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Inhibition of Glutathione Synthesis as a Potential Therapeutic Strategy
Against Chagas’ Disease
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Abstract: Chagas’ disease is a major parasitic cause of death and hardship, especially in the impoverished
regions of Latin America. Trypanosoma cruzi is the etiologic agent of this disease. Characteristically, this
hemoflagellate has an indirect life cycle with mammals as definitive hosts where attacks the heart, skeletal,
smooth and cardiac muscles and the central nervous system. The drugs currently in use to treat this disease
are nifurtimox and benznidazole. However, they have many side effects and are potentially toxic. Their mode
of action includes free radical and electrophilic metabolites generation, which are toxic for the parasite. The
parasite 1s more sensitive to the oxidative stress than the host. Gutathione and its spermidine derivative,
trypanothione are the main antioxidative mechanisms in the parasite. Any modification in the parasite capacity
to synthesise this thiols could induce a more susceptible environment to the action of the trypanocidal drugs.
This effect may shorten treatment length or lower the required doses to treat this disease.

Key words: Trypanosoma  cruzi, buthionine

sulfoximine,

nifurtimox, benznidazole, trypomastigotes,

epimastigotes, amastigotes, glutathione, trypancthione

The disease and its agents. Trypanosoma cruzi is a
hemoflagellate parasite!!, of the Kinetoplastida order and
Trypanosomatidae family. This order 1s characterized by
possessing one large mitochondria containing 15 to 30%
of the cellular DNA. The disease extends from the
southern part of the United States to the south of Chile
and Argentina. Estimates are that the number of infected
people in Latin America is 20 million, with mortality and
morbidity rates of 0.4/1000 and 3.8/1000, respectively™.
T. cruzi has an indirect life cycle, that comprises
hematophagous insects (Triatomids) as mtermediary
hosts and mammals, including man, as definitive
hosts™. The principal 7. cruzi vectors in South America
are Triatoma infestans (vinchuca), Rhodnius prolixus and
Panstrongylus megistus. In Chile, Mepraia spinolai and
M. gajardoi must be considered along with T. infestans.
Transmission of disease is mainly produced by the
bite of a 7. cruzi infected mnsect. Upon feeding on blood
from a mammal, the msect deposits feces contaminated
with infecting metacyclic trypomastigotes which then
enter the blood stream through the skin, mechanism
facilitated by scratching of the insect bite and by
proteolytic enzymes present in the hematophagous
insect’s saliva®. Once in the blood stream,
trypomastigotes enter macrophages and other leukocytes,

differentiating into amastigotes, a form of obligatory
cytoplasmic replication. After a certain number of
divisions, amastigotes differentiate into trypomastigotes,
escaping from the cells and returning to the bloodstream.
Thus, they make their way to target tissues such as the
myocardium, skeletal muscle, visceral smooth muscle and
central nervous system glia. Other important forms of
transmission are blood transfusions and organ
transplants  (10% of cases) and transplacental
transmission in Chagasic mothers®). The epidemiological
importance of consumption of infected meat has not been
dimensioned, even though oral transmission is
possiblel®?,

The disease progresses in three phases. The acute
phase, immediately after mfection, with
parasitemia, produces symptoms in only some patients
(regional lymphadenopathies, bipalpebral, umlateral
oedema or Romafia’s sign and  characteristic

intense

electrocardiographic alterations). In most cases, the acute
infection does not present clinical mamfestations and
advances into a latent phase that can last months, or even
years'™. The chronic phase in 30% of infected patients is
associated with megacolon, megaesophagus, denervation
of the autonomous nervous system, cardiac
arrhythmia, myocardial hypertrophy and progressive
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cardiac insufficiency and a very negative impact on the
individual’s working capacity™. In this phase, the disease
can be incapacitating and directly or concurrently
responsible for mortality.

Tt is therefore evident, that there exists a need to
develop effective therapeutic strategies to fight this
disease. Taking into consideration the limited
effectiveness and collateral toxicity of currently available
drugs for this disease, it is necessary to develop a
multiple therapeutic approach, with additive or synergic
effect to treat this disease.

Limitations for the use of conventional drugs: Chagas’
disease must be treated at the moment it 13 diagnosed.
Drugs currently in use for the treatment of Chagas’
disease are Nifurtimox (4-[5-furfurilliden)amino]-3-
mehtylthiomorpholyn-1,1-dioxide) and Benznidazole (N-
benzyl-2-mitroimidazole-1-acetamide).  Recommended
dosage in the acute phase of disease is 8-10 mg/kg/day
for 90 days mn adults and 15 mg/kg/day mn children for
Nifurtimox and 5 mgkg/day for 60-90 days for
Benzmidazole. Duration of therapy averages 60 days. Only
in case of accidental infection, by a vector, blood
transfusion, or laboratory contamination, treatment
duration is 10 days.

Both mfurtimox and benzmdazole are active against
all parasite forms®. In spite of this, they can cause
systemic toxicity and mild to severe side effects that
include: anocrexia, nausea, vomiting, vertigo, headache,
amnesia, pruritus, fever, depression or excitation,
convulsions, paresthesias, peripheral neuropathy and
dermatitis™”. In addition, they produce mutagenesis and
DNA damage, reasons for which there are doubts on the
benefits of their use""'4. Differences in susceptibility to
these drugs have been observed between strains, which
adds another element of complication to the
pharmacological treatment of this disease, resulting in an
important cause of treatment failure!™,

Mechanisms of action of nifurtimox and benznidazole:
During the reduction process of both drugs, by action

of mnitroreductases, electtophylic metabolites and
nitroradicals are produced"’. As seen in Fig. 1,
nitroradicals  enter redox recycling with molecular

oxygen, producing partial oxygen reduction, thus
regenerating the drug"” and favoring the appearance of
the superexide anion (0, ™), H,0.' and the hydroxyl
radical (OH"). These free radicals bind to macromeolecules
such as: lipids, proteins and DNA and can therefore
produce mutagenesis and carcinogenesis! ™',
Nifurtimox produces the nitro anion radical in
T. cruzi®™ at concentrations that inhibit epimastigotes

in culture (10-20 HM)[14=19:21]_
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Fig. 1: Mode of action of Nifurimox and Benznidazole.
Glutathione (GSH) and trypanothione (T(SH),
neutralization effect of macromolecular damage

Benzmidazole intubits 7. cruzi epimastigote
growth at concentrations that do not induce production
of O,"” or H,O,. On the contrary, Benzmdazole’s reduced
metabolites, through covalent binding to macromolecules,
are involved in its toxic and trypanocidal effects!"'#-24%1,
A variety of responses to Benznidazole and Nifurtimox
have been observed in different T. cruzi strains™. The
reason for this phenomenon is unknown, although an
increase m concentration of detoxifying enzymes or
modification of intracellular thiol content has been
proposed™*7,

Thiol metabolism and defense against free radicals: The
defense mechamsms used by mammalian cells to
eliminated free radicals are multiple and diverse®*™. They
possess enzymes such as superoxide dismutase, catalase,
glutathione peroxidase, glutathione-S-transferase and
reductive compounds such as reduced glutathione (GSH),
d-tocopherol, ascorbic acid and beta-carotene. In
addition, it has been proposed that metalothioneins, due
to their lugh-SH group content, can participate i the
metabolism of free radicals and electrophylic agents™ ™.
On the other hand, the parasites’ defense mechamsms
against oxidative stress are deficient™ ™. Selenium
dependent glutathione peroxidase and catalase activity
have not been detected™ ® and superoxide dismutase
activity is very low!'"™™. In addition, the existence of
beta-carotene and a-tocopherol has not been published
either. Not withstanding, the presence of ascorbate
reductase and dehydroascorbate reductase activity has
been detected in 7. cruzi, suggesting the existence of an
ascorbic acid redox cycle, both in epimastigotes and
trypomastigotes™.

Due the fact that trypanosomatids are deficient in
enzymes that protect them from oxidative stress, the main
mechanisms that 7. cruzi has to protect itself from free
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Fig. 2. Glutathione and trypanothione synthesis.
Inhibition by buthionine sulfoximine (BSO)

radicals are reduced GSH and a GSH-spermidine comjugate
named trypanothione. This compound is characteristic of
all trypanosomatids and is indispensable for GSH

reduction™*,

Glutathione (yL-glutamyl-L-cysteinyl-glycie) 1s the

low molecular weight thiol that is found in highest
concentration in mammalian cells. Tt protects against
toxieity from lughly electrophylic compounds or from their
metabolites and against free radicals™. It also participates
in detoxification processes of xenobiotics of electrophylic
character, via glutathione-S-transferases™*?. In addition,
it important in protecting DNAM! and lipid
membranes**7.

Glutathione reductase irreversibly reduces oxidized
glutathione in mammals, maintaining a very high
GSH:GSSG ratio. In 7. cruzi, the enzyme glutathione
reductase has not been found™”, but reduction of GSSG
by means of trypanothione has been demonstrated™”.

Glutathione 1s synthesized by the successive action
of y-glutamyleysteinyl synthetase (GGCS) and
glutathione synthetase (Fig. 2). Both require ATP.
Reduced glutathione inhibits GGCS, by non allosteric
feedback. Glutathione degraded by +y-glutamyl
transpeptidase, y-glutamyl cyclotransferase and 5-oxo-
prolinase and by a peptidase, thus conforming the
v-ghitamyl cycle™.

GGCS can be inhibited by a group of chemical
analogs™, one of them heing L-buthionine (SR)
sulphoximine (B3SO) (Fig. 2).

Trypanothione (N1,N8-bis(glutathionyl) spermidine,
T(SH),) is a low molecular weight thiol specific of
trypanosomatids. It 1s synthesized by the conjugation of
two molecules of reduced glutathione and spermidine, in
an ATP dependent reaction (Fig. 2) and catalyzed by
glutathionyl-spermidine synthetase and trypancthione
synthetase®™"1. Trypanothione needs two electrons in
order to be reduced and at physiclogic pH has a +1

1s

is
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charge and is slightly more electronegative than GSHE.
These characteristics results in its important reductive
power. There are studies that showing that T(SH), 1s a
better radioprotector of DNA than GSH or spermidine,
presumably because T(SH)2’s spermidine allows a greater
local concentration of SH groups in the proximity of DNA,
due to its positive charge®™.

T(SH), in trypanosomatids reduces glutathione and
also acts as a intracellular protector against endogenous
and exogenous oxidative agentst**
T(SH), include ascorbate homeostasis
hydroperoxides® ¥, desoxyribonucleotide
and conjugation with metals and drugs (Fig. 1)

In conclusion, trypanosomatids have a more deficient
defense system than mammals against oxidative stress
and their principal defense is through GSH and T(SH),.

Numerous chemical compounds exist, of natural and
synthetic origin, that have been evaluated as potential
trypanocidal agents®®”, the main ones are: Allopurinol
and its analogs"™”, Ketoconazole and Itraconazole among
other antimycotics®™, numerous quinine derivatives®,
Nitroheterocyclic  derivatives such as megazole™™,
antioxidants™ and drugs i clinical use such as
Phenothiacins™ and oxazol(thiazolipiridine derivatives™.
However, for wvarious reasons including lack of
susceptibility, resistance, insolubility, toxicity, or poor
clinical response, these drugs have not had better results
than Nifurtimox and Benznidazole. The logic of testing a
combination of BSO with Nifurtimox and Benznidazole,
in order to boost therapeutic effects
toxicity of these drugs, 13 based on the previous
considerations.

This hypothesis is based on the following: a) T. cruzi
has levels of free and conjugated GSH that are much lower
than those of the mammalian host™® ™ Electrophylic
metabolites of Nifurimox and Benzmidazole conjugate
with GSH and T(SH), lowering the intracellular
concentration of these thiols™*), thus aggravating the
parasite’s already precarious defense agamnst oxidative
sttress and electrophylic metabolites (Fig. 1). b) In
mammals, GSH synthesis can be inhibited in up to 80-90%
without evidence of toxicity, since they possess other
defense mechamsms agamst oxidative stress and
electrophylic agents. Thus oral admmistration of 20 mmol
BSO kg™ in mice inhibits GSH synthesis in all examined
tissues, except the brain™, without producing toxic
effects”]. ¢) GGCS has been isolated in species like
E. 17 protozoans 17l

1. Other functions of
B reduction of

synthesist”
25]

and lower

coli such as 7. bruced and
Leishmama™, nematodes™, rats'™ and humans™. The Ki
of BSO for this enzyme can vary greatly depending on the
species. For example, inE. coli the magmtude of intubition
of GGCS by BSO and other analogs is low compared to
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the inhibition in rats or humans'’®, which suggests that
the selective mtubition of GSH synthesis is possible and
that this selectivity has a potential therapeutic
application. In fact, a similar approach has been tried in
trypanosomatid protozoans, in which the dependence on
GSH and T(SH), is essential for survival. Mice infected
with T. brucei have been cured with a single dose of
2-4 mmeol kg BSOY. Apparently, the same strategy has
also worked in T.eishmaniasis # vitro®™. All of the above
mdicates that there are structural differences m GGCS that
could be exploited in Chagas’ disease drug therapy.
d) Resistance to some anti-neoplasic agents is partly
related to GSH levels since this compound can protect
agamst oxidative stress induced by these agents on its
own by: T) protecting against drug induced oxidative
stress, i1) conjugating with the drug™ | or iii) participating
in DNA repair processes*”). The fact that GGCS activity
and GSH turnover in tumor cells 1s lower than in normal
cells has also been demonstrated®®®. For this reason,
selective mtibition of GSH synthesis with BSO 1s
possible. In addition, this strategy has been demonstrated
to be effective in reverting resistance processes™™! and
in potentiating the effect of antineoplasic agents such as
doxorubicin™, melphalan®™* and cyclophosphamide
derivatives™ in preclinical studies and in human phase I
and II clinical studies in the case of melphalan™®*",
In these experiments, blood levels of 0.5 to 1 mM of BSO
were obtained and up to 80% mhibition of white blood cell
GSH content and 50% inhibition of GGCS. Tt has also been
demonstrated that tumors can be sensitized to treatment
with radiation by lowering GSH levels® . Decrease in
glutathione content in humans might pose a therapeutic
problem, but apparently this strategy does not have toxic
consequences according to studies in mice and clinical
studies™*1.

Finally, mn our laboratory we have proven that in
T. eruzi epimastigote cultures inhibition of GSH by
approximately 50%, using B3O, increases Nifurtimox and
Benznidazole parasite toxicity™. Nevertheless, there are
no references m the literature where BSO has been used
to boost other anti-parasitic drugs, except experiments
carried out in our laboratories and the use of BSO to
modulate GSH levels in cancer therapy.

The fact that different 7. cruzi strains have different
susceptibility profiles to Nifurtimox and Benznidazole!'”,
partly explamed by differences in glutathione and
trypanothione content™®*!, supports the use of BSO in
combination with drugs of similar profiles of action as
those in clinical use in order to improve efficiency in
Chagas’ disease treatment.

In recent studies in our laboratory™ we show that
L-buthiommne (S R)-sulfoximine (BSO) increased the
toxicity of nifurtimox and benznidazole toward the
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epimastigote, trypomastigote and amastigote forms of
Trypanosoma cruzi. In Vero cells infected with
amastigotes, 25 UM BSO was able to potentiate the effect
of mifurtimox and benznidazole as measured by the
percentage of infected Vero cells multiplied by the
average number of intracellular amastigotes (endocytic
index). At 0.5 pM nifurtimox, the proportion of Vero cells
infected decreased from 27 to 20% and the endocytic
index decreased from 2500 to 980 when 25 uM-BSO was
added. Simnilar results were obtamed with benzmdazole
and BSO-benznidazole treated cells.

This study indicates that potentiation of mifurtimox or
benznidazole by BSO could decrease the clinical dose of
both drugs and dimimish the side effects or the length of
therapy.
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