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Abstract
Hypothermia is often used to treat out of hospital cardiac arrest (OHCA) patients who often simultaneously receive insulin for stress
induced hyperglycaemia. Variations in response to insulin reflect dynamic changes in insulin sensitivity (SI), defined by the overall
metabolic response to stress and therapy. Thus, tracking and forecasting this parameter is important to provide safe glycaemic control
in highly dynamic patients. This study examines stochastic forecasting models of model-based SI variability in OHCA patients to assess
the  resulting  potential  impact  of this therapy on glycaemic control quality and safety. A retrospective analysis of clinically validated
model-based SI profiles identified using data from 240 post-cardiac arrest patients (9988 h) treated with hypothermia, shortly after
admission in the Intensive Care Unit (ICU). Data were divided into three periods: (1) Cool (T$35EC), (2) Idle period of 2 h as hypothermia
was removed and (3) Warm (T$37EC). The stochastic model captured 60.7 and 90.2% of SI predictions within the (25-75th) and (5-95th)
probability forecast intervals during cool period. Equally, it is also recorded 62.8 and 92.1% of SI predictions respectively during the warm
period. Maintaining the kernel density variance estimator to c = 1.0 yielded 60.7 and 90.2% for the cool period. Similarly, adjusting a
variance estimator of c = 2.0 yields 60.4 and 90.1% for the warm period. A cohort-specific stochastic model of SI provided a conservative
forecast for the inter-quartile range and was relatively exact for the 90% range. Adjusting the variance estimator provides a more accurate,
cohort-speciWc stochastic model of SI dynamics for the 90% range. These latter results show clearly different levels and distribution of
forecasted SI variability between the cold and warm periods.
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INTRODUCTION

Hyperglycaemia is prevalent in critical care1-4 and
increases the risks of further complications and mortality1,4,5.
Glycaemic control has shown benefits in reducing
mortality4,6,7. However, due in parts to excessive metabolic
variability8, other studies have found it difficult to reproduce
these  results9-11.  Out-of-hospital  cardiac  arrest  (OHCA)
patients have low survival rates and often experience
hyperglycaemia12,13. However, cardiac patients are one group
who have more consistently shown benefit from Glycaemic
Control (GC), but can be highly insulin resistant and variable,
particularly on the first day of stay14.
Hypothermia is often used to treat OHCA patients13. In

general,  it  leads  to  a  lowering  of  metabolic  rate  that
induces changes in energy metabolism. However, its impact
on metabolism and insulin resistance in critical illness is
unknown, although one of the adverse events associated with
hypothermic therapy is a decrease in insulin sensitivity and
insulin secretion15. However,  this decrease may not be notable
in a cohort that is already highly resistant and variable14.
Hence, understanding metabolic evolution and variability
would enable safer, more accurate GC in this cohort.
Model-based glycaemic control methods using both

insulin and/or nutrition modulation have been employed
successfully in the control of hyperglycaemia. These methods
allow the derivation of patient metabolic state, SI in this case,
by using serial blood glucose (BG) measurements and records
of nutrition and insulin administration16. Once the current SI
has been identiWed, prediction of future SI would allow
predictions of outcome BG concentration for an intended
clinical intervention17.
Variations in the SI parameter reXect the metabolic

response to stress2 and drug therapy18. Thus, tracking and
forecasting this parameter is important to provide safe
glycaemic control in the highly dynamic out-of-hospital
cardiac arrest (OHCA) patients, treated with hypothermia.
Since stochastic modeling has shown its ability to quantify the
probability of a future SI17, the resulting distribution of BG
concentrations that would result from a given intervention
can be determined17,19,20,21. This information can be used to
guide both insulin and/or nutrition interventions, which is the
key to avoid unintended hypoglycaemia, improve overall
glycaemic control and identify periods of potential high
glucose variability that may be indicative of unusual clinical
events or cohorts22.
This study presents the adaptation of a stochastic model

for SI prediction from adult critical care to the unique clinical
and    physiological    case    of   OHCA   patients,   treated   with

hypothermia. The stochastic model presented is constructed
by  the  distribution  of  insulin  sensitivity  variation  using  a
2-D kernel density method. Clinically validated, model-based
insulin sensitivity (SI)20,23 is used to provide more accurate
measure of patient metabolic state and its stochastic model
during cool and warm periods. ModiWcations to the initial
kernel density estimation model are made to explore and
optimize the relationship between the model and the
underlying dataset, particularly for the clinically relevant 90%
range that can be used to quantify and minimize the risks of
hyper or hypo-glycaemia as an integral part of a control
protocol20,21.

MATERIALS AND METHODS

Patients and data: A retrospective analysis of glycaemic
control data from 240 OHCA patients (9988 h) treated with
hypothermia, shortly after admission to the Intensive Care Unit
(ICU) at Christchurch Hospital, New Zealand, Erasme Hospital,
Belgium and Lausanne Hospital, Switzerland. Patients from
Christchurch Hospital (20) were on the SPRINT glycaemic
control   protocol7,   whereas   the   remaining   160  patients
from Erasme (82) and Lausanne (78) Hospitals were on
unpublished local glycaemic protocols. Blood Glucose (BG)
and temperature readings were taken 1-2 h along with all
insulin and nutrition data. Data were divided into three
periods: (1) Cool (T#35EC) (2) Transition period of 2 h as
hypothermia was removed and (3) Warm after (T$37EC). A
maximum  of  24  h  and  a  minimum  of 15 h for each period
(1 and 3) were considered, ensuring a balance of contiguous
data between periods. Overall demographics are shown in
Table 1.

Therapeutic hypothermia: Therapeutic Hypothermia (TH)
was applied following a standardized written protocol. All
patients were treated with mild TH to 33±1EC for up to 24 h,
irrespective of age, initial arrest rhythm and other
physiological conditions. The TH was started immediately after
admission and was induced with ice-cold packs and/or
intravenous  cold  fluids.  Body  temperature  was  maintained 

Table 1: Demographic data for all patients
Value
-------------------------------------------------------

Variable Cool Warm
Total patients (n) 240 240
Total treatment (h) 4987 5001
Blood glucose (mmol LG1) (IQR) 7.40 [6.20-9.70] 6.56 [5.61-7.78]
Insulin rate (U hG1) (IQR) 3.37 [1.33-8.00] 3.51 [1.60-7.00]
Glucose rate (g hG1) (IQR) 2.69 [1.04-5.26] 5.41 [2.71-8.11]
Data are presented as median (interquartile range) where appropriate
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at hypothermia using a surface cooling device with a
computerized adjustment of patient temperature target.
During this time, some short-acting drugs, such as midazolam
(0.1 mg kgG1 hG1), fentanyl (1.5 µg kgG1 hG1) and vecuronium
(0.1 mg kgG1 boluses) were used to administer sedation,
analgesia and control shivering. Rewarming was achieved
passively and sedation-analgesia was typically stopped when
patient temperature was greater than 35EC.

Metabolic system model: Model-based insulin sensitivity (SI)
in this study is a patient-specific parameter describing the
whole body effect of insulin. The analysis of patient-specific
insulin   sensitivity   employs   the   ICING   model24   as  a
glucose-insulin system model developed and clinically
validated in critical care glycaemic control and insulin
sensitivity studies20,21,23,24. It is defined as:
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A summary of parameter values and descriptions and
exogenous   input   variables   for   the   model   are   listed   in
Table 2 and 3, respectively.
Insulin sensitivity SI is identified hourly from patient data,

producing a step-wise hourly varying profile25. This profile
effectively describes patient-specific metabolic behavior
under time-varying physiologic conditions. The validity and
independence of this patient-specific parameter have been
validated using data from independent, clinically matched
cohorts23 and in gold-standard insulin sensitivity tests26.

Stochastic model: A 2-D kernel density estimation method is
used to construct the stochastic model that describes the
hourly transition of SI. The kernel density method combines
probability  distribution  functions  for  each  point  of  data  to
generate an overall density function for the dataset. This
method has the advantage of producing a smooth,
physiologically likely, continuous function across the
parameter range to provide continuity when interpolating SI
forecasts to account for each particular patient state. It also

Table 2: Parameter values and descriptions for the ICING model
Parameter Value Description
pG 0.006 (minG1) Non-insulin mediated glucose removal
EGP  1.16 (mmol minG1) Endogenous glucose production rate
CNS  0.3 (mmol minG1) Central nervous system glucose uptake
VG 13.3 (L) Plasma glucose distribution volume
VI 4.0 (L) Plasma and interstitial insulin distribution volume
αG 0.0154 (L mUG1) Insulin binding saturation parameter
αI 0.0017 (L mUG1) Hepatic insulin clearance saturation parameter
nI 0.006 (minG1) Trans-endothelial diffusion rate
nC 0.006 (minG1) Interstitial insulin degradation rate
nK 0.0542 (minG1) Renal insulin clearance rate
nL 0.1578 (minG1) Hepatic insulin clearance rate
xL 0.67 Fractional first-pass hepatic insulin extraction
d1 0.0347 (minG1) Glucose transport rate from stomach to gut
d2 0.0069 (minG1) Glucose transport rate from gut to plasma
Pmax 6.11 (mmol minG1) Maximum glucose flux from gut to plasma
umin 16.7 (mU minG1) Minimum pancreatic secretion rate
umax 266.7 (mU minG1) Maximum pancreatic secretion rate
k1 ND 14.9 (mU L mmolG1 minG1) Pancreatic insulin secretion glucose-sensitivity

T2DM 4.9
T1DM 0.0

k2 ND-49.9 (mU minG1) Pancreatic insulin secretion offset
T2DM -27.4
T1DM 16.7
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Table 3: Exogenous model input variables
Variable Description
PN (t) (mmol minG1) Intravenous glucose input rate (parenteral nutrition)
D (t) (mmol minG1) Oral glucose input rate (enteral nutrition)
uex (t) (mU minG1) Intravenous insulin input rate

Table 4: Descriptions of 6 h blocks for data analysis
6 h blocks
------------------------------------------------------------------------------

Day Block Hours range (h) Period
1 1 0-6 Cool

2 6-12 Cool
3 12-18 Cool
4 18-24 Cool

2 5 24-30 Warm
6 30-36 Warm
7 36-42 Warm
8 42-48 Warm

automatically accounts for any possible multimodality where
the density of data may show several distinct peaks
corresponding to patterns of changes in SI. The overall result
is a bivariate probability density function for the potential
parameter values. The goal of this statistical model is to
quantify the range of SI 1 h ahead in time (SI, n+1) based on
available data (SI, n, SI ,n-1, SI, n-2, ..., SI, 0) to guide real-time clinical
control22,21. Thus, it is potentially important that the model is
also as cohort-specific as possible for greatest accuracy and to
minimize over-conservative forecasts22.
A 2-D kernel density method is chosen because the

distribution of SI,n+1 varies with SI,n and cannot be simply
described with a single standard statistical distribution. Thus,
the variations in SI can be treated as a Markov process. A
Markov process has the property that the conditional
probability density function of future states of the process,
given the current state, depends only upon the current state.
Therefore, using the Markov property of the stochastic
behaviour of SI, the conditional probability density of SI,n+1
taking on a value y can be calculated by knowing SI,n = x.
Model equations and derivation were defined17.
In this study, the model was cross validated by splitting

the 240 of cool and warm patient cohorts into Wve groups,
each containing 48 patients per period following the method
of Lin  et  al.17.  For   each   group,   the   model   created   using
the remaining 192 patients of the cohort representing
approximately 3990 h of data per period. Out-of-sample SI
predictions were generated for the 48 patients of unused
group   and   compared   to   the  actual  Wtted  SI  from  these
48 patients to assess model accuracy and cohort generality.
Based on results from in-sample tests, where the stochastic
model is generated from the entire retrospective dataset and
tested   on   the   same   data   and  out-of-sample  tests,  where

different subsets of data are used for model generation and
testing, the kernel density estimator was modiWed by
multiplying the variance estimators by a constant c (i.e., cσx
and cσy) to explore the model bias-variance trade-off for this
data between cool and warm periods as well as 6 and 12 h
blocks. This adjustment to the variance estimator effectively
adjusts the kernel bandwidth and the degree of smoothing
over the data, which is used here to assess variability
differences between periods or cohorts.

Analyses and metrics: Current SI (n) during the cool (T#35EC)
and warm (T$37EC) periods were identified hourly using the
ICING model24 for each patient. Using current SI (n) data, the
predicted SI (n+1) data can be generalized by shifting 1 h
forward from the current SI (n) data. These SI vectors will be
paired and used to create the stochastic SI model of OHCA
cohort. Stochastic SI models were analyzed during both cool
and warm periods as follows:

C Overall cohort patient
C Analysis of patients in 6 h block

Overall cohort analysis assessed the stochastic model
behavior of insulin sensitivity during both cool and warm
periods, which includes percentage of SI within prediction
interval and analysis of modifying kernel density estimation.
The SI is also analyzed using 6 h blocks as described in Table 4,
to capture SI variability and forecasting over time with
different resolution. The analysis includes percentage of SI
within predicted interval and analysis of modifying the kernel
density estimation.

RESULTS AND DISCUSSION

Distribution of hourly variation in SI: Figure 1 presents the
distribution of hourly variation in SI and the stochastic model
percentile probability bands at c = 1.0 for the 240 OHCA
patients during cool (4987 h) and warm (5001 h) periods.
Approximately 85% of the values during cool period and 70%
during warm period are below 1.0×10-3 L mUG1 minG1. The
results show that the hourly variation of SI is wider during the
cool period and SI rises from cool to warm.
Table 5 shows the in-sample results of stochastic model

prediction widths for both cool (ncool = 4622 predictions) and
warm (nwarm = 4832 predictions) periods. The number of
predictions is less than the total hours of SI as the patient data
records are not always perfectly divisible by 1 h and because
predictions can only be computed after the second hour of
patient data.
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For the cool period, SI predictions (60.7%) were within the
(25-75th) probability intervals and within the (5-95th)
probability interval. Thus, the proportion of SI values that fell
within the forecast (25-75th) probability intervals were
measurably higher than the expected 50%, but very much
closer for the 90% intervals. Similar results could be observed
for the warm period, but were measured higher than cool
period for both 50 and 90% intervals.
The  percentage  SI  within  prediction  interval  results  of

Lin  et  al.24  of 54.0% is within the (25-75th) probability bound
shows that normal adult ICU patients with normal body
temperature produce far closer to the ideal 50%. However, the
prediction interval percentage results of 60.7 and 62.8% at
cool and warm respectively on the same probability bound for
the OHCA patients, treated with hypothermia as shown in
Table 5 appear to be unique and significant. These results are 
similar to neonate’s results of Le Compte  et  al.19,  which
record 62.6% at the same interval.

Cross-validation comparison studies: Table 6 shows the
results of the cross validation comparison study for 240
patient’s    cohort    during    the    cool    and    warm    periods,

respectively. Generally,  these  results  are  consistent  between
groups, suggesting that the overall model contains sufficient
data to account for the range of dynamics observed in this
cohort.

Probability-bound determination using local variance
estimator: Table 7 shows the effect of modifying the kernel
density estimation for several values of c, ranging from 0.1-3.0.
For this cohort, the increase of c>1.0, yield better coverage
widths for the expected proportions. Thus, for cool period, the
value c = 1.0 enables the best 90% interval coverage, but is
conservative for the inter-quartile range. Similarly, c = 2.0 is
best for the warm period.

Table 5: Sample  results  for  in-sample  stochastic  model  prediction  widths  at
c = 1

Value
--------------------------------

Variable Prediction width/range Cool (%) Warm (%)
Percentage of SI within 25-75th 60.7 62.8
prediction interval 5-95th 90.2 92.1
Data are presented as cohort median (ncool = 4622 predictions and nwarm = 4832
predictions)

Table 6: Cross-validation comparison study for 240 patient cohort
Percentage of SI within interval during cool period Percentage of SI within interval during warm period
------------------------------------------------------------------ -------------------------------------------------------------------

Group Groups used to create the model 25-75th 5-95th 25-75th 5-95th
1 [-, 2, 3, 4, 5] 60.1 90.5 64.1 92.3
2 [1, -, 3, 4, 5] 61.2 90.0 64.0 92.6
3 [1, 2, -, 4, 5] 61.9 90.8 61.7 91.8
4 [1, 2, 3, -, 5] 61.9 90.8 63.1 92.7
5 [1, 2, 3, 4, -] 62.6 90.7 63.8 92.8
Overall [1, 2, 3, 4, 5] 60.7 90.2 62.8 92.1

Fig. 1(a-b): Probability interval and distribution of hourly variation in SI for OHCA patients, treated with hypothermia (a) During
cool and (b) Warm (right) periods
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Fig. 2(a-b): Probability-bound determination for raw SI data and corresponding BG forecasted values based on an equal-tailed
0.90 probability interval of SI between 5th -95th at local variance estimator, both cool (c = 1.0) and warm (c = 2.0)
period. The solid lines represent the 5, 25, 50, 75 and 95% probability bounds

Table 7: Comparison of probability bounds for modifications of kernel density estimator (σ`x = cσx and σ`y = cσy) during both cool and warm periods
Percentage of SI within probability bound during cool period Percentage of SI  within probability bound during warm period
------------------------------------------------------------------------------- ----------------------------------------------------------------------------------

C 25-75th 5-95th 25-75th 5-95th
0.1 49.3 87.8 45.5 83.7
0.2 50.2 88.4 48.2 84.4
0.3 51.1 88.5 50.4 85.2
0.5 53.5 88.6 52.2 85.9
1.0 60.7 90.2 55.8 87.1
1.5 66.2 91.3 58.0 88.9
2.0 69.6 92.1 60.4 90.1
2.5 72.2 92.7 62.8 91.2
3.0 74.0 93.4 64.9 91.5
Ideal 50% 90% 50% 90%

The difference of optimal c values between cool and
warm suggests that the variation and stochastic modeling for
both periods are different, leading to potentially different
control requirements to ensure safe glycaemic control in these
highly dynamic patients and states. In particular, c = 1.0 is
currently used in the STAR protocol27,28 in medical ICU patients.
Hence, no change is required for the cool period. However,
during the warm period, the stochastic model requires a wider
and smoother probability distribution coverage at c = 2.0,
which would necessitate a control change of this known
change of state. These results are further reflected in Fig. 2.
The kernel density estimator method employed in this

stochastic model provides a layer of safety as wider probability
bounds would be more likely to capture dynamics and any
changes not observed in the cohort. As the (5-95th) band is
what has been used for control previously, these cohorts show
that they are closer to ideal 90%. However, wider coverage
bands     may     also     have    impact    on    glycaemic    control

performance. As the wider  probability  band  might  be  useful
to avoid potential hypoglycaemia, it may also force a
controller to maintain a mildly hyperglycaemic state.
Importantly, different level of smoothing are required for the
cool and warm periods, indicating that cool patients are less
multi-modal (more smoothed) and warm OHCA patients are
more   multi-modal   (less   smoothed),   in   comparison  to
broad ICU cohorts. Perhaps this scenario is caused by the
suppression of metabolic activities during cool period.

Stochastic analysis by 6 h block: The analysis of stochastic
model based on 6 h time block have used the same
methodology as the overall cohort patient, except that the
patient cohort data are separated in block hours. Table 8
presents the in-sample results of stochastic model prediction
widths based on 6 hour block analysis at c = 1.0.
The results show that SI prediction interval coverage

meets the prediction expectation  despite  exceeding  its  ideal
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Table 8: Stochastic model prediction widths based on 6 h block analysis
Cool Warm
-------------------------------------------------------------------- -------------------------------------------------------------------------
Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8

Variable Prediction width/range (0-6 h) (6-12 h) (12-18 h) (18-24 h) (24-30 h) (30-36 h) (36-42 h) (42-48 h)
SI within 25-75th 56.1 60.2 58.9 61.5 61.9 62.1 62.6 62.6
prediction 5-95th 90.1 91.9 91.0 91.3 91.2 92.2 92.3 92.7
interval (%)

Table 9: Comparison of probability bounds for modifications of kernel density estimator (F`x = cFx and F`y = cFy) based on 6 h block analysis
Cool period Warm period
--------------------------------------------------------------------------------------------------- -----------------------------------------------------------------------------------------------------
Percentage of SI Percentage of SI Percentage of SI Percentage of SI Percentage of SI Percentage of SI Percentage of SI Percentage of SI
within probability within probability within probability within probability within probability within probability within probability within probability
bounds at bounds at bounds at bounds at bounds at bounds at bounds at bounds at
block 1 (0-6 h) block 2 (6-12 h) block 3 (12-18 h) block 4 (18-24 h) block 5 (24‒36 h) block 6 (36-48 h) block 7 (36-48 h) block 8 (36-48 h)
---------------------- -------------------- ---------------------- ---------------------- ---------------------- ----------------------- ----------------------- ------------------------

C 25 -75th 5-95th 25-75th 5-95th 25-75th 5-95th 25-75th 5-95th 25-75th 5-95th 25-75th 5-95th 25-75th 5-95th 25-75th 5-95th
0.1 51.6 88.9 52.7 85.3 53.5 85.8 51.7 86.0 44.9 84.2 45.0 85.3 45.5 85.5 46.2 85.6
0.2 51.4 89.3 53.5 86.2 54.3 86.6 52.1 86.2 45.3 84.5 45.4 85.8 46.2 85.8 46.7 85.9
0.3 51.7 89.5 54.0 86.9 54.7 86.9 53.5 86.6 46.3 85.8 46.7 86.6 47.4 86.6 48.0 86.7
0.5 53.1 89.6 55.6 88.8 55.1 87.8 54.3 87.4 48.4 86.5 48.6 87.0 49.2 87.1 49.3 87.3
1.0 58.7 90.4 57.2 89.3 56.9 89.0 55.5 87.3 51.9 87.2 52.1 88.2 52.6 88.3 52.6 87.7
1.5 62.7 91.0 58.9 90.7 58.0 90.6 57.2 88.2 54.9 87.8 55.2 88.6 55.5 88.8 55.7 88.3
2.0 65.6 91.5 61.0 93.5 60.2 92.1 59.2 90.7 55.6 90.3 56.1 89.3 56.2 89.4 57.2 88.9
2.5 67.3 92.3 63.4 94.2 62.7 92.5 60.8 92.4 56.2 91.9 55.8 90.9 57.3 90.1 58.5 89.5
3.0 68.0 92.8 65.7 94.9 63.9 92.6 62.1 92.9 56.7 92.8 57.5 91.2 57.9 91.3 59.0 90.7
Ideal(%) 50 90 50 90 50 90 50 90 50 90 50 90 50 90 50 90

values of 50 and 90% for both (25-75th) and (5-95th) interval
width respectively. It is also observed that the proportion of
fitted SI values that fell within the (25-75th) and (5-95th)
probability intervals for 6 h block analysis were measured
higher than the expected 50 and 90%.
Table 9 shows the effect of modifying the kernel density

estimation for several values of c, ranging from 0.1-3.0 based
on 6 h block analysis. For this cohort, the results has shown
that for block 1, c = 1.0 and followed by block 2-3 (c = 1.5),
block 4-5 (c = 2.0), block 6-7 (c = 2.5) and block 8 (c = 3.0). The
trend shows that the value of estimator, c is increased as SI
increases from cool to warm and match with overall cohort
stochastic model analysis as shown in the Table 7. This will
lead to another idea of separating stochastic model for each
time block to implement stochastic control. The difference of
optimal c values between 6 h blocks suggests  that  the 
variation  and  stochastic  modeling  for each time block is
different, leading to different control requirements to ensure
safe glycaemic control in the highly dynamic conditions.
Overall, this stochastic method and analysis in this study

provides predictions based on a cohort dataset. The prediction
bounds for more dynamic patients are difficult to decide  since
the SI level and variability distribution for this cohort is
unique29 and tracked its evolution over time, particularly
during cool period. This observation is far differing than for the
less dynamic patients who are typically more conservative.

CONCLUSION

Thus, in this study the probability bounds are optimized
in  a   cohort   sense,   but  not  necessarily  applicable  on  a
per-patient basis.
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