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Abstract
The infection process  of  Sclerotinia  sclerotiorum  (Lib.) de Bary, a necrotrophic plant pathogen with more than 600 host plants, causing
several disease symptoms such as cottony rot, watery soft rot, stem rot, white mould etc in a wide range of host plants remains sketchy.
Specifically, virulence factors produced during host invasion require a special compilation to provide various researchers with this critical
knowledge. This review discussed the virulence factors produced by  S.  sclerotiorum  during plant invasion and colonization. The
discussion was organized under the topics of S. sclerotiorum necrotrophic lifestyle, weaponry and the molecular aspect of its
pathogenicity, zooming-in on the roles of its virulence factors (Cell wall degrading enzymes, effectors and oxalic acid) during
pathogenicity.
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INTRODUCTION

Sclerotinia sclerotiorum (Lib.) de Bary is a major
phytopathogen which causes diseases to more than 600 plant
species including oilseed rape, beans, cotton, sunflower,
various  vegetables  and  weeds1.  Sclerotinia  sclerotiorum  is
regarded as a model necrotroph2, due to its vast host range
and its vast arsenal of attack weapons, such as; cell wall
degrading  enzymes  (CWDEs),  effectors  and  oxalic  acid  for
host cell apoptosis3. Upon successful infection, S.  sclerotiorum
obtains  nutrients  from  the  oozing  plant  sap  which  leaks
from damaged  tissues2.  The  major symptom associated  with
S.  sclerotiorum  is  ‘rot’  which results from the maceration of
tissue and among the common diseases are white mould on
bean,  rot  in  cotton,  drop  of  lettuce,  Sclerotinia  rot  of
cabbage4  etc. These diseases cause massive global economic
loss of crops annually1. Outstanding research advancements
have been  made  in  recent  years  on  the  characterization  of
S.  sclerotiorum  virulence factors5, resulting in the generation
of  a  plethora  of  knowledge  which  has,  unfortunately,  not
been perused and compiled in a single manuscript. This
review which attempts to address this shortfall selectively
reports on the production of CWDEs, effectors and oxalic acid
produced during pathogenicity. 

Proposed models of plant pathogen’s infection cytology:
Plant pathogens can be grouped based on their feeding
lifestyles as; (a) Biotrophic: Those who feed through
‘haustorium’ and secrete minimally CWDEs and largely no
toxins  are  produced,  (b)  Necrotrophic:  They  feed  by
attacking the living host cells with a myriad of CWDEs and
toxic metabolites  leading  to  the  death  of  the  host  cell  and
(c) Hemibiotrophic: They utilize both biotrophs and
necrotrophs characteristics2.

However, this classification can further be categorised
under two conceptual models based on the evolutionary and
mechanistic plant-pathogen interactions6. In the first model,
pathogens  that  rely  on  the  production  of  effector proteins 
to  suppress  or  evade  host   defense  mechanisms or
pathogen-associated molecular pattern (PAMP)-triggered
immunity (PTI). However, plant hosts have also evolved to
detect these effector proteins and initiate a rapid counter-
attack known as the effector-triggered immunity (ETI)7. Within
this model are host specific necrotrophic pathogens, in which
their effectors form an inverse gene-for-gene interaction with
the host plant’s toxin8. This inversed gene-for-gene model
exceed genetic analogy, however, it  functionally  assists  these

necrotrophs to utilize the host resistance genes found in the
gene-for-gene model by triggering all or specific components
of the HR resistance pathway, susceptibility is achieved9.

Whereas in the second model (two-phase model), which
is  mostly  for  broad  host  range  necrotrophs,  in  which  the
gene-for-gene model of the host to pathogen compatibility is
sadly partial and it the exact function of their effectors
contribute toward virulence and host susceptibility is vague6.
Sclerotinia  sclerotiorum,  a  wide  host  range  necrotroph
(with over 600 host plants) exemplifies this model. The
summary  of  S.  sclerotiorum  infection cytology, suggest that
the  pathogen  first  evades,  counteracts  and  subverts  host
basal defense mechanisms, possibly in the absence of OA.
Subsequently, the pathogen switches from biotrophic to
necrotrophic lifestyle, initiating the death and host cell wall
degradation  through  OA,  OA-independent  toxins and cell
wall  degrading  enzymes.  In  the  following  sections,  this
two-phase model  of  S.  sclerotiorum  infection  mechanisms
will be discussed. The feeding lifestyle of a fungal pathogen
and its host specificity can be important for various
applications which include import of biological control agents.
For an example, Retief et al.10 performed a comprehensive
host specificity testing of the rust fungus  Puccinia  xanthii  var.
parthenii-hysterophorae  on  various  Helianthii  plants  and
upon discovering that  P. xanthii  var.  parthenii-hysterophorae
is  specific  to  the  target   weed  Parthenium  hysterophorus
they  recommended  its  import  to  South  Africa   to   control
P. hysterophorus.

Main  characteristics  of  Sclerotinia  sclerotiorum
pathogenicity:  The  infection  process  of  S.  sclerotiorum  is
usually described by the following stages: attachment and
penetration by the appressoria to the host surface,
suppression  of  host  defence  mechanism  and  eventual
killing of host tissues.

Sclerotinia  sclerotiorum  develops  Appressoria;  an
infection   structure   for   attachment   and   penetration   of
the host: Formation of appressoria (infection cushions) from
a dormant sclerotia is essential during host infection, with an
exception of stomata infection11. Sclerotinia sclerotiorum
forms appressoria in response to physical factors such as
contact with the cuticle layer of host tissue or hydrophobic
surfaces such as petri dishes, microscopic cover slides and
parafilm11. This leads to the formation of the asci from the
appressorium-like structures, which is depicted as swollen tips
and it is necessary for the generation  of  an  osmotic  pressure
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needed for penetration into the host cell wall11. The
ascospores usually penetrate directly through the cuticle and
not through stomata, hence sensing and recognition of the
host surface characteristics, such as hydrophobicity and sugar
sources, is essential for proper adhesion to the host surface.
After    inoculation    with    mycelium,    a    different    form    of
penetration was observed, whereby hyphae growing on the
plant  surface  heavily  ramify  into  short  bulbous  cell
aggregates as ‘claw-like’ structures. The importance of
infection cushions in fungal penetration has not yet been
molecularly investigated in S. sclerotiorum. Their germination
and adhesion on plant surfaces represent crucial steps
preceding host penetration and colonization12.

With the availability of genomic data, seven genes
involved appressorium development have been identified,
these are; SMK3 13, Ss-caf1 14, Ss-ggt1 15, Ss-odc2 16, Ss-rhs1 17,
Ss-pth2 18,  Ss-nsd1 19  and Ss-sac1 20  (Table 1).  SMK3,  Ss-sac1,
Ss-ggt1 and Ss-caf1 are major components of cellular
signaling processes, in which their mutants display some
defects in some specific developmental or penetration aspect
of pathogenicity, hence virulence defects. This virulence
defect can be salvaged by wound inoculation of the host. This
shows the important role of compound appressorium in the
infection process13-16. Also, S. sclerotiorum appressorium is
melanized with dihydroxynaphthalene (DHN) derived
compounds21, in which polyketide synthase (Sspks13)
regulates  melanin  accumulation  in  compound  appressoria
but does not affect melanin accumulation in sclerotia and
Sspks13 mutants are still fully pathogenic22. 

Sclerotinia   sclerotiorum   cell   wall   degrading   enzymes;
the  frontline  virulence  factor  relies  on  multigenic
families:  Sclerotinia  sclerotiorum  like  other  plant
necrotrophic pathogens utilizes a myriad of CWDEs such as
cellulases,  pectinases  and  xylanases  when  infecting  its
hosts23.

Cell wall degrading enzymes have different molecular
weights, isoelectric points, transcriptional regulations,
biochemical properties and pathogenicity potential on
different plant hosts24,25. Cell wall degrading isozymes are
largely responsible for the ‘flexible penetration and
colonization’ characteristics of the pathogen during
pathogenicity26. 

Sclerotinia  sclerotiorum  has  been confirmed to secrete
cellulolytic, hemicellulolytic and pectinolytic enzymes with
varying levels that correlate with the disease progression27.

Cellulose-degrading enzymes: The degradation of the host
plant cell wall cellulose involves the action of endoglucanases
and exoglucanases in a synergy, this is followed by the
hydrolysis of the soluble cellodextrin oligomers to glucose by
$-glucosidase. Although the exact function of each enzyme
(Table 2) in cellulose degradation is largely unknown28.
Analysis  of  the genome sequences  of  S.  sclerotiorum   show
that these enzymes are confined to a relatively low number  of
glycoside hydrolases (GHs). Glycoside hydrolases are enzymes
that  are  able  to  hydrolytically  cleave  glycosidic  bonds  in
oligo or polysaccharides (including cellulose and
hemicellulose) families29. 

Hemicellulose-degrading enzymes: Hemicellulose-degrading
enzymes are involved in the cleavage and degradation of the
non-cellulose polysaccharides of the plant cell wall that
contain galactomannans xyloglucans and xylans. Although the
linkage and sugars in the core chains of hemicellulose are
different from major polysaccharides28.

Pectin-degrading  enzymes:  Sclerotinia  sclerotiorum
produces  many   pectinolytic  isoenzymes  whose  major  role
in pathogenicity is the degradation of  the pectin component
of  the  host’s  cell  wall26.  For  instance,  S.  sclerotiorum
pectinases  are  implicated  in  pectin  (a  major  constituent  of
the  plant  cell  wall)  degradation.  Sclerotinia  sclerotiorum
produces several forms of pectinase which weaken the cell
wall  to  facilitate  penetration  and  colonization  of  the  host
while also providing the pathogen carbon sources for
growth26.

Fraissinet-Tachet  et  al.30  reported that he multiplicity of
S.  sclerotiorum’s  pectinolytic enzymes and polygalacturonase
isozymes are coded by a multigene family of seven members
and two subfamilies. It can be proposed that multiple copies
of  functionally  related  genes  confer  flexibility  and
adaptability  to  S.  sclerotiorum,  although  this  has  to  be
proven experimentally.

Furthermore, endo-PGs are endo-acting enzymes that
catalyse the hydrolysis of homogalacturonan while exo-PGs
cleave monomeric or dimeric glycosyl groups from the pectic
cell-wall polysaccharides, resulting in breakdown and release
of potential nutrients from the substrate25. Several endo-PGs
and exo-PGs (which are accommodated in family GH28) have
been cloned and characterized in S. sclerotiorum27. During
infection,  S.  sclerotiorum  secretes  a  full  complement  of
CWDEs that  can  facilitate  penetration,  macerate  tissues  and
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Table 2: Cell wall degrading enzymes (CWDEs) produced by Sclerotinia sclerotiorum
Classification CWDEs Family Number of enzymes
Cellulose degrading enzymes Cellulases GH6 2

GH7 3
GH5 14
GH12 4
GH45 2
GH1 3

$-Glycosidases GH3 13
GH61b 9
CBM 19

Accessory enzymes GH10 2
GH11 3
GH74 3

Hemicellulose-degrading enzymes Xylanases GH27 3
GH43 5

Xyloglucanases GH51 2
"-Galactosidases GH54 1
"-Arabinosidases GH35 4

GH115 1
Pectin-degrading enzymes endo-PG $-Galactosidases GH28 17

GH78 4
$-Glucuronidases GH115 1
Polygalacturonases (PG) GH28 17

GH78 4
Polygalacturonate lyases PL11 4

GH: Glycoside hydrolase, PL: Polysaccharide lyase, CE: Carbohydrate esterase, CBM: Carbohydrate-binding module, Source: Riou  et  al.27  and Kubicek  et  al.28

degrade plant cell-wall components (Table 2). Table 2 showed
the classification of CWDEs based on their function, their
family and the number of the enzymes in each family that is
implicated in each category.

Lastly,  it  has  been  established  that  S.  sclerotiorum
releases large amounts as well as numerous CWDEs to aid it in
its attempt to colonize a host. Although this seems like an
abundance of weapons, apparently it is only a fraction of the
possible  arsenal  released  from  this  pathogen31.  In  addition
to CWDEs, S. sclerotiorum releases many other protein-
effectors that can influence disease.

Most of the degrading enzymes are encoded by
multigenic families and some may have partially redundant
functions. This would explain why inactivation of several
genes  encoding  CWDEs25   or   cutinolytic  enzymes,  i.e.,
cutinase32  A  and  lipase  1,  did  not  affect  fungal  virulence.
Taken together, the multiplicity of the reported degrading
activities and the reduction of virulence observed for several
mutants impaired in degrading enzymes strongly support a
major role in pathogenicity for the enzymatic degradation
arsenal of S. sclerotiorum. When genes for CWDEs are
expressed it would interesting to understand the role of
microRNAs. Djami-Tchatchou et al.33 have reviewed the
functional  roles  of   microRNAs   in   agronomically   important

crops and found that they can be exploited for crop
improvement.   Similarly,   microRNAs   can   be   exploited   in
S.  sclerotiorum  but  this  time  not  to  improve  the  fungal
pathogen but to weaken its virulence machinery.

Host  defense  suppression;  activities  of  effectors  and
oxalic  acid  at  the  early  infection  phase:  All  pathogens
colonise  host  differently  depending  on  their  feeding
lifestyle  but  they  all  encounter different  defense  responses 
from  the  host  plants,  however, the innate immunity
pathogen-associated molecular pattern (PAMP) suppression
is a common theme for all types of pathogens34,35.

Virulence factors such as effectors (Small secretory
proteins) play serious roles in host PTI suppression for both
biotrophic, hemibiotrophic pathogens and necrotrophic
pathogens such as;  S.  sclerotiorum  based on recent
molecular evidence. For example, secreted chorismate mutase
enzyme Ss-Cmu1 in Ustilago maydis apparently translocates
inside host cells and inhibits the synthesis of salicylic acid (SA)
by  shifting  chorismate   into  the  phenylpropanoid  pathway
to stimulate infection36. Amazingly, Ss-Cmu1 is among the
predicted effectors secreted during the biotrophic phase,
associated  with   S.   sclerotiorum   infection2.   Other   putative
effectors include  the  Ss-ITL  gene  which  encodes  a  secreted

305



J. Biol. Sci., 19 (4): 300-313, 2019

integrin-like protein and is highly up-regulated during early
infection37. Other S.  sclerotiorum  predicted effectors (Table 1)
require further functional studies38,39.

For  S.  sclerotiorum  to  achieve  full  virulence,  it  requires
the detoxification of ROS and host-derived secondary
metabolites, which are vital components of PTI defense
reactions40. For instance, the disruption of a Cu/Zn superoxide
dismutase Ss-Sod1 largely weakens virulence41-43. But, the
disruption  of  S.  sclerotiorum  redox  status, negatively affects
the OA accumulation level41-43, signifying a strong connection
between ROS signaling and OA accumulation. Hence,
virulence genes that are functional in responses to osmotic,
high salt and cell wall stresses are upregulated44,45.

Role  of  effectors  in  Sclerotinia  sclerotiorum 
pathogenicity:  Effectors  are  small  secreted  proteins  that
have been linked to many of the virulence-associated genes
of  plant pathogens such as S. sclerotiorum46. The major role of
effectors is to manipulate plant defence mechanisms, in order
to promote fungal infection and establishment of disease47. In
many fungal phytopathogens, effectors were discovered with
varying functions based on individual fungal lifestyle45.

Effector proteins, termed “effectors,” have been
discovered in multiple plant pathogenic fungi and exhibit
numerous different functions depending on fungal lifestyle.
For example, necrotrophic fungi, which require dead tissue on
which to feed, often produce effectors that promote cell
death, whereas biotrophic fungi, which require living tissue,
produce effectors that prevent cell death48-51. Hemibiotrophic
fungi, which require both living and dead tissue at different
life cycle stages may produce different effectors at different
time points during infection52-54.

Since the release of the S. sclerotiorum genome
sequence, bioinformatics analysis aimed at systematically
identifying  candidate  proteins  associated  with  virulence
have been and continue to be conducted55. Genomic analysis
of  S.  sclerotiorum  and  B.  cinerea  secretomes  highlighted
over  400  secreted  proteins  including  nearly  80  virulence
factor candidates38,39.

Thus far,  in  S.  sclerotiorum,  several  proteins (Table 1)
have been identified and classified based on their effector-like
properties   and   functions   in   plants47.   Several   studies   on
S. sclerotiorum have attempted to classify effector-like or
secreted small proteins implicated in infection pathways38,39

and these studies have used several benchmarks to
distinguish effector-like from none effector-like genes.

Oxalic acid is another virulence factor that has associated
with host defence suppression for so long until the emergence
of recent molecular findings.

Role of oxalic acid in Sclerotinia sclerotiorum’s
pathogenicity: The role of oxalic acid in S. sclerotiorum’s
pathogenicity has been a major research focus by many
researchers, leading to the identification of its numerous roles,
which includes; its unswerving toxicity to its host, probably
due of its acidity, hence weaken the host and facilitating
invasion  and  tissue  colonization56-57,  enabling  the  pathogen
to escape detection and recognition by PGIPs58, affecting the
proper functioning of the host guard cells, by activating
stomata opening and preventing abscisic acid (plant hormone
which activates leaf detachment) induced stomata closure
hence leading to S. sclerotiorum foliar wilting during
infection59,  chelation  of  cell  wall  Ca2+,  i.e., degeneration  of
the plant cell wall components57, suppression of the host’s
oxidative burst60, the creation of a low pH environment to
facilitate hydrolytic enzyme activities57,61-63, triggering
apoptotic programmed cell death to permit necrotrophic
colonization64  and  manipulation  of  host  cell  death  fate
from a resistance-related autophagy to a susceptibility-related
apoptosis2. These findings suggest that oxalic acid is an
important S. sclerotiorum virulence factor playing
multifaceted roles and more broadly, high levels of OA
accumulation  have  been  implicated  in  the  evolution  of
broad host-range necrotrophy within the family
Sclerotiniaceae65.

Despite this plethora of functions, yet experimentally it
was discovered that S. sclerotiorum oxalic acid mutants still
retain their pathogenic ability, although the severity varies
from host to host22,66,67. This OA-mutant pathogenic capacity
has  been  credited  to  the  relative  pH  buffering  capacity  of
host tissue67. Loss of function oah1 mutants created recently
using CRISPR technology in three independent wild-type
backgrounds and comparison with the oah1 knockout mutant
previously created by Xu et al.67 reconcile previously reported
phenotypic incongruences among oah1 gene deletion
mutants66-67. Multiple examined CRISPR-mediated mutants in
all three wild-type backgrounds produced essentially identical
phenotypes  when  compared  with  the  Xu  et  al.67 mutant22.
All mutants fail to produce oxalic acid, over-produce
compound appressoria on artificial surfaces and produce
functional sclerotia in culture. In host tissues in which lesions
can expand, symptom development is obviously different
from wild-type with less water soaking maceration, a
decreased breakdown of chlorophyll and in some interactions,
a  reduced  rate   of   colonization22,67.  Thus,  many  hosts
produce limited lesions when infected by OA-minus mutants
and  although  some  host  tissues  are  colonized in the
absence of OA, the full range of disease symptoms is not
observed.   Thus,   OA   is   an   important  virulence  factor  that
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plays a primary role in host colonization rather than in
establishing  basal  host-pathogen  compatibility.

Also, Williams et al.68  unveiled how oxalic acid suppresses
host   defence   by   manipulating   the   redox   reaction   after
S.  sclerotiorum  attack on the host. It was reported that after
few hours of inoculation with S. sclerotiorum  there was a
marked generation of a reducing environment which was
followed by host oxidation, which eventually led to apoptotic
cell death and disease but these reactions were absent in
oxalate deficient S. sclerotiorum strains. Another difference
that was noted during this experiment was that the wild-type
caused typical disease symptoms while oxalic acid deficient
strains were avirulent and had restricted growth on the host68.
Therefore, it was concluded that in the absence of oxalate, the
host was able to identify oxalate deficient mutants and
immediately activated its defence system to stop them.

This  hypothesis  that  OA  is  mainly  responsible  for  the
host colonization is buttressed by the experiment conducted
by Heller and Witt-Geiges69 in which they monitored the
infection-related calcium oxalate depositions based on
potassium pyroantimonate histological staining procedure.
The result showed that at the early infection stage, calcium
oxalate was not discovered on the surface hyphae,
appressorium and subcuticular infectious hyphae, rather it
was found in the vesicles of plant surface hyphae, suggesting
that OA accumulation is at a low level. But the OA
concentration that was detected at the colonization stage
(late infection phase), where the host tissues become fully
macerated, was higher. In another study, Davidson et al.70

generated  transgenic  soybean  plants  overexpressing
oxalate oxidase, these OA-degrading transgenic lines block
lesion expansion but not primary lesion formation following
S. sclerotiorum  inoculation. On detached leaflets, primary
lesions   form   similarly   between   the   wild-type   and   the
OA-degrading  line  18-24  h  postinoculation  although  the
wild-type lesions accumulate significantly more OA.
Histological observation shows that during this early period,
S.  sclerotiorum  aggressively  penetrates  and  infects  both
lines, producing subcuticular, intercellular and vascular
hyphae with similar densities. At three days postinoculation,
plant tissue damage is similar in appearance between the
wild-type host and the transgenic oxalate oxidase over-
expression host but infectious hyphae formed on the
transgenic lines are highly vacuolized and degenerated. The
authors suggested a two-phase model for lesion
establishment  and  lesion  expansion  explain  the  lack  of
lesion  expansion  by  wild-type  S.  sclerotiorum  when
inoculated on the oxalate oxidase over-expressing line70. The
results of this study70  are  congruent  with  those  in  which OA

accumulation is eliminated by mutation of the pathogen22,66,67

in  that  both  produce  only  limited lesions on  soybean  when
OA is reduced or eliminated. These independent studies
support a two-phase model of pathogenesis.

While the importance of OA in virulence appears to be
colonization phase-specific, experimental evidence suggests
its virulence functions encompass necrosis inducement as well
as defense suppression2,64,68. Based on observations with a
redox-regulated  GFP  reporter,  Williams  et  al.68  showed  that
OA  induces  an  immediate  lowered  redox  environment
which suppresses host basal defense reactions. Moreover,
Arabidopsis plants infected with UV mutagenesis-generated
OA mutants show restricted colonization and undergo
cytological changes consistent with host autophagy.
Arabidopsis lines with known mutations in the general
autophagic pathway are unable to mount an oxidative burst
and exhibit increased colonization by these OA mutants2. At
the same time, OA also induces ROS-dependent apoptosis in
promoting necrotic lesion development64. Worthy of note,
many studies concerning the virulence functions of OA have
been mostly based on these UV-induced “OA-minus” A
mutants. These mutants differ significantly from OA-minus
mutants  generated  by  gene-specific  mutagenesis  in  terms
of  OA  accumulation  and  morphological  phenotypes.  The
UV-induced  mutant  strains  still  accumulate  a  low-level  OA
and the genetic basis for their pathogenicity defects has not
been fully characterized. The availability of genetically-defined
OA-minus mutants created through gene deletion67 or gene
disruption22  should  be  utilized  for  the  further  study  of  the
role and phase-specificity of OA during S. sclerotium
colonization. Sclerotinia  sclerotiorum  then produces cell wall
degrading enzymes, which facilitates the penetration process
by breaking down the host cell wall and other barrier tissue,
initiating an oxidative burst which ultimately leads to the
death of the host cell31.

The toxic effect of OA is wide-ranging and OA
accumulation level variation has been related to host range
evolution within the Sclerotiniaceae family65. Despite these
demonstrated roles for OA, mutants which do not produce OA
have the capacity to colonize some hosts under laboratory
conditions66,67, suggesting that fumaric acid67  or other factors
may at least partially compensate for the lack of OA during
colonization. Chemical profiling of S. sclerotiorum needs to
continue to delineate other chemical compounds which play
various roles in the virulence or any phenomenon for that
matter, of S. sclerotiorum. For an example, Ntushelo and
Setshedi71, Ntushelo72, identified various benzene derivatives
and chlorinated organic compounds in the plant pathogenic
fungus  Fusarium  graminearum.
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Sclerotinia sclerotiorum  virulence factors involved in the
death  of  host cells: Symptomatically,  S.  sclerotiorum  causes
tissue maceration following infection indicating rapid cell
death and host cell wall degradation during colonization.
Toxins and host cell wall degrading enzymes (CWDEs) are
thought to play critical roles in promoting these processes.
The OA, the primary necrotrophic effector in  S.  sclerotiorum,
is known to contribute toward both killing and host cell wall
degradation in different ways including pH acidification,
calcium chelation and wilt, induction of programed cell death
and disruption of chloroplast function56,59,73,74.

In addition to  OA,  the  S.  sclerotiorum   genome encodes
proteinaceous factors able to induce necrosis, such as necrosis
and ethylene-inducing peptides75, endo-polygalacturonase76,77

and a cutinase78. Recently, two small secretory necrosis-
inducing protein, Ss-SSVP1 and Ss-CP1 have been
demonstrated to contribute toward full virulence and have
been characterized in detail51,79. Ss-SSVP1 induces host cell
death  upon  transient  expression  in  Nicotiana  benthamiana,
either with or without a signal peptide, suggesting that the
protein functions inside the host cell. Importantly, based on
fluorescent protein tagging, Ss-SSVP1 is demonstrated to be
internalized   inside   and   translocated   among   host   cells.
Ss-SSVP1 interacts with the subunit 8 of cytochrome b-c1
complex (QCR8), a highly conserved mitochondrial protein in
plants; silencing of QCR8 causes abnormal plant development
and cell death. Likely, Ss-SVP1 promotes infection by inducing
QCR8 mislocalization and thus necrosis. QCR8 is highly
conserved in plant species, indicating the broad spectrum of
Ss-SSVP1 virulence function. Ss-CP1 is a small secreted protein
with 138 amino acids. It belongs to the cerato-platanin protein
family and induces necrosis-like cell death when transiently
expressed in N. benthamiana. Arabidopsis thaliana plants
stably expressing Ss-CP1 exhibit hallmarks of an activated
salicylic acid defense pathway and show enhanced disease
resistance. Ss-CP1 localizes in the apoplastic space and
interacts with plant PR1; however, the protein region required
for this interaction is dispensable for plant immunity
activation79.

The      rapid      tissue      maceration      associated      with
S.  sclerotiorum  infection  is  a  result  of  highly  active  plant
cell wall degradation. This activity may be mediated by
pectolytic   activity   and   endo-polygalacturonase   in
particular.  The  S.   sclerotiorum   genome   encodes   five
endo-polygalacturonase  and  their  expression  during
infection  and  in  response to pH  and  nutrient  conditions
have  been  well-characterized61,80.  However,  none  of  the
endo-polygalacturonase   has   been   functionally   analyzed
via gene     mutation.    The   S.   sclerotiorum    and   B.   cinerea

genomes   encode   a   similar   number    of   carbohydrate-
active enzymes (CAZyme) as their hemibiotrophic and
saprophytic  relatives,  suggesting  that  gene  content
variations are not key characteristics distinguishing different
trophic lifestyles, on the other hand, gene expressional
regulations may play a more important role55. Despite
functional    redundancy    commonly    observed   with   cell
wall  degrading  enzymes,  gene  deletion  of  an
arabinofuranosidase/$-xylosidase precursor gene and an
endo-b-1, 4-xylanase encoding gene caused significant
virulence reduction in S. sclerotiorum81,82. Various factors of
importance   have  been  left  out  in  this  review,  firstly  how
S.  sclerotiorum  deals  with  toxic  agents  to  thwart  its
infection processes. Recently, Mbovane et al.83 proved that
acetaldehyde  reduces  the  growth  of  Alternaria  alternata
and decreases the quantity of adenosine 3',5'-cyclic
monophosphate. It would be interesting to extract from
existing  literature  similar  issues  about  the  S.  sclerotiorum.

CONCLUSION

Sclerotinia  sclerotiorum, a typical model of a necrotrophic
plant pathogen and an economically devastating pathogen
has evolved and developed a systematic and coordinated
attack ‘formation’ against its plant host, despite the presence
of the potent host plant’s defence mechanisms against
pathogenic invasion. These developments have provided
important insights into the mechanisms of broad host range
necrotrophic pathogenicity. Over the past several years,
several  S.  sclerotiorum  virulence genes have been identified
and functionally characterized hence revealing the complexity
of its infection mechanism. In this review, infection models
and virulence factors involved in the infection process were
discussed, zooming in on the virulence factors involved in
each stage of infection. Hence, this review has enhanced the
conventional knowledge of the host plant’s defence
mechanism and the necrotrophic lifestyle of S. sclerotiorum. 
There is, however, room for improvement, viz a viz,
identification  of;  novel  genes  involved  in  pathogenicity,
novel virulence factors and their specific functions,
confirmatory test for all the proposed functions of known
virulence genes and functional study of the interaction
between  S.  sclerotiorum  and  its  host  plants.

SIGNIFICANCE STATEMENT

This  article  identified  and  collated  all  the  infection
models of the plant pathogenic fungus, Sclerotinia
sclerotiorum,     highlighting      S.      sclerotiorum      cell      wall
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degrading enzymes, effectors and oxalic acid as the three
weapons for plant attack. This review article is a unique
combination  of  the  three  different  modes  of  infection  by
this plant pathogen. Hence, this review has enhanced the
conventional   knowledge   of   the   necrotrophic   lifestyle   of
S.  sclerotiorum.
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