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Abstract: The present research aims to study the molecular characterization of a new 6083 ribosomal protein 110
(RPL10) from Mucor racemosus PTCC5305 and its coding sequence. A full-length complementary DNA (cDNA)
encoding 603 ribosomal protein 110 was isolated from Mucor racemosus cDNA library. The cDNA of 766 base
pairs contains a 652 base pairs open reading frame and 5'- and 3'- flanking regions mcluding a polyadenylation
sequence. The deduced protein of 216 amino acid residues had an iscelectric point (pl) of 10.16 and a calculated
molecular mass of about 24.5 kDa. Sequence analysis of RPL10 revealed 78% identity and 89% similarity with
fungus Pyrenophora tritici. Also it showed 73% identity and 84% similarity with Homo sapiens. Phylogenetic
tree analysis based on the conserved domain of Ribosomal 116 L10e super family exhubited that Mucor
racemosus RP1L10 is closely related to that of Candida glabrata.

Key words: RPL10, Mucor racemosus, phylogenetic analysis, QM protein

INTRODUCTION
Ribosomes are the macromolecular machines
responsible for protein biosynthesis in living orgamsms.
The ribosome has some specific interactions with different
ribonucleic acids and some of the nonribosomal protein
cofactors which guarantee the correct initiation,
elongation and termination of polypeptide biosynthesis
(Maguire and Zimmermann, 2001). The eukaryotic
ribosomes are ribonucleoprotein particles composed of a
small (408) and a large (60S) subunit with well defined
tasks. The small ribosomal subunit contains the decoding
site where the correct base pairing between aminoacyl-
tRNAs and codons of the mRNA takes place and ensures
the fidelity of translation. The large ribosomal subunit
contains the peptidyltransferase center which catalyses
peptide bind formation and is responsible for channeling
the nascent proteins through their exit tummel. Together
these subunits are composed of 4 RNA species and
approximately 80 structurally distinet proteins. The exact
mumber of the each subunit components relates to the
ribosomal source (Zarivach et al., 2004). For instance, the
mammalian 603 and 40S subunits are composed of 47 and
32 Ribosomal Proteins (RPs), respectively (Wool et al.,
1995). Because of the fundamental function and the
evolutionary structure of the ribosome, the composition
and primary structure of the ribosomal components
have been considered as an mmportant tool m modemn

phylogenetic  studies  (Olsen and Woese, 1993
Lecompte et al., 2002). RPs play a pivotal role in protein
biosynthesis. Their cellular level variations during growth
steps have been studied in bacteria and fungi (Cujec and
Tyler, 1996; Milne et al, 1975). The rRNA cores of the
subunmits are swrounded by RPs. Many of the large
subunit RPs have a globular, swiface exposed domain with
long finger-like projections that extend into the tTRINA core
to stabilize its structure (Maguire and Zimmermann,
2001). This RNA chaperon activity of large ribosomal
subunit proteins during ribosomal assembly and
translation has been fully investigated and shown that
nearly a third of them have high levels of RNA chaperon
activity (Semrad et al., 2004).

1.10 is an essential protein component of the large
ribosomal subumits of archeal and eukaryotic cytosol and
is homologue of bacterial 1.16. Although 1.16 and 1.10
show structural differences at the N-terminus, they belong
to the ribosomal 1,16 T.10e super-family (Harms et al.,
2002). Eukaryotic L10 participates in a vanety of cellular
activities including joining the 408 and 60s subunits
(Eisinger et al., 1997, Zemp and Kutay, 2007). L10
incorporation into the large ribosomal subunit is one of
the key steps in the ribosomal assembly process. The
process mainly takes place in the nucleus and then
exported to the cytoplasm through the nucleopores
(Tohnson et al., 2002). Tt is revealed that 1.10 involved in
a late step of the 60S subumt assembly and 1s added to
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the 608 ribosomal subunit in the cytoplasm and not in the
nucleus (Nguyen et al., 1998) although; all of the protein
components of the small ribosomal subumnit are
incorporated in the nucleus (Fromont-Racme et al., 2003).

Extra ribosomal functions of eukaryotic 1.10 have also
been studied. Human RPL10, known as QM protein, has
been revealed to have role in tumor suppression as it was
first 1dentified as a high level cDNA transcript in a non-
tumowurigenic  Wilm's  tumowr microcell hybrid in
comparison with the tumourigenic parentral cell line
(Dowdy et al., 1991). The role of RPL10 homologues in
regulation of transcription factor has also been reported
by Monteclaro and Vogt (1993), Inada et al. (1997) and
Oh et al. (2002).

Several studies have been carried out on the function
and characterization of the RPs, mncluding L10 and their
encoding genes (Chavez-Rios et al, 2003; Hofer et al.,
2007; Lillico et al, 2002). Moreover, RPs are highly
represented i1 cDNA libraries (Karsi et al, 2002;
Patterson et al., 2003, Manchado et al., 2007), which
caused to the increase of their related sequences from
different organisms in databases. In addition, .10 and 1.30
are the only members of eukaryotic ribosomal components
whose crystal structures are studied n detail (Mao and
Williamson, 1999; Nishimura et al, 2008). Based on all
these reasons, RPL10 can be proposed as a useful
molecular marker for phylogenetic analysis.

Mucor racemosus 18 a saprophytic zygomecete with
a dimorphic character. In the presence of oxygen, it shows
filamentous growth but under an anaercbic condition and
availability of a fermentable hexose, 1t grows as single-
celled budding yeast (Cihlar, 1985). Its relatively small
genome facilitates molecular genetic investigation on this
organism (Casale et al., 1990). Mucor racemosus PTCC
5305 was isolated in a soil screening project aiming to
study biologically important proteins m our laboratory.
Here, we describe the 1solation and characterization of the
cDNA encoding for RPL10 from M. racemosus PTCC 5305
c¢DNA  library. Evolutionary comparison with other
species 15 also discussed. To our knowledge this 1s the
first report on a ribosomal protein of the large subunit of
the Mucor genus. Regarding to the importance of the
ribosomal proteins in the phylogenetic studies, cloning
and molecular characterization of Mucor RPL10 could be
useful for discussion about the evolutionary routes of
Mucor genus in eukaryotic kingdom.

MATERIALS AND METHODS

PTCC 5305: The
i a basic medium

Culture of M. racemosus
microorgamsm was cultured
consisting of maltose (0.6% w/v), uric acid (0.7% w/v),

Vogel trace elements solution (2% v/v), CuSQ, (0.5 puM).
The pH of the medium was adjusted to 620.05. The culture
was incubated at 30°C with a shaking rate of 150 rpm for
24 h.

Extraction of total RNA: A 100 mg of cultured mycelium
was collected by filtration, which was grounded in liquud
nitrogen using a mortar and pestle. The cells were lysed
under highly denaturing conditions, in a solution
containing guanidine isothiocyanate (5.4 M, pH 6.5). The
cell lysate was centrifuged at 10000 g and the supernatant
subjected for total RNA extracton by RNeasy Plant
Minikit (Qiagen) as instructed by the manufacturer. The
quality and quantity of extracted RNA was monitored by
spectrophotometric method and denatiwed agarose gel
(1%0) electrophoresis.

c¢DNA library construction and identification of RPL10
¢DNA: Double stranded cDNA was constructed by using
c¢DNA synthesis system (Roche) using 15 pg total RNA
as the starting material according to the producer's
manual. The blunted ds-cDNA was then ligated into the
Smal cut pUCL9 using T4 DNA Ligase (Fermentase)
according to kit instruction manual. The ligated plasmid
was transformed to competent E. coli DH5¢ according to
Sambrook et al (2001). The resulted colonies were
subjected to PCR, using the pUCI19 specific designed
prmers (BIR: S-CACATTTCCCCGAAAAGTGC-3' and
B1F: 3-ACGGTTCCTGGCCTTTTGC-3). The selected
clones contained the inserted fragment of interest with the
size ranging from 800-1200 bp. These clones were then
sent for sequencing using M13 sequencing primers. The
resulted sequences were analyzed for homologies. The
one which showed the most homology to RPL10 was
selected for fiwther analysis.

Molecular Analysis of Nucleotide and Amino Acid
Sequences: For sequence analysis of cDNA fragment in
order to determine presence of potential open reading
frame, BLASTX program was used. Search for related
sequences and amino acid sequences comparison was
carried out using BLASTP and CLUSTAL W software,
respectively. A phylogenetic tree was generated with
CLUSTALW based on alignment of conserved
Ribosomal .10 T.16e region of each protein sequence
and drawn by DRAWGRAM program.

RESULTS AND DISCUSSION
Isolation and sequence analysis of the ¢cDNA clone

encoding M. racemosus RPL10: Sequence analysis of
about 80 mserted fragments sized by 800-1200 bp of
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selected positive clones, resulted in identification of two
c¢DNA clones contaimng ORF for RPL10. It showed a
good representation of RPL10 in a M. racemosus cDNA

library.
The M. racemosus RPL10 ¢cDNA consists of 766 base
pairs, including 5'- and 3'- noncoding sequences

(GenBank accession no. EU195426). The 3'- flanking
region contains about 10 bp of poly(A) and a typical
polyadenylation signal for eukaryotic organisms,
AATAAA, 38 nucleotides upstream of the poly(A)
tail. A kozak sequence of CCCATGG was also found in
the 5’ end and considered as translation initiation site

(Fig. 1).

of RPL10: The
racemosus RPL10 c¢DNA sequence predicts a

Characteristics recombinant
M.
polypeptide of 216 amino acid residues with a calculated
molecular mass of 24553.73 Da. The protein contains a
high level of charged amino acids and has an estimated
1soelectric point of 10.16. These data are in accordance
with earlier reports from human and other organisms
(Dowdy et al., 1991 ; Lillico ez al, 2002). Using conserved
domain search at NCBI (Marchler-Bauer et al., 2005), a
highly conserved domain between residues 43-166 was
detected which confirmed that the recombinant protein
belongs to the Ribosomal T.16 1.10e super family. The
protein interfaces with different rRNA and some protein
components of large ribosomal subunits have also been
determined and shown in the Fig. 2. Tt has been reported
that protein kinase C 1s capable of phosphorylating QM
in vitro (Inada et al, 1997). A putative protein kinase

(Fig. 3). The location of two distinct helices (between
54-79 and 145-156) and their near beta
sheets are in accordance with the results taken from

residues

crystal structure of human ribosomal protein L10
(Nishimura et al., 2008).

Sequence similarities and phylogenetic analysis:

Alighment of the predicted amino acid sequence of RPL10
from M. racemosus with the corresponding sequences

of some higher and lower eukaryotic organisms

1 ccatgattacgccaagcttgoatgectgeaggtcgactctagaggat
48 cccatgggtcgecgteccooctegttgttategttactgtaagaac
M G R R P P R C Y R Y C K N
aagccttatcecaagtotagatactgtegtggtgtecctgatgee

K F Y P K § R ¥ C R G ¥V P D A
aagctcagaatctacgatttaggtcgtaagaaggcatetgtegac
K L R I ¥ D L G R K XK AR 35 V D
gacttccctctetttgtteacttggtttocaacgagtacgaacaa
D F P L F V HL VvV 3 N E Y E ©Q
ttgtctgecgaagotetegaagotyggtegtatttgtgocaacaag
L § A E AL E A G R I C A N K
tacatgtccaagacttotggtaaggattecttecacatgegtate
¥ M § KT & 6 KD 3 F HM R I
cgtgtccaccettaccatgteaccogtatocaacaaaatgtigtet
E ¥V HP Y HVYV TRTIWNIEKMMTL 3§
tgtgctggtgecgatagattgoaaactyggtatgegtggtgotite
¢ A GG A DERUL ¢ T G MR G AR F
ggtaagcctaacggtottgtegotegtygteaacattggteaaate
Z K P N ¢ L VvV A R VvV N I G @ I
attttotetgttegtaccaaggactecaacaaggctgtegttatt
I F
gaagccttgagacgttgtaagtacaagttoocctggtcaacaaaaq
E AL R R CK Y K F P G 9 @ K
atcattatctccaagaagtggggtiteactoctettgetogtget
I I I 3§ K K W & F T P L A R A
gaatacgttgaagctogtgoctgotyggtaagetecagacctgatggt
E Y VvV EARAAUG KL R P D G
tgttacgtcaagtttgttecccaaagaggtectetegecaactac
cC Y v K F vV P R G P L A N ¥
ttcaaggaagctggoaaggtttaaatttoctttttcaataaaatta
F K E A G K v *

723 tganaggcaatttictictctitttaaaaaacccaraaaaaaaa
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phosphorylation site (SxR) was identified between  Fig. 1: Nucleotide sequence and deduced amino acid
residues 137-139. sequence of M. racemosus RPL10 cDNA. The

The secondary structure analysis of RPL10 was putative imitial methionme code 1s in bold type and
carried out by SOPMA (Geourjon and Deleage, 1995) and the stop codon is indicated by *. A putative
the result showed that the protein contained 35.35 helix, protein kinase C phosphorylation site is bold
20 extended strand, 8.84 beta turn and 35.81% random coil underlined

} 2|5 5? 7|5 I(I)O 1?5 1?0 1?5 29’0 leﬁ
Query seq. | 1
235RNAinterface il AMLAL AMA B i
58 rRNA interface i 127 interface

L25 interfaced A
Putative antibiotic binding site 4!}

Specific hits
Superfamilics

Ribosomal_16_110e
Ribosomal_16_110e superfamily

Fig. 2: Graphical summary of M. racemosus RPL10 conserved domains. The amino acid residues which are conserved

in large ribosomal subunit tTRNA and proteins interfaces are indicated by 4
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Fig. 3: Secondary structure prediction of M. racemosus RPL10. The alpha helix, beta sheet, turn and coil were mdicated
with the longest, second longest, medium and the shortest vertical lines, respectively
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Fig. 4 Amino acid sequence alignment of M. racemosus RPL10 with those of other organisms. The accession numbers

for RPL10 homologues of Pyrenophora tritici, Neurospora crassa, Pichia guilliermondii, Schizosaccharomyces
pombe, Rattus norvegicus and Homo sapiens are XP 001932198, XP 960786, XP 001487794, NP 595850,
NP 112362, NP_006004, respectively. *, : and . are indicative for single, fully conserved residue, conservation of
strong groups and conservation of weak groups, respectively. The "Ribosomal 1.16-1.10e" region in all sequences

1s marked

revealed that it most similar to the FPyremophora tritici
RPL10 (89% similarity and 78% identity). Also, it revealed
a considerable identity and similarity, 73 and 84%,
respectively, with Human QM protein (Fig. 4). For
investigation on the evolutionary relationships, a
phylogenetic  tree  was drawn  based on
Ribosomal 1.16 1.10e conserved domain (Fig. 5). The
constructed tree showed that all of the studied organisms
have a common ancestor in the evolution although the
Mucor has the shortest distance to Candida glabrata in

this respect.

Newurospora crassa

Aspergillus clavatus

Schizosaccharomyces pombe

L Pyernophora tritci

Mucor recemosus

Candida glabraia

Fig. 5. Phylogenetic tree of M. racemosus RPL10 and
some of other fungal related homologues

11%¢
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In conclusion, we could successfully clone and
analyze the cDNA encoding Mucor racemosus RP1.10 and
1t was used for evolutionary studies.
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