The synergism between PAF and A23187 was inhibited by pre-treatment of PRP with a potent PAF antagonist, WEB 2086 (IC₅₀=0.65 μ M) (Fig. 1B) indicating that the effect is receptor mediated. We also tested the effect of Ca2+ channel blockers on platelet aggregation and found that the synergistic effect of PAF and A23187 was inhibited by both verapamil and diltiazem (IC $_{50}$ =18 and 13 μ M, respectively) as shown in Fig 1C. We used PLC inhibitor (U73122) to examine if the PAF and A23187 mediated

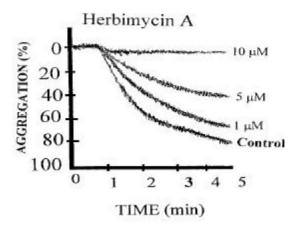


Fig. 3: Dose-response curve of specific tyrosine kinase inhibitor, herbimycin A and on co-addition of sub-threshold concentrations of PAF and A23187. n = 7

effects involved the activation of PLC. Results show that pretreatment of PRP with U73122 completely inhibited the synergistic effect of PAF and A23187 with an IC_{50} of 6 μM (Fig. 1D). To determine the role of cyclooxygenase, we used indomethacine (Fig. 2A) which inhibited PAF and A23187 induced aggregation with IC_{50} value of 8 μM while, SQ 29,548 a specific TXA_2 receptor antagonist also inhibited platelet aggregation with IC_{50} value of 0.05 μM (Fig. 2B), which clearly explain the involvement of COX pathway in PAF and A23187 induced platelet aggregation.

As stimulation of the G-protein/Ca²⁺ cascade leads to mitogen activated protein (MAP) kinase signalling^[8], we used the selective MEK inhibitor PD98059 in PAF and A23187 synergism. Results show that pretreatment of PRP with PD98059 did not show any inhibitory effect on platelet aggregation by co-addition of subthreshold concentration of PAF and A23187.

Herbimycin A, a specific inhibitor of tyrosine kinase also inhibited PAF and A23187-induced aggregation with IC_{50} of 5 μ M indicating the involvement of tyrosine kinase in this cascade (Fig. 3). However, the inhibitor of protein kinase C (chelerythrine; 20 μ M) had no effect.

DISCUSSION

In human platelets PAF causes the stimulation of Gq proteins by binding with specific transmembrane PAF receptors. The second messengers, Ca²⁺ and PKC generated in response to Gq/PLC activation bring about coordinated changes leading towards platelet aggregation [6,8]. This indicates that both PAF and Ca²⁺ play a pivotal role in aggregation. Similarly our study

Table 1: The effect of various inhibitors on subthershold concentration of platelet activating factor (5 nM) and A23187 (1 μM) induced platelet accreation

prateret aggregation	
Inhibitors	Mean IC ₅₀ μM±SE
WEB 2086	0.65 ± 0.04
Diltiazem	13±2.3
Verapamil	18±3.2
U73122	10±0.7
Indomethacin	8±0.5
SQ 29, 548	0.05±0.001
Herbimycin A	5±0.8
PD98056	NE
Chelerythrine	NE

Data is mean±SE (n=5-7) and is indicated as half-maximal effect (IC $_{50})$ of the inhibitors, NE=No effect

shows that both PAF and A23187 in subthershold concentrations show synergism when used exogenously. While studying mechanism of PAF and A23187 mediated aggregation we found that different inhibitors exhibited variable response against the synergism. Our data show that WEB2086, a PAF receptor agonist inhibited PAF and A23187 induced aggregation at very low IC50 values showing that the effect is receptors mediated (Table 1). Some of the investigators reported that platelets lack L-type voltage dependent calcium channels but contain receptor operated calcium channels. The antiplatelet effects of calcium antagonists have been extensively studied in vitro, but such studies may involve high concentrations of the drugs. Verapamil is well documented calcium antagonist with regard to antiplatelet effects having the most varied possible mechanisms of action^[14]. Our previous studies show that synergistic effect of various platelet agonists is blocked by calcium channel blockers, verapamil and diltiazem in very low concentration[15,16,13]. Similarly the present findings also show that PAF and A23187 mediated platelet aggregation is also blocked by low concentration of verapamil or diltiazem. It is also supported by other studies that calcium channel blockers inhibit platelet activation induced by various agonists through different intracellular mechanisms^[17]. Results with the channel blockers are consistent with the enduring proposal that calcium influx causes aggregation[18,19]. PAF causes the stimulation of Gq protein followed by the activation of PLC. This explains why U73122, a selective inhibitor of PLC, shows strong inhibitory effects as platelet aggregation induced by co-activation of these agonists. Further support in favour of Gq/PLC pathways is provided by the recent studies in transgenic mice where it is shown that Gq protein deficient mice lacked the ability of platelet aggregation^[7]. The increase in cytosolic Ca²⁺ causes activation of PLA2 and stimulation of COX activity, thus TXA2 formation[8]. COX catalyzes the stepwise conversion of AA into reactive intermediates PGG₂ and PGH₂, which are the

of prostaglandins, prostacyclin and thromboxanes (prostanoids). COX-1 is mainly present in platelets and in other tissues^[26]. Numerous studies have shown that inhibitors of COX mainly belonging to the group of non steroidal anti-inflammatory drugs (NSAIDs) also inhibit platelet aggregation by inhibiting TXA₂ biosynthesis TXA₂ in an antocrine fashion binds with TXA₂ receptors coupled with Gq protein and stimulate PLC and further enhance platelet aggregation. MAP kinase is one of the down stream signaling molecules involved in platelet aggregation^[12]. That can cultivate both Gq and Gi-protein linked pathways^[20]. We fond that MAPK inhibitor, PD98059 did not exhibit any inhibitory effect showing that MAP kinase pathway was inactive in PAF and A23187 mediated aggregation.

Many studies show that activation of platelets by some agonists increase the level of tyrosine phosphorylation resulting in the appearance of a new set of tyrosine-phosphorylated proteins^[21,22]. Increase in the phosphorylation of tyrosine residues is an early event in the signal transduction pathway for stimulation of platelets by PAF^[23]. To investigate the involvement of tyrosine kinase in present study we used herbimycin A, a known and specific inhibitor of tyrosine kinase which blocked PAF and A23187-induced aggregation in a concentration-dependent manner (IC₅₀=15 µM) showing that the synergism may also be due to the TLCK activation.

However the role of PKC in the present study was exchange as PKC inhibition had no effect on the synergism of PAF and A23187 in platelets In conclusion, our study show that the synergistic interaction of PAF and A23187 in human platelet aggregation seems to follow the Gq/PLC, Ca²⁺ COX and MAP kinase pathways.

ACKNOWLEDGMENTS

We thank Mr. Ali Moosa for expert editorial assistance. This study was supported by the research funds from the Aga Khan University, Karachi, Pakistan.

REFERENCES

- Hirafuji, M. and H. Shinoda, 1991. Platelet-leukocyte interaction in adhesion to endothelial cells induced by platelet activating factor in vitro. Br. J. Pharamacol., 136: 1356-1377.
- Anderson, B.O., D.D. Bensard and A.H. Harken, 1991.
 The role of platelet activating factor and its antagonists in shock, sepsis and multiple organ failure. Surg. Gynecol. Obstet., 172: 415-424.
- Montrucchio, G., C. Alloatti and G. Camussi, 2000. Role of platelet-activating factor in cardiovascular pathophysiology. Physiol. Rev., 80: 1669-1699.

- Shah, B.H., H. Rasheed, I.H. Rahman, A.H. Shariff, F.L. Khan, H.B. Rahman, S. Hamf and S.A. Saeed, 2001. Molecular mechanisms involved in human platelet aggregation by synergistic interaction of platelet activating factor and 5-hydroxytryptamine. Exper. Molecular Med., 33: 226-233.
- Obberghen-Schilling, E.V. and J. Pouyssegur, 1993.
 Signalling pathways of the thrombin recepror.
 Thromb. Haemost., 70: 163-167.
- Crabos, M., D. Fabbro, S. Stabel and P. Erne, 1992. Effect of tumor-promoting phorbol ester, thrombin and vasopressin on translocation of three distinct protein kinase C isoforms in human platelets and regulation by calcium. Biochem. J., 288: 891-896.
- Offermanns, S., C.F. Toombs, Y.H. Hu and M.I. Simon, 1997. Defective platelet activation in G_qdeficient mice. Nature, 389: 183-186.
- Heemskerk, J.W.M. and O. Sage, 1994., Calcium signalling in platelets and other cells. Platelets, 5: 295-316.
- Berridge, M.J., 1993. Inositol triphosphate and calcium signaling. Nature, 361: 315-25.
- Williamson, P., E.M. Bovers, E.F. Sweets, P. Comfurius, R.A. Schlegel and R.F.A. Zwaal, 1995. Continuous analysis of the mechanisms of activated transbilayer lipid movement in platelets. Biochem., 34: 10448-55.
- DeFily, D.V., L, Kuo and W.M. Chilian, 1996. PAF attenuates endothelium-dependent coronary arteriolar vasodilation. Am. J. Physiol., 270: H2094-2099.
- Shah, B.H., I. Lashari, S. Rana, O. Saeed, H. Rasheed and S.A. Saeed, 2000. Synergistic interaction of adrenaline and histamine in human platelet aggregation is mediated through activation of phospholipase C and MAP kinase and cyclooxygenase pathways. Pharmacol. Res., 42: 479-483.
- 13. Saeed, S.A., H. Rasheed, S. Kumar, T.M. Ali, M.U. Butt, R. Dhangana, A. Jafri, S. Zehra and A.H. Gilami, 2003. Involvement of cyclooxygenase, phospholipases C and MAP kinase pathways in human platelet aggregation mediated by the synergistic interaction of platelet activating factor and arachidonic acid. Pak. J. Biol. Sci., 6: 918-924.
- Hjemdahl, P. and N.H. Wallen, 1997. Calcium antagonist treatment, sympathetic activity and platelet function. Eur. Heart. J., 18 Suppl A: A36-50.
- Saeed, S.A., B.H. Shah, N. Khan and A.H. Gilani, 1997. Synergistic interaction of calcium-ionophore, A-23187 and dopamine in human platelet aggregation. Med. Sci. Res., 25: 219-221.

- 16. Shah, B.H., A. Siddiqui, K.A. Qureshi, M. Khan, S. Rafi, V.A. Ujan, Y. Yaqub, H. Rasheed and S.A. Saeed, 1999. Co-activation of Gi and Gq proteins exerts synergistic effect on human platelet aggregation through activation of phospholipase C and Ca²⁺ signalling. Exp. Mol. Med., 31: 42-46.
- 17. Valone, F.H., 1987. Inhibition of platelet-activating factor binding to human platelets by calcium channel blockers. Thromb Res., 45: 427-35.
- Vinge, E., T.L.G. Anderson and B. Larsson, 1988. Effects of some calcium antagonists on aggregation by adrenaline and serotonin on alpha-adrenoceptor radioligand binging in human platelets. Acta physioloica Scandinavica., 133: 407-16.
- Ware, J.A., M. Smith and E.W. Salzman, 1987.
 Synergism of platelet-aggregation agents: Role of elevation of cytoplasmic calcium. J. Clin. Invest., 80: 267-271.
- 20. Piomelli, D., 1993. Arachidonic acid in cell signalling. Curr. Opinion in Cell Biol., 5: 274-80.
- Ferrel, J.E. and G.S. Martin, 1988. Platelet tyrosine specific protein phosphorylation is regulated by thrombin. Mol. Cell. Biol., 8: 3603-3610.
- Golden, A. and H. Yamamura, 1989. Thrombin treatment induces rapid changes in tyrosine tyrosine phosphorylation in platelets. Proc. Nat. Acad. Sci., 86: 901-905.
- Animesh, D., K.P. Anjan and D.S. Shivendra, 1990.
 Platelet-activating factor stimulation of tyrosine kinase and its relationship to phospholipase C in rabbit platelets: Stusies with genistein and monoclonal antibody to phosphotyrosine. Mol. Pharmacol., 37: 519-525.
- Saeed, S.A. and H. Rasheed, 2003. Calcium dependent synergistic interaction of platelet activating factor and epinephrine in human platelet aggregation. Acta Pharmacol. Sin., 24: 31-36.
- Shah, B.H. and S.A. Saeed, 1995. Phosphatidylinositol 3-kinase inhibitor, wortmannin, inhibits 5-hydroxytryptamine-mediated potentiation of platelet aggregation induced by epinephrine. Res. Comm. Mol. Pathol. Pharmacol., 89: 157-164.
- Della Rocca, G.J., S. Mausley, Y. Daaka, R.J. Lefkowitz and L.M. Luttrell, 1999. Pleiotropic coupling of G protein-coupled receptors to the mitogen-activated protein kinase cascade. Role of focal adhesions and receptor tyrosine kinases. J. Biol. Chem., 274: 13978-13984.