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Abstract: Effects of PEG molecular weight, system polymer concentrations (tie-line lengths), pH and sodium
chloride concentration, on the partition coefficient of trypsin in PEG-pwrified Anacardium occidentale 1.
(cashew tree) exudate gum polysaccharide aqueous two-phase systems have been investigated. Changes in
PEG molecular weight, tie-line length and pH, had relatively little effect on trypsin partitioning, with partition
coefficients (K) < 0.3, i.e., trypsin partitioned preferentially into the 4. occidentale 1.. gum (lower) phase.
However, addition of sodium chloride (0.1 M) resulted i dramatic increases in K values with increasing pH
using the PEG 4000 (9% w/w)-pwrified 4. occidentale L. gum (18% w/w) system, increasing to 3.70 at pH 7.0 and
9.77 at pH 8.0, 1.¢., trypsin partitioned preferentially mto the PEG 4000 (upper) phase. Relative trypsin activities
in the phases were investigated for these systems (with different sodium chloride levels) and high activities
were obtained at pH 7.0 (70.9%) and pH 8.0 (90.9%) in 0.1 M sodium chloride, which in conjunction with their
K values, clearly demonstrates their suitability as lower cost enzyme purification procedures (compared with
PEG-dextran).
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INTRODUCTION

Aqueous  liquid-liquid two-phase extraction has
been utilised for many vyears as a separation/
purification methodology with wide application in
areas of biochemistry, cell biology and biotechnology

(Walter et al., 1985, Albertsson, 1986; Walter and
Johansson, 1986, Zaslavsky, 1995). Compared with other
commonly used techniques, partitioning in aqueous
two-phase systems has several advantages, such as easy
scale-up and the ability to handle particulate materials and
process streams continuously (Carlson, 1988).
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Aqueous two-phase systems are composed of two
substances dissolved in water above a certain critical
phase separating concentration and the first kind of such
systems, used for protein partitiomng, were composed of
water, a water-soluble organic solvent and a salt. The
second kind of aqueous two-phase systems consist of a
polymernic substance and a salt n water. The most
commonly used systems are based on poly (ethylene
glycol) (PEG) and potassium phosphate or animomium
sulphate and for economical reasons these systems
have been used for large-scale processes, particularly
enzyme purification (Kula et al., 1989; Veide et al., 1983,
Kroner et al., 1982, 1984; Tjerneld et al, 1987a, b;
Tjerneld and Johansson, 1990, Cascone et al., 1991,
Schmidt et al., 1994; Queiroz et al., 1995, Sinha et al.,
1996). However, thewr disadvantages are that they can
damage fragile proteins and also that they result in waste
disposal problems (Vernau and Kula, 1990). The third kind
of aqueous two-phase systems are composed of two
polymers m water. The most commonly used are PEG-
dextran systems, which offer good flexibility in terms of
water content and salt concentration and the localisation
of the respective polymers in different phases offers the
possibility to restrict chemical groups on the partitioned
substrate to one phase by direct interaction with the
corresponding polymer (Tjemeld and Johansson, 1990).

Partitioning of bicactive materials in aqueous two-
phase systems 1s affected by the surface properties of
bioactive materials such as surface net charge, molecular
weight, shape, surface hydrophobicity and the existence
of specific binding sites and the partition coefficient is
affected by the concentration and phase-forming polymer
properties, incorporated ions, pH and the affinity of the
macromolecule  for the phase-forming polymer
(Albertsson, 1986). The electrical potential between the
upper and the lower phases of aqueous two-phase
systems are created by the non-homogeneous
distribution of ions in the upper and lower phases
(Han and Lee, 1997).

By usmg polymer-polymer aqueous two-phase
systems it is possible to have phases with high
water contents (80-90% w/v) and low interfacial tension,
with good solubility for proteins and other
biomacromolecules. PEG-dextran systems have been
utilised for the separation of many target substances on
a laboratory scale (Albertsson et al, 1990; Park and
Wang, 1991; Schmidt et al., 1994; Han and Lee, 1997,
Guindiiz and Korkmaz, 2000; Lin et af., 2003). However,
larger scale biotechnological applications have been slow
to develop due to the inherently high costs of
fractionated dextrans of high purity and well defined
molecular weight profiles (with relatively low degrees of
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polydispersity), which are necessary for good
reproducibility (Tjerneld and Johansson, 1990). Cheaper
crude dextrans have been mvestigated, however they
contain high molecular weight fractions that result m ugh
viscosity and therefore associated handling difficulties
(Kroner et al., 1982; Tjemneld et al., 1985). Other sources
of purified dextran (Ghosh et al., 2004) and dextran
derivatives (mcluding hydroxypropyl-, carboxymethyl-,
diethylaniinoethyl- and sulphated dextran) have also been
used for two-phase systems (Albertsson, 1986).

Investigations have been performed into the
formation and application of aqueous two-phase systems
using less expensive carbohydrate polymers, such as
pullulan (Nguyen et al, 1988), cellulose derivatives
(Albertsson, 1986; Tjerneld, 1989; Skuse et al, 1992),
starch derivatives (Tjerneld et al, 1986, 1987b;
Sturesson et al., 1990, Venancio et al, 1993;
Almeida et al, 1998, Wu et al., 2001), maltodextrin
(starch hydrolysate) (Szlag and Guiliano, 1988; Atkinson
and Johns, 1994; da Silva and Meirelles, 2000a, b),
agarose (Medin and Jansson, 1993), guar gum
(Vendincio et al., 1995), locust bean gum (Venéncio et al.,
1996) and larch arabinogalactan (Christian et af., 1998).
Information on the structural characteristics of these
different carbohydrate-based polymeric biomaterials and
their derivatives can be obtained from many sources
(Kennedy, 1974, Kennedy and White, 1983; Kennedy,
1988, de Belder, 1993; Kennedy et al., 1995; Carioca et al.,
1996; Heinze and Glasser, 1998; Barsby et aof., 2001,
Ywryev et al., 2002; Gotlieb and Capelle, 2005; Knill and
Kennedy, 2005; Collins, 2006).

The potential utilisation of the exudate gum from
Anacardium occidentale 1.. (cashew) as an aqueous-
phase-forming polymer and its capacity for protein
{(bovine serum albumin) separation/partitioning in
aqueous two-phase systems with PEG (effect of PEG
molecular weight, pH, temperature and relative polymer
concentrations (tie-line length)), has been assessed
previously (Sarubbo et af, 2000; Oliveira et al., 2001).
A. occidentale L. 13 found m many tropical and
subtropical countries, especially Brazil, Venezuela, India,
Malaysia and Papua New Guinea. Tts exudate gum,
produced i epithelial cells which border the gum
ducts (Nair et al., 1983), 1s part of the plants biochemical
defences (Marques and Xavier-Filho, 1991) and has
found local use as a substitute for gum Arabic
{(de Paula and Rodrigues, 1995), since it has some similar
physicochemical characteristics (Mothé and Rao, 1999,
2000).

The primary polysaccharide component of
A. occidentale L. exudate gum 1s a highly branched acidic
hetero-galactan (Fig. 1) (a complex mixture of Ca, Mg, K
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Fig. 1. Structural representation of a fragment of purified 4. occidentale L. exudate gum polysaccharide (Anderson and
Bell, 1975; Sarubbo et al., 2000) {A = primary backbone; B and C = side-chains; R = D-Gal, D-Gle, L-Ara, L-Rha,
D-Man, D-GleA or 4-O-Me-D-GleA non-reducing end groups}

and Nasalts, M, ~1.0-1.5x 10%), which has a (1=#3)-linked
B-D-Galp backbone (A chain in Fig. 1), with (1 =#6)-linked
...=#3)-p-D-Galp-(1=b... galactan side chains (B and C
chams m Fig. 1) and D-Gal, D-Glc, L-Ara, L-Rha, D-Man,
D-GleA and 4-O-Me-D-GlcA non-reducing end groups
and D-Xyl residues have also been detected in some
samples (Bose and Biswas, 1970; Anderson et al.,, 1974,
Anderson and Bell, 1975; de Paula and Rodrigues, 1995;
de Pinto et al, 1995, Zakaria and Rahman 1996,
de Paula et al., 1998, Menestrina et al., 1998, Mothé and
Rao, 1999; Silva et al., 2004). Brazilian 4. occidentale 1..
exudate gum (utilised m this study) 1s composed (w/w)
of Gal (~72-73%), Glc (~11-14%), Ara (~ 4-5%), Rha
(~3-4 %), Man (~ 0-1%), GleA/4-O-Me-GlecA (~ 5-6%)
(Zakaria and Rahman, 1996; de Paula et al, 1998,
Menestrina et al., 1998, Mothé and Rao, 1999; Silva et i,
2006).

The effects of PEG molecular weight, relative polymer
concentrations (tie-line length), pH and sodium chloride
concentration, on the partition coefficient and enzyme
activity of trypsin in PEG-dnacardium occidentale L.
exudate gum polysaccharide aqueous two-phase systems
are presented in this reserch.

MATERIALS AND METHODS

A. occidentale L. exudate gum polysaccharide isolation:
Crude natural exudate gum (~ 1 kg) was collected from
cultivated 4. occidentale 1.. trees (common-type yellow
cashew producers, ~ 20 years old) in various locations
within the sate of Pernambuco (PE), Brazil. Clear exudate
gum nodules (~ 1-10 g), free of bark, were selected for
purification as Na salts using a method based on those of
Villain-Simonnet et al. (1999 and 2000), as detailed below.
Crude gum was dissolved m sodium chloride solution
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(NaCl, 0.5 M, 25+1°C) to give a gum concentration of
~5 g L7'. The resultant crude gum solution was
centrifuged (25 min, 30000 G, 25+1°C) and the supematant
filtered (0.45 pm). The polysaccharide was precipitated
from the filtered supernatant using ethanol (giving a final
ethanol concentration of 55% v/v), 1solated by suction
filtration, washed with ethanol: sodium chloride solution
of increasing ethanol concentration (75-100% v/v ethanol:
25-0% v/v 0.5 M NaCl) and dried under vacuum for
48 h at 30°C. Pwified A. occidentale 1.. exudate gum
polysaccharide recovery was ~ 90% w/w (which is in
close agreement with Anderson et al. (1974) and Marques
and Xavier-Filho (1991).

Determination of phase diagrams: Phase diagrams were
determined according to the method of Albertsson (1986),
as detailed in previous mvestigations (Sarubbo et al.,
2000, Oliveira et al., 2001) (Fig. 2). The binodial line, the
demarcation between PEG (4000 and 8000)-purified
A. I. exudate gum polysaccharide
compositions showing monophasic and biphasic
behaviour, was obtained by direct observation of two-
phase formation for triplicate solutions of varying polymer
concentrations (Table 1) in phosphate buffer (15 mM, pH
6.0), which were mechanically stirred for several minutes
to ensure equilibrium conditions and the phases

occidentale

generated were allowed to separate over a 24 hour period
1n beakers placed n a constant temperature bath (27+2°C).
PEG (4000 and 8000)-purified A. occidentale L. exudate
gum polysaccharide two-phase systems (Table 1) were
prepared from stock solutions of PEG 4000 and 8000
(50% wiw) and purified 4. occidentale 1.. exudate gum
polysaccharide (30% w/w) in 15 mM phosphate buffer
(pH 6.0). Systems that displayed a distinct phase-phase
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Fig. 2: Phase diagrams for PEG-purified 4. occidentale 1.. exudate gum polysaccharide systems (274£2°C, pH 6.0). (a) PEG
4000; (b) PEG 8000 (Sarubbo et al., 2000; Oliveira et al., 2001)

Table 1: Tnitial system and final phase compositions (%% w/w) of PEG-purified A. occidentale 1.. exudate gum polysaccharide systems (27+2°C, pH 6.0): (a)
PEG 4000; (b) PEG 8000; (Sarubbo et al., 2000; Oliveira et al., 2001)
(a) PEG 4000

Systemn composition Upper phase Lower phase

A. occidentale (Yo wiw) PEG (% wiw) Vi A occidentale (Yo wiw) * PEG (%0 wiw) * A. occidentale (Yo wiw) ¥ PEG (%o wiw) *
18 9 1.7 5.5 13.5 36.4 2.4

20 11 1.6 1.7 19.2 43.2 1.7

22 13 1.5 0.0 20.2 47.8 0.6

(b) PEG 8000

System comp osition Upper phase L.ower phase

A occidentale (Yo wiw)  PEG (% wiw) v A. occidertale (Yo w/w) * PEG (%6 w/w) * A. occidertale Cow/w) ¥ PEG (% wiw) *

16 9 2.2 3.6 133 39.2 0.9
18 11 1.9 13 19.4 43.9 0.9
20 13 1.8 0.4 21.6 474 1.0

* All quoted values (%ow/w) are derived from the mean of triplicate analyses (all with%variation values<5%) (% variation = 100 x (standard deviation/mean),
# Y, = gystem volume ratio = volume of upper phase/volune of lower phase

interface  were  considered  biphasic.  Polymer required. The total weights of the final systems used were
concentrations in the upper and lower phases were 4 g. Enzyme partitioning experiments were performed in
determined (Table 1): PEG concentration usmg the triplicate at 27+2°C (constant temperature bath) by mixing
method of Skoog (1979) and A. occidentale L. exudate  the systems with trypsin solution (2 mg mL™, 400 ul,).
gum  polysaccharide  concentration  using  the The systems were vortex mixed (5 min) and centrifuged
3,5-dinitrosalicylic acid assay for reducing sugars (5_ m.in, 236 G, 2541 Oc) to obtain two clea.r phases..Th.us,
(Miller, 1959; White and Kennedy, 1981; Chaplin, 1994), triplicate syst.em variables mcluded .3 different ‘Flfa—hne
: fied A occidentale 1. exudate oum lengths (relative polymer concentrations/compositions),
using purifie g i ;
polysaccharide and D-galactose as standards. PEG 4000 2 PEG molecular weights, 3 pH's and 3 salt

. . . concentrations. Trypsin (from bovine pancreas, EC
and PR 8000 were obtained from Sigma-Aldrich Company 3.4.21.4) was obtained from Sigma-Aldrich Company T.td.,
Ltd., Poole, Dorset, UK.

Poole, Doarset, UK and had an activity of > 10,000 BAEE

. L . U/mg protein. [Unit defimtion: 1 U corresponds to the
Trypsin partitioning: PEG (4000 and 8000)-purified  ,p5un of enzyme which increases the absorbance at

A. occidentale L. exudate gum polysaccharide two- 953 o (A, by 0.001 per minute at pI 7.6 and 25°C

phase systems (Table 1) were prepared from stock using N-benzoyl-L-arginine ethyl ester (BAEE) as
solutions of PEG 4000 and 8000 (50% w/w) and purified substrate].

A. occidentale L. exudate gum polysaccharide (30% w/w)

in 15 mM phosphate buffer (pH 6.0, 7.0 and 8.0). Sodium  Determination of trypsin partition coefficients (K):
chloride (WaCl) was directly dissolved into replicate Protemn (trypsin) concentrations were determined (in
systems to afford salt concentrations of 0.1 and 1.0 M as  triplicate) in the upper phases according to the method of

291



J. Biol. Sci., 8 (2): 288-297, 2008

Bradford (1976) and in the lower phases calculated by
mass balance, due to high viscosity, according to the
methods of Venincio et al (1993) and Almeida et al.
(1998). Partition coefficient (K) was defined as the ratio
between trypsin concentration in the upper (PEG) and
lower (4. occidentale) phases. Effects of system
composition (PEG molecular weight, tie-line length, pH
and sodium chloride) on trypsimn partition coefficients are
presented Table 2 and data of specific interest presented
graphically in Fig. 3.

Determination of trypsin activity: Trypsin activity in the
upper and lower phases of selected systems {(chosen
based upon their partition coefficients, determined using
the methodology detailed in the previous section) was
measured in triplicate according to the method of Ginther
(1979) using azocasein (Sigma-Aldrich Company Ltd,
Poole, Dorset, UK, 1.0% w/w in 0.2 M Tnis-HC] buffer, pH
7.2, containing 1.0 mM CaCl,). [Unit definition: 1 U
corresponds to the amount of enzyme which increases the
absorbance at 440 nm (AA,,,) by 1.0 per hour at pH 7.2
and 25°C using azocasein as substrate]. Determined
trypsin activities for the analysed systems are presented
i Table 3 (quoted values are relative trypsin activity (%),
with 100% activity being that measured for trypsin in
15 mM sodium phosphate buffer (pH 6.0, 7.0 or 8.0), 1.e.,
the appropriate polymer-free control solutions).

RESULTS AND DISCUSSION

Effect of system composition on trypsin partition
coefficient (K): Effects of system composition (PEG
molecular weight, tie-line length, pH and sodium chloride)
on trypsin partition coefficients are presented in Table 2.
In the absence of sodiun chloride, the mvestigated
systems were not significantly influenced by PEG
molecular weight, pH or tie-line length (all determined
K-values < 0.3, 1.e., trypsin partitioned preferentially into
the 4. occidentale L. gum (lower) phase). Partition
behaviowr is more sensitive to changes in polymer
molecular weight for proteins > 50 kDa. The relatively low
molecular weight of trypsin (25 kDa) may account for this,
the same behaviour being observed for cutinase (22 kDa)
partitioning in PEG-starch systems (Almeida et of., 1998).
Increases in polymer concentrations (tie-line length) either
resulted mn a reduction in K values (or had relatively little
effect). Increasing PEG concentration causes molecular
exclusion of trypsin from the upper to the lower phase
(Sturesson et al., 1990; Almeida et al., 1998).

Addiion of sodium chloride can be utilised to
significantly mcrease protein partition coefficients in
aqueous two-phase systems, an effect that has been
attributed  to  possible hydrophobic interactions
(Cascone et al, 1991; Schmmdt et al, 1994). In the

Table 2: Effect of system composition on trypsin partition coefficients (K) in PEG-purified A occidentale L. exudate gum polysaccharide aqueous two-phase

sy stems (27+2°C): (a) PEG 4000; (by PEG 8000

(a) PEG 4000

System comp osition

Partition coetficient (K) *

A. occidentale (%% wiw) PEG (%0 wiw) NaCl (M) pH 6.0 pH 7.0 pH 8.0
18 9 0 0.11 0.07 0.09
0.1 0.24 3.70 9.77
1.0 0.62 0.09 0.45
20 11 0 0.04 0.10 0.07
0.1 0.23 0.21 1.54
1.0 0.91 0.88 0.70
22 13 0 0.03 0.09 0.11
0.1 0.18 0.19 0.92
1.0 1.12 0.81 0.40
(b) PEG 8000
System comp osition Partition coefficient (K) *
A. accidentale (Yo wiw) PEG (% w/w) NaCl (M) pH 6.0 pH 7.0 pH 8.0
16 9 0 0.05 0.27 0.06
0.1 0.09 0.59 2.02
1.0 0.47 0.87 0.66
18 11 0 0.03 0.16 0.09
0.1 0.06 0.49 0.63
1.0 0.34 0.83 0.58
20 13 0 0.03 0.11 0.08
0.1 0.05 0.40 0.47
1.0 0.46 0.64 0.50

* All quoted K values are derived from the mean of triplicate analyses (all with % variation values < 10%0) [%6 variation = 100 x (standard deviatior/mean)]
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material has been successfully separated from small
quantities of material with high relative trypsin activity.
Such systems therefore have great potential as lower cost
enzyme purification procedures (compared with PEG-
dextran).
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