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Abstract: In this study plant’s response to cold acclimation and nonacclimation was investigated in soybean
(Glycine max). Seedlings were exposed to 15°C (cold-acclimated) or 25°C (nonacclimated) for 24 h, under

2

250 pmol m™

sec”' Photosynthetically Active Radiation (PAR). Then, all plants were exposed to chilling

temperature at 4°C for 24 h and allowed te recover at 25°C for 24 h. Physiological responses to chilling,
mncluding, MDA, proline, chlorophyll a and b and carotenoids and total protein contents were measured in
soybean to identify mechanisms of chilling tolerance. Relative water content showed that cold-acclimated plants

were less affected by chilling compared to nonacclimated plants. Cold-acclimated plants also recovered faster

from chilling injury than nonacclimated plants.

Key words: Acclimation, chilling, chlorophyll a and chlorophyll b, carotenoids, lipid peroxidation, proline,

protein

INTRODUCTION

Each plant species has its unique set of temperature
requirements, which are optimum for proper growth and
development. Low temperatwre is one of the abiotic
stresses that are principal cause of crop failure
world wide, dipping average yields for most major crops
(Bray et al., 2000). Many plants, especially those, which
are native to warm habitat, exhibit symptoms of injuy
when exposed to low non-freezing temperatures (Lynch,
1990). These plants include maize (Zea mays), soybean
(Glycine max), cotton (Gossvpium hirsutunt),

(Lycopersicon esculentum) and banana (Musa sp.) which

tomato

are particularly sensitive to temperatures below 10-15°C
and exhibit signs of imjury (Lynch, 1990; Guy, 1990,
Hopkins, 1999). The symptoms of stress induced injury in
these plants appear from 48 to 72 h, later, however, this
duration varies from plant to plant and also depend
upon the sensitivity of mdividual plant to cold stress
(Shilpi and Narendra, 2003). Tt is now known that exposure
of chilling-sensitive plants, such as maize and tomato, to
temperatures slightly above chilling reduces chilling
mjury (Anderson et af, 1995; Gilmow et al, 2000,
Scebba et al., 1999; Prasad, 1996, Scebba et al., 1999,
Venema et al., 2000). Tt has been reported that some
chilling-sensitive plants acclimate if they are exposed to a
low temperature slightly above the threshold chilling
temperature, in a process analogous in some respect to
the acclimation that occurs in perennial plants in the

autumn (Daie and Campbell, 1981). Several factors
invelve in cold acclimation, such as plant hormones,
especially abscisic acid (ABA), ethylene (ET) and
gibberellic acid (GA), proteins and carbohydrates
(Annikki et «l, 2002). Microtubules are key
candidates  for pronounced cold sensitivity of cell
growth and depolymerize in response to low temperatures
(Mizuta et @l., 1995). During low temperature, ABA level
raises. Hlevated levels of ABA prevent microtubular
destruction, which appears in response to chilling
(Wang and Nick, 2001). Ethylene appears to be imnvolved
in cold acclimation in some plants, because of its
mcreased levels during cold acclimation and ability of
endogenous ethylene to  induce number of
antifreeze proteins (Yu et al., 2001). Gibberellic acid has
been suggested to function as an ABA antagomnist during
cold acclimation (Annikki et al., 2002). Since soybean is
sensitive to chilling temperatures, so, we investigated the
effect of low temperature pretreatment on soybean’s
tolerance to chilling, which 1s one of the strategies to
protect plants from chilling damage.

MATERIALS AND METHODS

Seeds of soybean (Glycine max) were purchased
from oilseeds center, Ardabil and were soaked in water for
6 h at 25°C and then were germinated in Petri dishes on
two layers of filter paper for 48 h at 25°C in an incubator.
Subsequently the seedlings were transferred to pots
containing washed sand (4 seedlings per pot) and were
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watered with half-strength Hoagland nutrient solution.
The plants were grown at 27/25°C (day/night) temperature,
70% relative humidity, with a 16/8 h day/mght
photoperiod under 250 pmol m™* sec™ photosynthetic
photon flux density. Seedlings at the three-leaf stage were
placed at 15°C (cold acclimated) or 25°C (nonacclimated)
for 24 h The acclimated and nonacclimated seedlings
were then exposed to chilling at 4°C for 24 h and allowed
to recover for 24 h at 25°C. Harvesting was done at the
same time each day to avoid complications from diurnal
fluctuations in biochemical processes. Experiments were
conducted from May to July in 2007 at biochemistry lab,
Department of Biology, Faculty of Science, Urmia
University, Iran. Means were separated by Tukey
Multiple Range Test at p = 0.05.Values are the mean+SE
of three replicates.

Lipid peroxidation: Lipid peroxidation was estimated by
the level of malondialdehyde (MDA) production by a
slight modification of the thiobarbituric acid (TBA)
method described by Buege and Aust (1978). Absorbance
at 532 nm was recorded and corrected for nonspecific
absorbance at 600 nm. MDA concentrations were
calculated by means of an extinction coefficient of
156 mM ™" em™ and the following formula:

MDA (umel g~ fresh wt.) = [(Ay;, — Ayp)156] x 10° x
dilution factor (Zhnyuan and Bramlage, 1992).

Proline content: Free proline content was estimated using
the acid mnhydrin method (Bates et al, 1973). One
hundred fifty milligram of plant tissues (leaves and roots)
was grounded in a mortar and pestle with 6 ml. of 3%
(w/v) sulfosalicylic acid aqueous solution and the
homogenate was filtered through Whatman No. 1 filter
paper, then 2 mL of the filtered extract was taken for the
analysis to which 2 mL acid ninhydrin and 2 mT. of glacial
acetic acid were added. The reaction mixture was
mncubated m a boiling water bath for 1 h and the reaction
was [inished in an ice bath. Four milliliter of toluene was
added to the reaction mixture and the orgamc phase was
extracted, in which a toluene soluble reddish chromophore
was obtaned, which was read at 520 mm using toluene as
blank by UV-visible spectrophotometer (WPA model
S52100).

Total protein content: Total protein content was measured
using Lowry method (Lowry et al., 1951).

Chlorophyll a and b and carotenoids content: Chlorophyll
a (C)and b (C) and carotenoids (C ,) content were
measured using Lichtenthaler and Wellbum (1983)

method. The absorbance of resulting supernstant was
recorded at 470, 645 and 662 nm using UV-visible
spectrophotometer (WPA model S2100). The amount of
chlorophyll a and chlorophyll b and carotencids were
measured using the following formulas:

C, = 11.75%A,, - 2350 x A ,,,

C, = 1861 xA,, - 3.960 % A,

Cpe= 1000 % A,y — 2.270 % C,-81.4 x C\,/227

RESULTS AND DISCUSSION

The increase in chilling tolerance that occurs with
cold acclimation, 1s thought to involve the activation of
multiple chilling tolerance mechamsms. Here we showed
that changes in multiple metabolites such as total protein,
proline, soluble sugars and MDA contents that are
commonly observed to occur in plants during cold
acclimation. There is evidence to mdicate that each of
these classes of biochemical alternations proline
(Carpenter and Crowe, 1988)and MDA (Kacperska, 1989,
Raison and Orr, 1986; Williams et al., 1988), protein
(Anmiklki et al., 2002; Shilpt and Narendra, 2005) contribute
to an enhancement of chilling tolerance.

Proline accumulates in higher plants in response to
various biotic and abiotic stresses such as water deficts
and salimty and chilling stress (Steware, 1981; Hanso and
Hitz, 1982; Rhodes, 1987; Delauney and Verma, 1993;
Samaras et al., 1995; Taylor, 1996, Rhodes et al., 1999,
Gilmour et al., 2000) plays a major role in antioxidative
stress as a hydroxyl radical scavenger (Matysik et al.,
2002), regulation of NADYNADH ratio (Alia and
Saradhi, 1993) and as a protein-compatible hydrotrope
(Srinivas  and Balasubramanian, 1995). At low
temperatures, proline  accumulates i plants
(Van Swaayj et al., 1985; Gilmour et al., 2000). It has been
reported that proline content was increased in the leaves
of potato hybrids when the plants were subjected to cold
acclimation treatment (Van Swaai) ef al., 1985). In present
research proline accumulated when the plants were
transferred to chilling temperature (4°C). In cold
acclimated plants proline content was higher than
nonacclimated plants and cold acclimated plants
recovered faster than nonacclimated ones. So, because of
proline’s protective role m plants in stress conditions, we
can say, cold acclimated plants could tolerate chilling
temperatire better than nonacclimated plants. In leaf
samples, amount of praline mcreased m acclimation
specially in cold acclimated plants, but it decreased in

chilling phase and again increased i recovery phase
(Fig. 1, 2.
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Fig. 1: Changes in root proline content (mg g~ £ wt.) in
cold-acclimated and non-acclimated soybean roots
during acclimation, chilling and recovery. Mean of
3 measurements+=SE. p = 0.05
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Fig. 2: Changes in leaf proline content (mg g~ {. wt.) in
cold-acclimated and non-acclimated soybean
leaves during acclimation, chilling and recovery.
Mean of 3 measurements+SE. p = 0.05

Cold acclimation proteins may play a physiological
role similar to that of heat shock proteins (HSPs)
(Key et al., 1981) in protecting organisms from injury at
low temperatures (Chen et al., 1991). Genes encoding
Early Light-Induced Protein (ELIP) were found to be the
most highly upregulated in cold acclimated plants
(Wei et al., 2005). HSPs in cells are vital for increasing
thermotolerance (Yeh et af., 1997, Annikki et al., 2002).
Heat shock proteins are associated with plasmalemma and
are thought to be physiologically important in reducing
cellular leakage of solutes in soybean seedlings (Lin et al.,
1984). Like HSPs, cold acclimation proteins are associated
with nuclei, mitochondria and ribosomes (Chen,
unpublished data), which may explain why lower amount
of amino acids and ions were found in the leakage of,
chilled, cold acclimated seedlings than in that of chilled,
nonacclimated seedlings. Chang et af. (2000) showed that
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Fig. 3: Changes in root total protein content (mg g™
f. wt) in cold-acchimated and non-acclimated
soybean roots during acclimation, chilling and
recovery. Mean of 3 measwrements+SE. p = 0.05
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Fig. 4: Changes in leaf total protein content (mg g™
f. wt) in cold-acclimated and non-acclimated
soybean leaves during acclimation, chilling and
recovery. Mean of 3 measuwrements+5E. p = 0.05

proteins in the cell sap of cold acclimated mungbean
seedlings were about 60% higher than the control
seedlings. In this research, total protem content was
mcreased in cold-acclimated and nonacclimated plants.
Cold-acclimated  plants  recovered  faster  than
nonacclimated plants in recovery phase (Fig. 3, 4).

The lipid membrane i1s composed of a mixture of
phospholipids and glycolipids that have fatty acid chains
attached to carbon 1 and 2 of the glycerol backbone by an
ester linkage. The peroxidation reactions differ among
these fatty acids depending on the number and position
of the double bounds on the acyl chain. Oxidation of
unsaturated fatty acids by singlet oxygen produces
distinctly different products (Bradley and Min, 1992),
such as malondialdehyde (MDA). In this study, MDA
content of nonacclimated leaves was higher than cold

1438



J. Biol. Sci., 7 (8): 1436-1441, 2007

—4— Control
— Cold-acclimated

60 -~ Non-acclimated

~~
E Acclimation Chilling Recovery
. 50
4
T w40
Q
\% 30 [
g
[*)
<
g 10 1
—
0%
24 43 T2
Time (k)

Fig. 5. Changes in leaf MDA content (pmol g £ wt.) in
cold-acclimated and non-acclimated soybean
leaves during acclimation, chilling and recovery.
Mean of 3 measurements+SE. p = 0.05
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Fig. 6 Changes in leaf chlorophyll a content (mg g~' .
wt.) in cold-acclimated and non-acclimated
soybean leaves during acclimation, chilling and
recovery. Mean of 3 measwements+SE. p =0.05

acclimated ones 1 recovery phase. Cold acclimated plants
recovered faster than nonacclimated leaves. It shows that
pretreatment of cold temperature (15°C) can tolerate
soybean plant against subsequent chilling temperature
(4°C) (Fig. 5).

Carotenoids are C,; 1soprenocids and tetraterpens that
are located 1n the plastids of plant tissues. In chloroplasts,
the carotenoids function act as accessory pigments n
light harvesting, but a more important role is their ability
to detoxify various forms of activated oxygen and triplet
chlorophyll that are produced as a result of excitation
of the photosynthetic complexes by light The
xanthophylls, ke zeaxanthin, are carotene derivatives.
Low temperatures miubit the formation of zeaxanthin
(Bilger and Bjorkman, 1991), which normally quenches
excitation energy in the antenna of photosystem 2 and
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Fig. 7. Changes in leaf chlorophyll b content (mg g~ f.
wt.) in cold-acclimated and non-acclimated
soybean leaves during acclimation, chilling and
recovery. Mean of 3 measurements+3E. p = 0.05

—4- Control
—m— Cold-acclimated
—b— Non-acclimated
& g.12- Acclimation Chilling Recovery
1 010
2 0.08
i; 6.06
2 04
=]
g 0.02 :
OAOG T L} L]
© e 24 a8 7
Time ()

Fig. 8: Changes in leaf carotencids content (mg g~ . wt.)
i cold-acclimated and non-acclimated soybean
leaves during acclimation, chulling and recovery.
Mean of 3 measurements+SE. p = 0.05

dissipates 1t as heat (Adams, 1990). Zeaxanthin

production from vieolaxanthin is induced under normal
conditions by high light and low thylakiod lumen pH, but
this process is blocked at low temperatwes. So
carotenoids and subsequently, chlorophyll a and b
deplete after a lag time of 3 to 6 h of exposure to low
temperatures (Wise and Naylor, 1987). In present study,
the amount of chlorophyll a and b and carotenoids were
decreased m chilling phase. In cold acclimated leaves this
decrease was gradually compered with nonacclimated
leaves. Cold acclimated leaves recovered better than
nonacclimated leaves when they were transferred to 25°C
(recovery phase) (Fig. 6-8).
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