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Abstract
Striga  is a major parasitic weedy species in Southern Africa and is an impediment to attainment of household food security for poorly
resourced communal farmers. The objective of this study was to use future niche descriptions and the life stages of Striga to predict the
Striga epidemic in the future. Climate change projections through time scale analysis, general circulation models (GCM) down scaling
and dynamical down scaling were used to predict the likely scenario in relation to the Striga  epidemic. Agricultural systems are expected
to face an increasing risk of erosion, runoff and soil degradation. Alternating high temperatures and rainfall may assist breaking of
dormancy in Striga  whilst severe winds greatly aid dispersal of the weed seeds. Generally production of strigolactones, haustorial initiation
factors, attachments, seed production and dispersal were expected to increase as temperature rises like other biological processes. From
this study it can be concluded that the Striga epidemic is going to increase under the new climate. The parasitic weed is likely going to
become a more serious threat to crop production.
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INTRODUCTION

Striga is the major biological constraint to increased
cereal production in the smallholder sector of Southern Africa.
Striga  species are a major parasitic weedy pest throughout
the semi-arid sub Saharan Africa and many parts of Asia1.
Many African countries including Tanzania, Kenya, Malawi,
Madagascar, Botswana, Zimbabwe, Gabon, Nigeria, Ethiopia,
Niger, Togo, Benin and Burkina Faso are highly infested with
Striga causing serious yield losses that are as high as 100% at
some sites2. In particular, the major crops that supply the bulk
of the energy and protein needs of the poor in the African
savannah, namely maize, sorghum, millets, upland rice and
cowpeas have been severely vulnerable3. 

Losses from Striga are compounded because of the
tendency of crops grown under severe moisture and poor
fertility conditions to show significant predisposition to Striga.
According to Scholes and Press4 and Ejeta5 over 50 million
hectares of arable farmland under cultivation with cereals and
legumes in sub Saharan Africa are infested with one or more
Striga  species. In many of these places the Striga has reached
epidemic proportions presenting a desperate situation in
subsistence agriculture6. The weed causes annual losses of
yield estimated to be in excess of US$10 billion5. The Striga
spp. affects the welfare and livelihoods of over 100 million
people in Africa1. According to Parker7 the weed has impacted
on the sub region’s economy. 

Over the years, many promising Striga control methods
have been suggested in various formats, some suggestions
appearing in multiple incarnations8. Despite this valuable
work, adoption and utility of these control methods are
limited, yield loss attributable to Striga is acute, perhaps even
exacerbated ranging from 35-72% in some studies9. It is
becoming very apparent that there is no silver bullet for Striga
control. Despite its status as a serious parasitic weed work on
the status of Striga  under climate change is limited. Prior
weed predictions done have not included Striga as a threat to
food security under climate change. The objective of this
paper is to use future niche descriptions to predict the Striga
epidemic under the future climate. The authors speculate that
the Striga epidemic is going to increase under the new
climate.

Genus Striga: Striga is a latin word for ‘witch’ presumably
because plants diseased by Striga  display stunted growth and
an overall drought like phenotype long before the weed
appears. The genus was previously grouped within the family
Scrophulariaceae but more recent analysis have placed the
Striga under the family Orobanchaceae5,10. Striga possibly
originates  from   a   region   between   Semien   Mountains  of

Ethiopia and the Nubian Hills of Sudan11. The same is the birth
place of cultivated sorghum which is the major host species
for several Striga spp.10. The main agriculturally important
Striga spp. are Striga hermonthica (Del) benth and S. asiatica
(L.) Kuntze in cereal crops and Striga gesnerioides (Willd) Vatke
in cow peas. Striga aspera (Willd) Benth and Striga forbesii  are
also significant problems in cereals in limited locations7. The
spread of various Striga spp. across the African continent is
shown on Table 1.
 
Extent of the Striga problem in Southern Africa: Parasitic
weeds are fast becoming a major constraint to many crops in
Southern Africa and yet the efficacy of available means to
control them are minimal. It has become one of the greatest
biological constraints to food production in the drier parts of
Africa, probably a more serious problem than insects, birds or
plant diseases. The C4 cereal maize, sorghum, rice and millet
are the preferred hosts and the infection of these plants by
Striga spp. can result in severe grain losses. According to
Rubiales et al.1, typical yield losses vary from 15-20% at a
regional level but can be much more severe at local scales,
sometimes resulting in total crop failure. The losses largely
depend on the level of infection, crop variety, soil fertility and
rainfall12. 

It has been estimated that yield losses attributed to the
weed  exceed  US$7  billion in value without accounting for
the  adverse  effect  on  the  welfare and livelihoods of over
100 million people in Africa1. The most affected are the
resource poor, small scale subsistence farmers and severe
infestations cause serious food shortages in Southern Africa.
There are variable statistics on the extent of the Striga
infestations by individual species but generally, 40% of arable
land in sub Saharan Africa and 67% of the 73 million hectares
in cereal zones is infested by Striga. Harsh conditions mean
that few alternative crops are available and the use of high
cost inputs such as herbicides are generally not feasible for
resource poor farmers. The small scale famers’ cash
investments  in  crop  production  are  low. According to
Ronald et al.13 inputs are low, rainfall is erratic and soils are
poor and these conditions are the most suitable for Striga  spp.
to thrive.

In other areas the weed has reached epidemic
proportions presenting a desperate scenario to small scale
farmers. Where the scenario has worsened to these
proportions the farmers are left with one option which is to
abandon the land. According to Atera et al.14, demographic
pressure has led to monocropping, thus increasing the
frequency of Striga spp host crops in the cropping system, an
ideal condition for Striga to thrive.
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Managing Striga in Southern Africa: Despite the concerted
efforts to come up with a sustainable method of Striga asiatica
control, there is no sustainable control method available for
managing the parasite. It remains as the number one
biological constraint limiting the production of cereal grains
in Southern Africa. Several methods have been studied but
accompanied by minimum success. This is partly due to the
complex life cycle of Striga, which is intimately linked to its
host and depends on the response to chemical and tactile
cues posing a challenge to control of the weed both prior and
after attachment to the host. The numerous methods that
have been suggested or developed together with their
technical limitation are shown in Table 2.

Prediction method: Niche based model: The niche based
model is based on the knowledge for suitable habitat beyond
the species’ current distribution or severity. It is a pattern
based indicator30. The first task is to use the current data on
distribution to predict the severity of spread under current
conditions then use niche descriptions to predict the level of
spread under future climate.

The second task according to Crossman et al.30 is to use
expert opinion to quantify dispersibility and identify the level
of the epidemic expected. For Striga spp. the life cycle is a
multistage ranging from dormancy breaking, strigolactones
release, stimulation of germination, haustorial formation and
attachment, its life under ground and life outside after
emergence then seed production and dispersal. The objective
is to try and predict the level of occurrence of each stage
under the current climate and under future climate. Whilst
Striga is a threat now predictions have to be made to check
the level of spread under future climate. The current climate
may be suboptimal preventing the weed from reaching
epidemic levels or they may be optimal conditions and when
climate changes the weed may deteriorate in status or
infections.

Current climate and expected future climate in Southern
Africa: Southern Africa is predominantly a semi-arid region
with high rainfall variability, characterized by frequent drought
and floods. According to Davis31 there is a high degree of
spatial variation in rainfall across southern Africa and the
average for the region is just less than 1000 mm/year. The
highest  amount  is  3100  mm  and  the  lowest  is less than
100 mm/year. The   majority   of   the   region    is   between
500-1500 mm/year. Southern African rainfall shows a clear
seasonal characteristics with a large part of the subcontinent
experiencing a summer rainfall season, usually commencing 

196

Ta
bl
e 
1:
 D
ist
rib
ut
io
n 
an
d 
oc
cu
rr
en
ce
 o
f S
tri
ga
 sp
p.
 in
 su
b 
Sa
ha
ra
n 
Af
ric
a

St
rig
a 
sp
p.

H
os
t p
la
nt
s

D
ist
rib
ut
io
ns

St
rig
a a
sia
tic
a

Ri
ce
, s
or
gh
um
 an
d 
m
ai
ze

An
go
la
, L
es
ot
ho
, M
al
aw
i, M
oz
am
bi
qu
e,
 N
am
ib
ia
, T
an
za
ni
a,
 M
ad
ag
as
ca
r, 
So
ut
h 
Af
ric
a,
 Z
an
zi
ba
r, 
Za
m
bi
a,
 B
ot
sw
an
a,
 B
ur
un
di
 a
nd
 D
em
oc
ra
tic

Re
pu
bl
ic
 o
f C
on
go
 a
nd
 Z
im
ba
bw
e

St
rig
a 
as
pe
ra

Ri
ce
, m
ai
ze
, s
or
gh
um
, f
in
ge
r

Bu
rk
in
a 
Fa
so
, C
am
er
ou
n,
 C
en
tr
al
 A
fri
ca
n 
re
pu
bl
ic
, E
th
io
pi
a,
 G
am
bi
a,
 G
ui
ne
a,
 C
ot
e’
di
vo
ire
, N
ig
er
ia
, N
ig
er
, M
al
i, 
G
ha
na
, S
en
eg
al
 a
nd
 S
ud
an

m
ill
et
, w
ild
 g
ra
ss
es
 a
nd
 su
ga
rc
an
e

St
rig
a f
or
be
sii

So
rg
hu
m
, s
ug
ar
ca
ne
, m
ai
ze
 an
d 
ric
e

An
go
la
, B
ot
sw
an
a,
 D
em
oc
ra
tic
 R
ep
ub
lic
 o
f C
on
go
, E
th
io
pi
a,
 K
en
ya
, M
al
aw
i, M
oz
am
bi
qu
e,
 So
ut
h 
Af
ric
a,
 S
ud
an
, S
w
az
ila
nd
, T
an
za
ni
a,
 U
ga
nd
a,

Za
m
bi
a 
an
d 
Zi
m
ba
bw
e

St
rig
a 
ge
sn
er
io
id
es

Co
w
pe
as
 a
nd
 le
gu
m
es

An
go
la
, B
ot
sw
an
a,
 B
ur
ki
na
 F
as
o,
 C
am
er
ou
n,
 C
en
tr
al
 A
fri
ca
 R
ep
ub
lic
, D
em
oc
ra
tic
 R
ep
ub
lic
 o
f C
on
go
, E
th
io
pi
a,
 S
ie
rr
a 
Le
on
e,
 S
en
eg
al
, S
ou
th

Af
ric
a,
 T
an
za
ni
a,
 Z
im
ba
bw
e,
 G
am
bi
a,
 G
ha
na
, K
en
ya
, M
al
aw
i, 
M
al
i, 
M
oz
am
bi
qu
e,
 S
om
al
ia
, N
ig
er
ia
, R
w
an
da
, U
ga
nd
a 
an
d 
Za
m
bi
a

St
rig
a 
he
rm
on
th
ic
a

M
ai
ze
, m
ill
et
, r
ic
e,
 so
rg
hu
m
,

An
go
la
, C
am
er
ou
n,
 C
en
tr
al
 A
fri
ca
 R
ep
ub
lic
, D
jib
ou
ti,
 E
rit
re
a,
 G
am
bi
a,
 G
ui
nn
ea
 B
iss
au
 a
nd
 E
th
io
pi
a

 P
ea
rl 
m
ill
et
, F
in
ge
r m
ill
et
 a
nd
 su
ga
rc
an
e



J. Biol. Sci., 17 (5): 194-201, 2017

in October/November and tapering off in February and
march32. The Southern African region exhibits a largely warm
climate, with warm average temperature mostly above 17EC
with exceptions of high altitudes and coastal areas. Given
bellow is a summary of the climate change projections using
various techniques for predictions according to Tedross et al.33

(Table 3). 
The future conditions may make niches for the Striga  spp.

When temperatures rise, they may provide a suitable habitat
for the Striga  parasite to increase or decrease its abundance.
The implications of the niche to changes in climate are given
in Table 4. When temperature increases other crops like wheat
which are currently not under attack by the Striga because it
is planted in winter may be susceptible. Vasey et al.34  found
wheat to be susceptible to Striga hermonthica  and questions
the implications of this to wheat production areas under
climate change in Africa. A summary of the niche descriptions
for the future are shown in Table 4.

Striga epidemic under climate change
Seed dormancy and after ripening: Striga seeds have an
after-ripening requirement and do not germinate in the
season in which they are produced. Rich and Ejeta26 asserts
that this requirement prevents newly matured seed from
germinating too late in the season when host plants capable
of supporting  the  parasitic  plants  to maturity are scarce.
Striga seeds must go  through  a  phase of conditioning10. 
Peak  germination   of   Striga     seeds    occur  in  vitro   after
10-15  days  of  soaking  in  water  at a temperature of 28EC.
Sun et al.35 reported that pre-conditioning at a suitable
temperature releases the dormancy within 2-3 weeks and
increases the sensitivity of Striga  seed to strigolactones by
several orders of magnitude. If no strigolactone is received
during this time, the Striga seeds will eventually fall into
secondary dormancy.

Germination is linked to the presence of the host that is
nearby as the endosperm of Striga can not sustain growth for
only 3-7 days. Striga seeds generally are dormant and the
dormancy is broken down by alternating wet periods and high
temperature exposure. Under climate change the alternating
wet and hot conditions are predicted to be a norm hence
dormancy will easily be broken and germination rates will be
increased.

Strigolactone biosynthesis and exudation: Nutrient
deficiencies have profound effects on strigolactones
biosynthesis and exudation. According to Yoneyama et al.36,
roots  of   host   plants   grown   in  phosphorus  deficient soils
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were found to produce more strigolactones. More root
parasitic plants generally prevail on nutrient deficient soils and
thus fertilizer application suppresses their emergence.
Yoneyama et al.36  reports of a 100 fold increase in germination
stimulation activity of root exudates from plants grown under
phosphate starvation. Yoneyama et al.36  further confirms that
in Sorghum bicolor suffering from phosphate deficiency
enhances  strigolactones  production  particularly the case of
5-deoxystrigol and sorghumol. The same was confirmed by
several authors that nitrogen and phosphorus shortage
enhances strigolactones biosynthesis26.

With climate change serious land degradation is expected
which can result in heavy leaching and degradation of soils.
Plant  growing  under  that  environment  would require
strong cooperation with AM  fungi  for  increased adsorption
of these nutrients. Therefore, cereal crops growing under
degraded soils are likely to produce more strigolactones. Soil
degradation is expected to alter soil pH to more acidic levels.
Although the effects of soil pH on Striga  germination have not
been studied adequately. The projected increases in soil
degradation in Africa may therefore indirectly four Striga
spp.37,38. Germination of Striga seeds in agar was obtained at
a pH of 4. Loss of activity of synthetic germination stimulant
(GR 7) was lost in alkaline soils. This may point to more
strigolactones production under acidic conditions and the
increased  stability  of  strigolactones  under  the same
environment which is a common feature under degraded
soils.

Zwaneburg et al.39 and Bouwmeester et al.40 found that
strigolactones are unstable in watery environments. With the
alternating periods of very wet and dry conditions under
climate change, germination may occur under dry conditions
phase. Once germinated the Striga grows under ground for
between 4-8 weeks and so the Striga may continue to grow
once germinated.

Various  authors  have  reported  that  maximum
germination  occurs  at  temperatures  between  30-35EC.
Currently the average temperature is bellow 28EC in Southern
Africa and thus with increased carbon dioxide enrichment in
the atmosphere, temperature changes are likely to lead to
increased germination of Striga as long as they bellow 35EC.
Hence the 2-3EC increase expected is likely going to increase
germination of Striga.

Haustorial inducing factors: Haustoria are invasive structures
that develop at the tip of Striga radicles in response to host
root contact. The formation and penetration of host root by
Striga is stimulated by haustorial inducing factors. These are
compounds  such  as  quinines, flavonoids and phenolics. The
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only   haustorial    inducing    factor    isolated    in    plants   is
2-4 dimethoxybenzoquinone and it comes from the oxidative
degradation of lignin and decarboxylation of phenolic acids.
The quinines, flavonoids and phenolics are called
allelochemicals and are produced under extreme conditions
such as higher temperature and exposure to extreme
radiation. With these expected to increase under climate
change the production of haustorial inducing factors is
expected to increase. This may lead to an increase in number
of Striga plants successfully attaching to the host.

Seed production and dispersal: Hearne8 reported that Striga
has a  high   reproductive   capacity producing between
10 000-200 000 seeds/plant. These seeds are small with
dimensions of 0.3 and 0.15 mm. the seeds are very light
weighing 4-7 µg and are easily dispersed by winds, water and
animals. With strong winds expected under climate change
long distance dispersal is expected to be more. The seed is
likely going to be spread to new areas as a result of wing
dispersal.

With increased temperatures and carbon dioxide
expected most C4 host plants are expected to increase in
productivity and Striga productivity depends on food
availability. The large quantities of long lived seeds will ensure
that the parasite adapt to changes in host availability,
consequently making them more difficult to control34.

Perspective: The current ecological drivers for Striga 
presently are temperature, degraded soils with acidic pH,
winds that are prevalent for dispersal and precipitation. All
these ecological attributes are predicted to change under the
future climate therefore the Striga scourge may also change.
Laboratory experiments done found that more acidic pH
increases the stability of strigolactones, more prevalent winds
increase dispersal. Extremes of temperature may limit the
growing of temperature sensitive plants, farmers may
concentrate on C4 plants (sorghum, millets and maize) which
are hosts.

Although it is difficult to predict with certainty the level of
Striga  epidemic under the future climate, life stages of Striga
may be promoted under the future climate. Whilst Striga is a
problem in particular areas at the present moment it is likely
that the width of its niche is likely to increase under the
changed climate. For Southern Africa, a 4EC increase in the
average temperature may move the average to 34EC for most
areas. Most of the biological processes involved in Striga
infection occur at their optimum at that temperature. Soil
degradation that is predicted under the future climate may
move soil pH to more acidic levels. Mohamed et al.41 have
predicted   that    Striga    distribution   might   in   the  long run

expand to moderate climate zones at the expense of tropical
and sub-tropical areas. Due to the fact that the life cycle of the
weed is multistage, it is very difficult to assume that all stages
are going to be enhanced under the new climate. Detailed
laboratory experiments may need to be done to determine
the conditions with respect to water availability, temperature
and wind speed that give optimum responses to particular life
stages of the Striga life cycle.

CONCLUSION

It was concluded that under the new climate, the Striga
epidemic may worsen. The various conditions under the new
climate may worsen the Striga  scourge as they seem to favor
the various life stages of the parasite. Striga spp. may start to
be a weed of economic importance in areas where it was not
found.

SIGNIFICANCE STATEMENTS

This study predicts that Striga parasitism is going to
worsen under the new climate. Such studies are limited in
literature. That knowledge is beneficial in that the weed
managers and the farming community have to be prepared to
deal with the epidemic. This study will help the researcher to
link every life stage of Striga  to the expected future conditions
that many researchers did not explore.
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