

Journal of Biological Sciences

ISSN 1727-3048

Pharmacokinetics of Amoxycillin in Camel

Mohammed H. Al-Nazawi
Department of Physiology, Biochemistry and Pharmacology,
College of Veterinary Medicine and Animal Resources, King Faisal University,
P.O. Box 3498, Al-Ahsa 31982, Saudi Arabia

Abstract: The disposition of amoxycillun following intravenous (IV) and oral administration in camel was studied. The kinetic behavior of the drug was best described by two compartment open model. The half-life of distribution was 3.6±0.36 min for IV and 15.3±1.9 min for oral dosing. The half-life of elimination was 69.3±2.6 min for IV and 80.0±3.4 min for oral dosing. The mean peak plasma concentration after oral administration was 2.11±8.3 µg mL⁻¹ detected at 2 h after drug administration and the bioavailability was 23.3%.

Key words: Camel, pharmacokinetic, intravenous, oral, amoxycillin

INTRODUCTION

Antibiotics play an important role in the treatment of various infectious diseases in man and animals. An effective concentration of antibiotic must be available at the focus of infection and maintained for adequate time^[1]. Amoxycillin is semisynthetic penicillin with a broad spectrum of antibacterial activity (Gram-positive and Gram-negative organisms) similar to that of ampicillin^[2], over which it has been shown to have important advantages. In particular, when given orally in a number of species, its bioavailability is approximately twice that of ampicillin and much higher serum concentrations are obtained^[3]. The influence of food on the oral absorption of aminopenicillins has been reviewed by Eshelman and Spyker^[4]. They showed that the absorption of ampicillin, but not of amoxycillin, is reduced in the presence of food. It has also been shown that certain important Gram negative bacilli (including Escherichia coli) are destroyed more rapidly by amoxycillin and that experimental infections respond more quickly to amoxycillin than to ampicillin^[5-7]. Amoxycillin is the most frequently prescribed agent for the oral treatment of respiratory tract infections[8]. Information regarding to pharmacokinetics of amoxycillin and its residues have not been studied in arabian camels. This study was planned to investigate pharmacokinetic of amoxycillin in camels.

MATERIALS AND METHODS

Animals and treatments: Ten healthy adult camels, six males and four females, of 2-3 years old and 200-230 kg body weight were used for this study. Animals were housed in individual pens under natural day length and temperature and allowed free access to hay and water.

Animals were not fasted prior to administration of the drug. At least one week was allowed to elapse between each experiment.

Experiment 1: During this experiment amoxycillin as a 5% aqueous solution (Clamoxyl, Smith kline Beecham, Tadworth, UK) at a dose of 10 mg kg $^{-1}$ body weight was administered intravenously into the right Jugular Vein. Blood samples were collected serially in sterile heparinized tubes by venipuncture of the left Jugular Vein at 0, 5, 10, 15, 30 min and at 2, 3, 4, 6 and 12 h after amoxycillin administration. The blood samples were centrifuged at 800 \times g for 10 min, plasma separated and stored at -30° C until analysis.

Experiment 2: During this experiment, amoxicillin trihydrate as 5% suspension (Clamoxyl Drops, Smith kline Beecham, Tadworth, UK) was administered via orogastric tube at a dose of 20 mg kg⁻¹ body weight. Fifty milliliter of water was administered after the drug to wash out the orogastric tube before withdrawing it. Blood samples were collected and handled as described before.

Assay of amoxicillin: Concentrations of TAP in plasma samples were determined by using an agar plate diffusion method^[9], using *Bacillus subtillis* (ATCC 6633) as test organism, growing on Muller-Hinton agar (Mast Group Ltd Mersyside, UK). Wells of 8 mm in diameter containing 25 mL seeded agar were prepared and filled with either the test sample or amoxicillin standards. Standard solutions were prepared in antibiotic-free poled camel serum by appropriate serial dilutions of powdered amoxicillin standard. Each assay of standard and unknown was carried out in triplicate. The plate was kept at room temperature for 24 h. Mean zone diameters were measured

and plasma concentrations were determined using the curve constructed from the results of standard samples. The intra-assay coefficient of variation for amoxicillin in control plasma fortified with known concentrations was 6.9% for the range of 0.10-15 μg mL⁻¹. A linear relationship existed between the zone of inhibition and TAP concentrations in plasma with a correlation coefficient of 0.99. The detecting limit of amoxicillin in plasma was 0.10 μg mL⁻¹.

Pharmacokinetic calculations: A computerized curvestripping program (R Strip, Micro Math Research, Saint louis, MO, USA) was used to analyze the concentrationtime curves for each amimal. The relevant pharmacokinetics parameters were calculated using conventional equations associated with compartmental analysis^[10], where volume of distribution equals dose/intercept at time zero. Kinetic parameters of amoxicillin in camel were compared using Student's t-test^[11]. The probability value p<0.05 was considered significant.

RESULTS

The disposition curves describing the decline in plasma concentrations of amoxycillin after IV and oral administration (Fig. 1). The kinetic behavior of the drug was best described by an open two-compartment open model. The initial part of the curve describing the disappearance of amoxycillin from plasma was steep reflecting the processes involved in distribution of the drug from central to peripheral compartment. The value of half-life of distribution was only 3.6±0.36 min for IV and 15.3±1.9 min for oral dosing (Table 1 and 2). The later portion of the curve reflected the elimination of the injected amoxycillin from the central compartment. The elimination half-life was 69.3±2.6 min for IV and 80.0±3.4 min for oral dosing.

Table 1: Pharmacokinetic parameters of amoxycillin given at a single intravenous dose of 10 mg kg⁻¹ body weight to healthy camels. (n = 10)

Kinetic parameters	Mean±SD
A (μ g mL ⁻¹)	56.170±9.1
B (μ g m L^{-1})	16.290±4.1
$\alpha \text{ (min}^{-1})$	0.190±0.006
β (min ⁻¹)	$0.010\pm0.0.002$
$t_{1/2}(\alpha)$ (min)	3.647±0.36
$t_{1/2}(\beta)$ (min)	69.300±2.6
V _d (area) (mL kg ⁻¹)	543.400±13.2
Cl _B (mL/min/kg)	5.434±0.312
AUC (μg/h/mL)	30.100±3.1

A=Zero-time intercept of distribution phase; B=Zero-time intercept of elimination phase; $\alpha=Distribution$ constant; $\beta=Elimination$ constant; $t_{i/2}$ ($\alpha)=Half\text{-life}$ of distribution phase; $t_{i/2}$ ($\beta)=Half\text{-life}$ of elimination phase; V_d (area) = Volume of drug distribution; $Cl_B=Total$ body clearance of the dmg; AUC=Area under the concentration-time curve

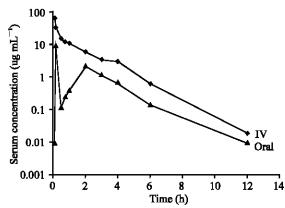


Fig. 1: Mean semi-log serum concentrations of amoxycillin versus time following intravenous (i.v) administration of a single dose of 10 mg kg⁻¹ body weights or 20 mg kg⁻¹ body weight orally to healthy camel. (n = 10 each)

Table 2: Pharmacokinetic parameters of amoxycillin given at a single oral dose of 20 mg kg⁻¹ body weight, to healthy camels. (n = 10)

Kinetic parameters	Mean±SD
$C_{\text{max}} (\mu \text{g mL}^{-1})$	3.11±0.83
$T_{\text{max}}(h)$	2.10±0.39
$t_{1/2}(\alpha) (\mu g m L^{-1})$	15.30±1.90
$t_{1/2}(\beta) (\mu g m L^{-1})$	80.00±3.40
AUC (μg/ml/min)	14.10±2.10
F% (0→12 h)	23.30±1.20

 C_{max} = Peak concentration; T_{max} = Time maximum concentration; $t_{l/2}\left(\alpha\right)$ = Half-life of distribution phase; $t_{l/2}\left(\beta\right)$ = Half-life of elimination phase; AUC= Area under the concentration-time curve; F (0+12 h) = Bioavailability during administration [AUC oral/AUC intravenous \times dose IV/dose oral]

After orogastric administration of amoxycillin the antibiotic was rapidly but incompletely absorbed with $t_{_{1/2}}$ of absorption of 15.3±1.9 min. The mean peak plasma concentration was 3.11±0.83 μg mL $^{-1}$ was detected at 2 h after drug administration. The mean estimated systemic availability (F) was 23.3±1.2% (Table 2).

DISCUSSION

The disposition of amoxicillin in camel after both intravenous and oral administration was best described by a two-compartment model with a short half-life. Similar results have been reported in man^[12], horse^[13,14], sheep and goat^[15], rat^[16] and dog^[17].

The short distribution half-life of amoxicillin indicates that the drug moves rapidly from central to peripheral compartment. The volume of distribution of the drug exceeds the volume of the central compartment (410 mL kg⁻¹) suggesting extensive tissue penetration^[18]. The rapid elimination phase suggests that, like other penicillin's, amoxicillin is eliminated rapidly by renal tubular secretion^[1]. This is consistent with the fact that the nephron in the camel is twice as long as in cows or goat^[19].

The high body clearance (5.4 mL/min/kg) and short elimination half-life amoxycillin indicate that IV administration of these soluble forms to camels may have some limitations for treating bacterial infections in camel practice. In complete absorption and rapid elimination after oral administration were responsible for the small area under plasma concentration time curve so that bioavailability was only 23%. The low plasma concentrations of amoxycillin seen may be because of chemical reduction by rumen microflora^[20], poor solubility in aqueous rumen contents[21] or extensive first pass effect^[22]. As camelid and ruminant forestomach share similarities in fermentive capacities and digestive qualities, similar causes for poor absorption of amoxycillin in camels might be expected. Furthermore, amoxycillin has been reported to be absorbed across the intestinal mucosa by both passive diffusion and active transport. The active transport is most likely mediated through the oligopeptide carrier localized at the apical enterocyte membrane which is a symport carrier transporting a substrate with a proton across the apical enterocyte membrane^[23-25]. The existence in camels of a carrier-mediated transport that can become saturated at high dosage, could explain the low oral bioavailability of amoxycillin reported here elsewhere^[26].

Throughout a course of treatment is highly desirable to maintain therapeutic concentrations of antibiotic in the body. A Minimum Inhibitory Concentration (MIC) of amoxycillin 0.5 μg mL⁻¹ has been reported^[27]. In the present study, a mean plasma amoxycillin concentration of 0.5 μg mL⁻¹ or more was maintained for at least 4-6 h after a single IV or oral dosing. It seems likely that such a dose value may need to be given more than once every 24 h.

ACKNOWLEDGMENT

The author thanks the Deanship of Scientific Research, King Faisal University for financial support.

REFERENCES

- Gilman, A.G., T.W. Rall, A.S. Neis and P. Taylor, 1991. The Pharmacological Basis of Therapeutics. 8th Edn., Pergamon Press, New York.
- Sutherland, R. and G.N. Rolinson, 1970. α-Amino-phydroxybenzylpenicillin (BRL 2333); a new semisynthetic penicillin *in vitro* evaluation. Antimicrobial Agents and Chemother., 1: 411-415.
- Yeoman, G.H., 1977. Microbiology and bioavailability of amoxicillin. Vet. Medicine, Small Anim. Clinician, 72: 720-738.

- Eshelman, E.N. and D.A. Spyker, 1978. Pharmacokinetics of amoxicillin and ampicillin: Cross-over study of the effect of food. Antimicrobial Agents and Chemotherapy, 14: 539-543.
- Hunter, P., G.N. Rolinson and D.A. Witting, 1973. Bactericidal effect of amoxycillin in *vivo* compared with ampicillin. Antimicrobial Agents and Chemotherapy, 4: 285-293.
- Comber, K.R., C.D. Osborne and R. Sutherland, 1975.
 Comparative effects of amoxicillin and ampicillin in the treatment of experimental mouse infections.
 Antimicrobial Agents and Chemotherapy, 7: 179-185.
- Rolinson, G.N., A.C. Macdonald and D.A. Wiilson, 1977. Bactterial action of β-lactam antibiotics and Escherichia coli with particular reference to ampicillin and amoxycillin. J. Antimicrobial Chemother., 3: 541-553.
- Woodhead, M.A., I.T. Macfarlane, J.S. Mccracken, D.S. Rose and R.D. Finch, 1987. Prospective study of the aetiology and outcome of pneumonia in the community. Lancet, 2: 671-674.
- Bennett, J.V., J.L. Brodie, E.J. Bennett and W.M.M. Kirby, 1966. Simplified, accurate method for antibiotic assay of clinical specimens. Applied Microbiol., 14: 170-177.
- Gibaldi, M. and D. Perrier, 1982. Pharmacokinetics.
 2nd Edn. Marcel Dekker, Inc., New York, USA.,
 pp: 45-109.
- 11. Kirkwood, B.R., 1988. Essential of Medical Statistics. Blackwell Scientific Publications, Oxford.
- Spyker, D.A., R.J. Rugloski, R.L. Vann and W.M.O'Brien, 1977. Pharmacokinetics of amoxicillin: Dose dependence after intravenous, oral and intramuscular administration. Antimicrobial Agents and Chemotherapy, 11: 132-141.
- Wilson, W.D., M.S. Spensley, J.D. Baggot and S.K. Hietala, 1988. Pharmacokinetics and estimated bioavailability of amoxicillin in mares after intravenous, intramuscular and oral administration. American J. Vet. Res., 49: 1688-1694.
- Ensink, J.M., W.R. Klein, D.J. Mevius, A. Klarenbeck, and A.G. Vulto, 1992. Bioavailability of oral penicillin in the horse a comparison of pivampicillin and amoxicillin. J. Vet. Pharmacol. Therapeutics, 15: 221-230.
- Craigmill, A.L., M.A. Pass and S. Wetzlich, 1992.
 Comparative pharmacokinetics of amoxicillin administered intravenously to sheep and goats. J. Vet. Pharmacol. Therapeutics, 15: 72-77.
- Torres-Molina, F., J.E. Peris-Ribera, M.C. Garcia-Carbonell, J.C. Aristorena, L. Granero and J.M. Pla-Delfina, 1992. Nonlinearities in amoxicillin pharmacokinetics. Disposition studies in the rat. Biopharmaceutics and Drug Disposition, 13: 23-38.

- Kung, K. and M. Wanner, 1994. Bioavailability of different forms of amoxicillin administered orally in dogs. Veterinary Record, 135: 552-554.
- 18. Wilson, R.T., 1984. The Camel. Longman Group Ltd. Londone, pp: 69-77.
- Abdalla, M.A. and O. Abdalla, 1979. Morphometric observations on the kidney of the camel, *Camelus dromedaries*. J. Anat., 129: 45-50.
- Knoppert, N.W., S.M. Nijmeijer and C.T.M. Vandum, 1988. Some pharmacokinetic data of aditoprim and trimethoprim in healthy and tick-borne fever infected dwarf goat. J. Vet. Pharmacol. Therapeutics, 11: 135-144.
- Shoaf, S.E., W.S. Schwark and C.L. Guard, 1987. The effect of age and diet on sulfadiazine trimethoprim disposition following oral and subcutaneous administration to calves. J. Vet. Pharmacol. Therapeutics, 10: 331-345.
- Ratz, V., R. Maas, G. Semjen, A.S.P.J.A.M. van Miert, and R.F. Witkamp, 1995. Oral bioavailability of sulphonamides in ruminants: A comparison between sulfamethoxazole, sulphatroxazole and sulphamerazine, using the dwarf goat as an animal model. Vet. Quart., 17: 82-87.

- Wesphal, J.F., J.H. Trouvin, A. Deslandes and C. Carbon, 1990. Nifedipine enhances amoxicillin absorption kinetics and bioavailability in humans. J. Pharmacol. Exptl. Therapeutics, 255: 312-317.
- Wesphal, J.F., J.H. Trouvin, A. Deslandes and C. Carbon, 1991. Reappraisal of amoxicillin absorption kinetics. J. Antimicrobial Chemother., 27: 647-654.
- 25. Lennernas, H., L. Knutson, T. Knutson, A. Hussain, L. Lesko, T. Salmonson and G.L. Amidon, 2002. The effect of amiloride on the *in vivo* effective permeability of amoxycillin in human jejunum: Experience from a regional perfusion technique. European J. Pharmaceutical Sci., 15: 271-277.
- Agerso, H. and C. Friis, 1998. Bioavalability of amoxycillin in pigs. J. Vet. Pharmacol. Therapeutics, 21: 41-46.
- Hyatt, J.M., P.S. Mckinnon, G.S. Zimmer and J.J. Schentag, 1995. The importance of pharmacokinetic/pharmacodynamic surrogate markers to outcome; Focus on antibacterial agents. Clinical Pharmacokinetics, 28: 143-160.