

Journal of Biological Sciences

ISSN 1727-3048

Journal of Biological Sciences 14 (4): 332-335, 2014 ISSN 1727-3048 / DOI: 10.3923/jbs.2014.332.335 © 2014 Asian Network for Scientific Information

Detection of Human Pathogenic Gram-negative Bacteria from Ornamental Goldfish According to Gene Sequence Alignment

Nasibeh Afsari, Nafiseh Sadat Naghavi and Alireza Nazari Department of Microbiology, College of Biological Sciences, Falavarjan Branch, Islamic Azad University, Isfahan, Iran

Abstract: Identification of bacterial infections involved in ornamental fishes has a great importance with considering the adverse effects on the aquatic health as well as the possibility of common diseases between human and fish. In the present study pathogenic bacteria were isolated and purified from skin, gill, kidney and brain of symptomatic goldfish samples from aquaculture ponds in Iran on the enriched culture media. The isolated bacteria have been first identified according to the morphological and biochemical characteristics. Molecular detection was done based on the amplification of specific genome fragments and sequencing of the amplified nucleotides. The isolated bacteria detected as *Pseudomonas mendosina* and *Aeromonas sobria* and *Aeromonas hydrophila* (the most sequence similarity), *Aeromonas veronii*, *Aeromonas sobria* and *Aeromonas salmonicida* (partial similarity in the genome sequence). The results of present study showed that gold fishes which are among the most favorable ornamental fishes, can be carriers of human pathogens from *Pseudomonas* and *Aeromonas* genera and this fact is necessary to considered in aquaculture healthcare systems.

Key words: Human pathogens, ornamental goldfish, sequence alignment, Pseudomonas sp., Aeromonas sp.

INTRODUCTION

Different factors including poor quality water, sewage pollution, unhygienic handling of fishes and polluted aquaculture feeding have been reported as the entrance sources of potential pathogenic bacteria to cultured and environmental fishes (Reilly and Kaferstein, 1998; Kigigha *et al.*, 2012).

Goldfish (*Carassius auratus*) is one of the most familiar and traditional ornamental fish in different countries. The fish is from cold water oviparous fishes (Geran, 1992). Because of the little importance of goldfish culturing as a food production system, the most infection hazard to human is from skin contact from injured surface tissues, especially in immunodeficient patients (Lewbart, 2001).

Different bacteria, fungi and viruses can cause infection in fishes (Noga, 2000) but the most common infectious diseases of ornamental fishes are caused by bacteria, particularly gram-negative species (Lewbart, 2001). Environmental factors (especially stress) and deficiency in immune system leads to increasing the susceptibility to infection (Toranzo *et al.*, 2005).

The aim of present study was detection of human pathogenic gram-negative bacteria from ornamental goldfish based on genome sequence analysis of the isolated bacteria.

MATERIALS AND METHODS

Samples and isolation of the bacteria: Skin, gill, kidney and brain samples obtained from symptomatic goldfish in five aquaculture ponds in Iran in a period of time from January to September 2012. The symptoms were included: ulcer, pop eye, cloudy eye, dropsy, columnaris, mouth rot, tail rot and bloated stomach. The samples inoculated on enriched culture media including brain heart infusion broth, tripticase soy broth and blood agar. The culture media were incubated at 32°C for 24 h. Microscopic morphology of the isolated bacteria detected by gram staining and the colonies were transferred to blood agar and nutrient agar media for purification of the isolated bacteria. The purified isolates were detected morphological according and biochemical characteristics (Brooks et al., 2010; Mahon et al., 2010).

DNA extraction and sequence amplification: DNA content of media was extracted using Roche Applied Science DNA extraction kit. Pairs of primers were used according to specific genome sequences of the biochemical detected bacteria. The characteristics of primers and information about amplification by polymerase chain reaction (PCR) are shown in Table 1. A mixture consists of 1X PCR buffer, 0.2 mM dNTP mix, 1.5 mM MgCl₂, 0.5 μ M of each primer, 1 unit μ L⁻¹ Taq

Table 1: Primer sequences and characteristics of amplification procedures

Isolated bacteria	Primer sequence	Amplification cycle	Amplified fragment	Reference
Pseudomonas spp.	TGC ATT CAA AAC TGA CTG	Step 1: 94°C, 2 min; Step 2: 94°C,	16S rDNA (850 bp)	Scarpellini et al. (2004)
	AAT CAC ACC GTG GTA ACC	55 sec; 39°C, 1 min; 72°C, 90 sec		
	G	(5 repeats); Step 3: 94°C, 55 sec;		
		42°C, 1 min; 72°C, 2 min (35 repeats)		
Aeromonas spp.	AAC CTG GTT CCG CTC AAG	Step 1: 94°C, 2 min; Step 2: 94°C,	Lipase gene (760 bp)	Cascon et al. (1996)
	CCG TTG TTG CTC GCC TCG	1 min; 63°C, 1 min; 72°C, 1 min		
	GCC CAG CAG CT	(35 repeats); Step 3: 72°C, 5 min		

Table 2: Morphological and biochemical characteristics of the isolated bacteria

Characteristics	Isolate No. 1	Isolate No. 2
Morphology and gram staining	Gram-negative coccobacilli	Gram-negative bacilli
Haemolysis on blood agar	Alpha	Beta
Indole production	+	-
Methyl red reaction	<u>-</u>	-
Voges-Proskauer reaction	+	+
Citrate utilization	<u>-</u>	+
Urease	<u>-</u>	-
SH ₂ production	+	-
Motility	+	+
Catalase	+	+
Oxidase	+	+
Oxidative/Fermentative	Fermentative	Oxidative
Glucose fermentation	+	*
Xylose fermentation	<u>-</u>	*
Lactose fermentation	-	*
Sorbitol fermentation	+	*
Saccharose fermentation	+	*
Mannitol fermentation	+	*
Identified species	Aeromonas hydrophila	Pseudomonas sp.

^{+:} Positive reaction, -: Negative reaction, *: Not valuable to perform

DNA polymerase and 1 μ g of the extracted DNA was used for each amplification reaction. The products analyzed by gel electrophoresis using 1% agarose.

Sequence analysis of the amplified fragments: The final products have been sequenced by ABI3730XL system (Bioneer corporation, Korea).

RESULTS

Isolated bacteria: Two isolates belonging to *Aeromonas* sp. and Pseudomonas sp. were detected by morphological and biochemical analysis. The isolated Aeromonas showed the most similarity to Aeromonas hvdrophila but the isolated Pseudomonas had characteristics similarity to Pseudomonas fluorescens and Pseudomonas aeruginosa (Table 2). Because of the mentioned similarities, specific primers used for amplification of Aeromonas hydrophila lipase gene (Cascon et al., 1996) and the sequence of 16SrDNA was amplified for detection of Pseudomonas spp. (Scarpellini et al., 2004).

Molecular detection: As the results of molecular amplification a 760 bp fragment for *Aeromonas hydrophila* and an 850 bp fragment for *Pseudomonas* sp. were obtained (Fig. 1).

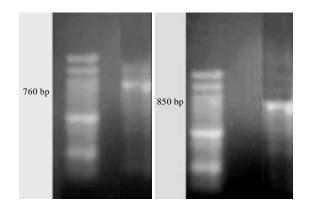


Fig. 1: The amplified fragment for *Aeromonas hydrophila* lipase gene (760 bp) and *Pseudomonas* sp. 16S rDNA (850 bp)

Sequenceing analysis: Alignment of the amplified regions in BLAST data base showed that the isolated Pseudomonas sp. Belongs to Pseudomonas mendosina. The isolated Aeromonas sp. showed the most sequence similarity to Aeromonas hydrophila. Also this fragment had partial similarity to Aeromonas veronii, Aeromonas sobria and Aeromonas salmonicida. The nucleotide sequences of the amplified fragments and the organism's reports are shown in Table 3 and 4.

Table 3: The nucleotide sequence and taxonomy report of fragments amplified from Aeromonas spp.

Sequence based on the amplification with forward primer

GGGGTGGCGAGGCCCCCTGGACAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCG
TAAACGATGTCGATTTGGAGGCTGTGCCTTGAGACGTGGCTTCCGGAGCTAACGCGTTAAATCGACGCCCTGGGGAGTACGGCCGCAAAGGT
TAAAACTCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGATGCAACGCGAAGAACCTTACCTGGCCTTGACA
TGTCTGGAATCCTGTAGAGATACGGGAGTGCCTTCGGGAATCAGAACACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGG
GTTAAGTCCCGCAACGAGCGCAACCCCTGTCCTTTGTTGCCAGCACGTAATGGTGGGAACTCAAGGGAGACTGCCGGTGATAAACCGGAGGA
AGGTGGGGATGACGTCAAGTCATCATGGCCCTTACGGCCAGGGCTACACACGTGCTACAATGGCGCGTACAGAGGGCTGCAAGCTAGCGATA
GTGAGCGAATCCCAAAAAGCGCGTCGTAGTCCGGATCGGAGTCTGCAACTCGACTCCGTGAACTCGGTCCCCCTTTAGTAAAGA

Sequence based on the amplification with reverse primer

TTAAGTTGGCTTACGCGTCCCCCTGGACAAGACTGACGCTCAGGTGCTAAAGCGTGGGGAGCTAACAGGATTAGATACCCTGGTTGTCCACGCCGTAAACGATGTCGATTTGGAGGCTGTCCTTGAGACGTGGCTTCCGGAGCTAAACGCGTTAAATCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAACTCAAATGAATTGACGGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGATGCAACGCGAAGAACCTTACCTGGCCTTGACTTGTCTGGAATCCTGTAGAGATACGGAAGTGCCTTCGGGAATCAGAACACAGGTGCTGCATGGATGTCGTCAGCTCTTGTCGTGAGATGTTTGGGTTAAGTCCCGCAACGAACCCCTGTCCTTTGTTGCCAGCACGTAATGGTGGGAACTCAAGGGAGACTGCCGGTGATAAACCGGAGGAAGGTGGGGAATCAAAGGGAACACAGGTGCTACAATGGCGCTTACAGGCTGCAAGCTATCGAATTTTGAGCGAATCCCAAAAAAGCGCGTCGTAGTCCGGATCGGAGTCTGCAACTCTCCGTGAACTCTTAGTAGAAGGAAAAAAAGCGCGTCGTAGTCCGGATCGGAGTCTGCAACTCTCCGTGAACTCTTAGTAGAAGGAAAA

Organism report (obtained from BLAST)

Aeromonas hydrophila [g-proteobacteria] taxid 644

Aeromonas veronii [g-proteobacteria] taxid 654

Aeromonas sobria [g-proteobacteria] taxid 646

Aeromonas salmonicida subsp. salmonicida [g-proteobacteria] taxid 29491

Table 4: The nucleotide sequence and taxonomy report of fragments amplified from *Pseudomonas* spp.

Sequence based on the amplification with forward primer

Sequence based on the amplification with reverse primer

Organism report (obtained from BLAST)

Pseudomonas mendocina ymp [g-proteobacteria] taxid 399739

DISCUSSION

Gram-negative pathogenic bacteria often cause severe symptoms such as septicemia in aquatic organisms. These bacteria can be transmitted and are resources of human pathogenicity (Geran, 1992).

In the present study, the specific genes of gram-negative bacteria isolated from ornamental goldfish were amplified and sequenced for confirmed identification of the human pathogenic isolated species.

The sequencing of the amplified fragments showed most similarity to *Peudomonas mendosina* and did not accept the presence of *Pseudomonas fluorescens*. *Peudomonas mendosina* was first isolated in 1970 from soil and water (Palleroni *et al.*, 1970). Aragone *et al.* (1992) first reported the endocarditis caused by this bacterium in humans.

Generally, the genus *Pseudomonas* particularly *Pseudomonas aeruginosa* which has the most similarity to *Peudomonas mendosina* is important cause of septicemia in fish but there is not direct report of *Pseudomonas mendosina* which has been found in goldfish. So this animal and human pathogenic bacterium is reporting in the present study for the first time in aquatic organisms.

Aeromonas hydrophila can produce heat-labile enterotoxins, which has hemolytic and cytotoxic effects (Adamski et al., 2006). The infection symptoms of Aeromonas in humans include gastrointestinal tract syndromes, infection of wound and soft tissues and blood borne dyscrasias (Janda and Abbott, 2010).

The present study as well as the previous reports, shows that aquatic organisms can be carriers of human pathogens, this fact is important to be mentioned in aquaculture healthcare systems.

ACKNOWLEDGMENTS

We thank the investigation management of Islamic Azad University, Falavarjan Branch, Isfahan, Iran, for technical supporting. Also we thank Behrouz Farahmand (Isfahan Fisheries Organization, Isfahan, Iran) for sampling support.

REFERENCES

- Adamski, J., M. Koivuranta and E. Leppanen, 2006. Fatal case of myonecrosis and septicaemia caused by *Aeromonas hydrophila* in Finland. Scand. J. Infect. Dis., 38: 1117-1119.
- Aragone, M.R., D.M. Maurizi, L.O. Clara, J.L. Navarro Estrada and A. Ascione. 1992. Pseudomonas mendocina, an environmental bacterium isolated from a patient with human J. infective endocarditis. Clin. Microbiol., 30: 1583-1584.
- Brooks, G.F., J.S. Butel and S.A. Morse, 2010. Jawets Melnick and Adelbergs Medical Microbiology. 24th Edn., McGraw Hill, USA.
- Cascon, A., J. Anguita, C. Hernanz, M. Sanchez, M. Fernandez and G. Naharro, 1996. Identification of Aeromonas hydrophila hybridization group 1 by PCR assays. Appl. Environ. Microbiol., 62: 1167-1170.
- Geran, J., 1992. The Proper Care of Goldfish. 1st Edn., TFH Publications, New Jersey, ISBN: 079383158X.
- Janda, J.M. and S.L. Abbott, 2010. The genus *Aeromonas*: taxonomy, pathogenicity and infection. Clin. Microbiol. Rev., 23: 35-73.

- Kigigha, L.T., I.Y. Oku and A.S. Ojesanmi, 2012. Enumeration and characterization of bacteria associated with backwater fish species in Wilberforce island Bayelsa state Nigeria. Continental J. Biol. Sci., 5: 32-37.
- Lewbart, G.A., 2001. Bacteria and ornamental fish. Semin. Avian. Exotic. Pet. Med., 10: 48-56.
- Mahon, M.R., D.C. Lehnian and G. Manuselis, 2010. Textbook of Diagnostic Microbiology. 4th Edn., W.B. Saunders Publication, ISBN: 9781416061656, USA.
- Noga, E.J., 2000. Fish Disease: Diagnosis and Treatment. 1st Edn., Iowa State University Press, Ames, Iowa, USA., Pages: 367.
- Palleroni, N.J., M. Doudoroff, R.Y. Stanier, R.E. Solanes and M. Mandel, 1970. Taxonomy of the aerobic pseudomonads: The properties of the *Pseudomonas stutzeri* group. J. Gen. Microbiol., 60: 215-231.
- Reilly, A. and F. Kaferstein, 1998. Food safety and products from aquaculture. J. Applied Microbiol., 85: 249S-257S.
- Scarpellini, M., L. Franzetti and A. Galli, 2004. Development of PCR assay to identify *Pseudomonas fluorescens* and its biotype. FEMS Microbiol. Lett., 236: 257-260.
- Toranzo, A.E., B. Magarinos and J.L. Romalde, 2005. A review of the main bacterial fish diseases in mariculture systems. Aquaculture, 246: 37-61.