

Journal of **Entomology**

ISSN 1812-5670

Journal of Entomology 11 (3): 127-141, 2014 ISSN 1812-5670 / DOI: 10.3923/je.2014.127.141 © 2014 Academic Journals Inc.

Performance of the Aphid Parasitoid, *Diaeretiella rapae* (M'Intosh) towards Certain Aphid Species in Egypt

A.A.A. Saleh and M.M.A. Khedr

Plant Protection Research Institute, Agricultural Research Center, Giza, Egypt

Corresponding Author: A.A.A. Saleh, Plant Protection Research Institute, Agricultural Research Center, Giza, Egypt

ABSTRACT

Survey and population of the aphid species Brevicoryne brassicae L., Aphis craccivora (Koch), Aphis nerii Boyer de Fonscolombe., Hyalopteruspruni(Geoffroy) Hypermoyzus lactucae L. and its parasitoids were studied at Kafr Sagr district during two successive seasons 2011-2013. Obtained results and showed that Diaeretiella rapae (M'Intosh) was the dominant on aphid species in this study, where it occupied 81.79, 55.25, 51.20, 54.95% and 86.94, 63.77, 52.61, 52.53% on aphid species, B. brassicae, A. craccivora, A. nerii and H. pruni during the two seasons, respectively. The mean percentages of parasitism were 39.32, 9.14, 16.08, 4.66 and 43.45, 8.68, 13.22, 5.37 on the same aphid species on cabbage, faba bean, dafla and reed plants in both seasons, respectively. Total developmental times (Sting-Adult) were 15.58±0.69, 12.17±0.75, 17.52±0.70 and 15.37±0.71 days. Sex ratio were (Female:Male) 1.2:1, 1.07:1, 1.014:1 and 1:1.09 on last aphid species, respectively during the two seasons. A significant positive relationship was found between higher parasitism percentages of D. rapae and higher nutrient composition of both total lipids and free amino acids in tested aphids.

Key words: Diaeretiella rapae, aphids, survey, biology, physiology

INTRODUCTION

Aphids are one of the insect groups whose economic importance increases with development of agriculture. The parasitoid *Diaertiella rapae* (Hymenoptera: Aphidiidae) was considered by several authors to be important in the control of the cabbage aphid, *Brevicoryne brassicae* (Hagvar and Hofsvang, 1991). Biological control is satisfactory program in an integrated pest management. Control of insect pests by parasitoids is defined as the action of parasitoids that maintains a pest population at a lower level. Parasitism of aphid has been shown to be density dependent (Walker *et al.*, 1984).

Diaeretiella rapae is an important primary parasitoid of a wide range of aphid species including major aphid pests such as cabbage aphid, B. brassicae L., green peach aphid, Myzus persicae Sulzar, Russian wheat aphid, Diuraphis noxia Mord, cotton aphid, Aphis gossypii (Glover), bird cherry-oat aphid, Rhopalosiphum padi L. and corn leaf aphid, Rhopalosiphum maidis (Fitch), cowpea aphid, Aphis craccivora Koch., reed plants aphid, Hyalopterus pruni (Geoffroy) and oleander aphid, Aphis nerii Boyer de Fonscolombe (El-Maghraby 1993; Elliot et al., 1994; Pike et al., 1999; Saleh et al., 2009a; Saleh, 2012). Diaeretiella rapae is well known as a potential bio-agent for many aphid species in different countries (Zaki et al., 1999; Maghraby, 2012). Several hypotheses concerning the apparent adaptive significance of such effects of parasitoids can be proposed. For example, a paralyzed host may exhibit reduced defensive capabilities and also

reduced tissue uptake of haemolymph nutrients, thereby providing a greater supply of nutrients for parasitoid (Vinson and Iwantsch, 1980). Therefore, the present research dealt with the following points:

- Survey and population density of certain aphids (B. brassicae, A. craccivora, A. nerii and H. pruni) and estimation the percentage of parasitism during the two seasons 2011-2013
- Studying the biological aspects, host suitability, physiology of the most aphid parasitoid,
 D. rapae on certain aphid species
- Performance of parasitoid D. rapae and the biology on certain aphid species on both laboratory and field

MATERIALS AND METHODS

Survey of parasitoids and estimation of parasitism rate in the field on certain aphid species: To survey the aphid parasitoids, random samples of the following aphid species B. brassicae, A. craccivora, A. nerii and Hyalopterus pruni were collected from different host plants cultivated at the experimental farm located at Kafr Sakr District, Sharkia Governorate, Egypt during the two successive seasons, 2011-2013. These host plants were cabbage, faba bean, reed plants (Hagna) and Dafla, which were kept free from any pesticide application. Weekly samples were chosen from heavily infested plant parts with the previous aphid species collected. Infested plant parts were placed in tight closed paper bags and transferred to the laboratory, the size of samples of each crop were as follows: from cabbage seven leaves, each of about 20 inch², from faba bean 20 leaves and from reed plant (Hagna) and Dafla fifteen leaves. All individuals from each aphid species found on the host plant samples were counted. Aphids were fed on their host plant and kept in Petri dishes (50 aphid individuals/petri dish) until formation of mummies. The mummies were isolated and kept in small glass tubes until emergence of adult parasitoids at the same time, hyperparasitoid adults emerged from mummies were classified, counted and their percentages were also calculated. Emerged parasitoids were mounted and identified at the Biological Control Department, ARC, Giza, Egypt. Percentage of parasitism was calculated as monthly means according to Farrell and Stufkens (1990) also sex ratio was calculated.

Biology

Life cycle: A laboratory culture of the aphid species (B. brassicae, A. craccivora, A. nerii, H. pruni and Hyperomyzus lactucae L.) were maintained under laboratory conditions. Fifty nymphs, almost 3rd nymphal instars from the last aphid species were placed on the last host plants under small cages (10 replicates/treatment). In each cage or jar, aphids were exposed to five mated females for 2 h. Afterwards, parasitoid females were removed and then the cages or jars were placed in the laboratory at 21±1°C and 68±5% R.H. to determine the durations of different parasitoid stages (egg-mummy, mummy-adult and egg-adult). Parasitized aphids were dissected daily by a very fine needle, in a drop of ringer's solution.

Host preference: The experiment was carried out under laboratory conditions of 21.0±1°C and 68.0±5% R.H. the aphid species tested were B. brassicae, A. craccivora, A. nerii, H. pruni and H. lactucae. Five mated females of D. rapae were exposed to 150 aphids, almost 3rd nymphal instars. The experiment was replicated five times in plastic jars. The experiments of host suitability

were examined and counts of aphid mummies, no. of emerged adults and no. of non emerged mummies were recorded. The percentages of parasitism were calculated.

Biochemical assessment: Sample preparation included 150 apterous adult use of each aphid species was assembled and placed in clean jars. Apterous adults were homogenized for 3 min. In distilled water (150 adults 5 mL⁻¹) using a teflon homogenizer surrounded with a jacket of crushed ice. The homogenates were centrifuged at 3500 r.p.m for 10 min at 5°C to remove the haemocytes. The samples were divided into three small portions and kept in deep freezer at (-20°C) until required. The supernatant were immediately assayed to determine total soluble protein, total carbohydrate and free amino acid. The haemolymph was assayed to determine total lipids:

- **Determination of total soluble protein colorimetric:** Determination of total soluble protein in homogenized aphids was carried out at as described by Gornall *et al.* (1949):
- **Determination of total lipids:** Total lipids were estimated by the method of Knight *et al.* (1972)
- Free amino acids determination: Total amino acids were calorimetrically assayed by ninhydrin reagent according to the methods described by Lee and Takahashi (1966)
- Total carbohydrates: Total carbohydrates were estimated through acid extract of aphids by the phenol-sulphuric acid reaction of Dubois *et al.* (1956). Total carbohydrates were extracted and prepared for assay according to Crompton and Birt (1967)

Statistical analysis: The significance of the main effects was determined by analysis of variance (ANOVA). The significance of various treatments was evaluated by Duncan's multiple range test (p<0.05) (Snedecor and Cochran, 1980). Data were subjected to statistical analysis using a software package CoStat Statistical Software (2005). A product of Cohort Software, Monterey, California.

RESULTS

Survey of aphid parasitoids on certain plants Cabbage aphid: (B. brassicae):

Primary parasitoids: Diaeretilla rapae (Mcintosh)

Secondary parasitoids: Pachyneuron sp. and Alloxysta sp.

Faba bean aphid (A. craccivora):

Primary parasitoids: D. rapae, Ephedrus persicae Frogatt and Trioxys sp.

Secondary parasitoids: Aphidencyrtus sp.

Oleander aphid (A. nerii):

Primary parasitoids: D. rapae, Aphidius matricariae Hal. and Aphelinus sp. Secondary parasitoids: Pachyneuron sp., Alloxysta and Aphidencyrtus sp.

Hagna aphid (H. pruni):

Primary parasitoids: D. rapae, Aphidius colemani Viereck and Aphelinus sp.

Role of D. rapae for controlling B. brassicae, A. craccivora, A. nerii, H. pruni on

B. brassicae: The primary parasitoid *D. rapae* was the demonstrate species with high relative densities during the two successive seasons. The highest total percentage of parasitism was 83.4% in the fourth week of February in the first season and 91.21% in the second week of March on cabbage in the second season. Seasonal means of the aphid's count were 447±32.39 and 444±48.26 while the mean percentages of parasitism were 39.32±12.46 and 43.45±12.93 on cabbage during the two seasons, respectively (Table 1).

Aphis crace ivora: The primary parasitoid D. rapae was the highest relative densities (60.87 and 72.73%) during the third week of January and the second week of December during the both studied seasons, respectively. The mean relative densities was (55.25 and 63.77%) during the both seasons, respectively. The highest percentages of parasitism were 13.94% in the fourth week of January during the first season 2011-12 and 15.26% in the first week of March. Meanwhile, the mean percentages of parasitism were 9.14±4.78 and 8.2±4.42 during the two seasons, respectively (Table 2).

Aphis nerii: The parasitoid *D. rapae* was the highest relative densities (61.91 and 62.50%) during the second week of November in the first season, while the first week of December in the second season, respectively. The mean relative densities were (51.20 and 52.61%) during both seasons, respectively.

Hyalopterus pruni: The parasitoid *D. rapae* was the highest relative densities (66.67 and 83.3%) in the second week of October in the first season and the third week of October. The mean relative densities were (54.95 and 32.97%) during both seasons, respectively. The highest percentage of parasitism was 8.39% in the third week of February and 7.71 in the second week of March. The mean percentage of parasitism was 4.66±1.15 and 5.37±2.15 during the both seasons, respectively (Table 4).

Data in Table 5 indicated that the mean seasonal percentages of parasitism were ranged between 4.72-83.84, 2.58-13.94, 1.01-35.14, 2.22-6.36% and 4.01-91.21, 1.37-15.01, 1.85-40.78, 0.76-7.25% on *B. brassicae* (cabbage), *A. craccivora* (faba bean), *A. nerii* (Dafla) and *H. pruni* (Reed plant) during the two seasons, respectively. Ratio between mummies: aphids were 1:2.78, 1:12.23, 1:9.51, 1:23.18 and 1:2.61, 1:13.41, 1:10.84, 1:19.22 on the same last aphid species during 2011-2013 seasons, respectively.

Biology: Presented data included the life cycle, longevity and sex ratio of the parasitoid female on the aphid species *B. brassicae*, *A. craccivora*, *A. nerii*, *H. pruni* and *H. lactucae* under laboratory conditions. Females of *D. rapae* parasitized and developed to adults in all last aphid species except *H. lactucae*, they could not develop to adulthood in it.

Life cycle: Data presented in (Table 6) indicate life cycle of the parasitoid *D. rapae* on the tested aphid species *B. brassicae*, *A. craccivora*, *A. nerii*, *H. pruni*. Developmental time from (Sting-Mummy) were 11.6±0.62, 9.05±0.63, 12.37±0.84, 11.67±0.82 days, meanwhile, the period from (Mummy-Adult) lasted 4.42±0.67, 3.12±0.67, 5.15±0.33 and 3.70±0.43 days. On the other hand, total developmental times (Sting-Adult) were 15.58±0.69, 12.17±0.75, 17.52±0.70 and 15.37±0.71 days on last aphid species, respectively.

Table 1: Monthly percentage of parasitism of Brevicoryre brassicae by Diaeretiella rapae on cabbage plants at Sharqia Governorate during successive seasons 2011-2012 and 2012-2013

1101	2											
						Emerged I	Emerged parasitoids					
						Primary parasitoid	arasitoid	Hyper parasitoids	asitoids			
	No. of	No. of	No. of mummies	ų,		D. гарае		Pachyneuron sp.	ron sp.	Alloxysta sp.	sp.	
	examined											
Sampling date	aphids	А	В	Total	Parasitism (%)	No.	RD (%)	No.	RD (%)	No.	RD (%)	Total
Cabbage season 2011-2012	1 2011-2012											
Nov. 2011	514	15	20	35	6.81	27	100.00	0	0	0	0	27.0
Dec. 2011	481	49	38	87	18.09	69	100.00	0	0	0	0	0.69
Jan. 2012	499	133	52	185	37.07	130	83.38	15.0	9.67	10.0	6.45	155.0
Feb. 2012	393	180	89	248	63.10	143	75.26	27.0	14.21	20.0	10.52	190.0
Mar. 2012	348	193	56	249	71.55	131	76.61	24.0	14.04	16.0	9.35	171.0
Total	2235			804	196.62	500		0.99		46.0		612.0
$Mean\pm SE$	447 ± 32.39			160.8 ± 43.08	39.32 ± 12.46	100	81.79	13.2	10.78	9.2	7.52	122.4
Cabbage season 2012-2013	1 2012-2013											
Nov. 2012	527	53	18	43	8.16	30	100.00	0	0	0	0	30.0
Dec. 2012	536	49	48	112	20.89	77	100.00	0	0	0	0	84.0
Jun. 2013	499	172	58	230	46.09	178	89.90	12.0	90.9	8.0	4.04	198.0
Feb. 2013	360	176	59	235	65.28	170	84.16	19.0	9.41	13.0	6.43	202.0
Mar. 2013	298	165	64	229	76.85	151	79.47	23.0	12.11	16.0	8.42	190.0
Total	2220			849	217.27	909		54.0		37.0		697.0
Mean±SE	444 ± 48.26			169.8 ± 39.17	43.45 ± 13.39	121.2	86.94	10.8	7.75	7.4	5.31	139.4

A: No. of nummies counted at the date of inspection, B: No. of nummified host appeared during laboratory rearing, RD: Relative density, SE: Standard error

Table 2: Monthly percentage of parasitism of Aphis craccivora by Diaeretiella rapae on faba bean plants at Sharqia Governorate during successive seasons 2011-2012 and 2012-2013

						rmerge	minergeu parasionus							
						Primar	Primary parasitoid					Hyper	Hyper parasitoids	
	No. of	No. 0	No. of mummies	nies		D. rapae	Q.	Ephedr	Ephedrus persicae	Trioxys sp.	s sp.	Aphid	Aphidencyrtus sp.	
Sampling data	examined aphid	A	В	Total	Parasitism (%)	No.	RD (%)	No.	RD (%)	No.	RD (%)	Š	RD (%)	Total
Faba bean season 2011-2012	son 2011-20	112												
Oct. 2011	759	0	13	13	1.71	0	0	0	0	0	0	0	0	0
Nov. 2011	229	8	36	44	6.49	16	53.34	10	33.33	4	13.33	0	0	30
Dec. 2011	621	11	48	59	9.50	83	58.14	12	27.91	9	13.95	0	0	43
Jan. 2012	457	18	46	64	14.00	83	60.87	13	28.26	က	6.52	61	4.35	46
Feb. 2012	409	13	33	52	12.71	21	55.26	10	26.32	61	5.26	тО	13.16	38
Mar. 2012	317	12	21	33	10.41	10	41.67	9	25.00	1	4.17	2	29.17	24
Total	3240			265		100	55.25	51	28.18	16	8.84	14	7.73	181
$Mean\pm SE$	540±70.0			44.1 ± 7.68	9.14 ± 4.78	16.6		8.5		2.6		2.3		30.03
Faba bean season 2012-2013	son 2012-2	013												
Nov. 2012	929	0	80	8	1.18	8	100	0	0	0	0	0	0	8
Dec. 2012	581	70	29	34	5.85	16	72.73	ю	22.73	1	4.54	0	0	22
Jan. 2013	553	18	40	58	10.49	28	63.64	6	20.45	4	60.6	က	6.82	44
Feb. 2013	430	15	34	49	11.39	20	60.61	2	21.21	61	90'9	4	12.12	33
Mar. 2013	389	18	29	47	12.08	16	51.61	ъ	16.13	4	12.9	9	19.36	31
Total	2629			196	8.2±4.42	88	63.77	26	18.84	11	7.97	13	9.42	138
Mean±SE	525.8±51.98	86			39.2±8.68		17.60		5.20		2.20		2.60	27.6

B: No. of mummified host appeared during laboratory rearingm RD: Relative density, SE: Standard error, A: No. of mummies counted at the date of inspection

Table 3: Monthly percentage of parasitism of Aphis nevii by Diaeretiella rapae on oleander plants (Dafla) at Sharqia Governorate during the two successive seasons 2011-2012 and 2012-2013

						Emerg	Emerged parasitoid	sitoid										
						Prima	Primary parasitoid	itoid				Second	Secondary parasitoid	oid				
	No. of	No	of mu	No. of mummies	Total	D. rapae	æ	A. mai	A. matricariae Aphelinus sp.	Aphe	linus sp.	Pachyn	Pachyne-uron sp.	Alloxysta sp.	sta sp.	Aphide	Aphidencyrtus sp.	
Sampling	examined				parasitism													
date	aphid	Ą	В	Total	(%)	No.	RD (%)	No.	RD (%)	No.	RD (%)	No.	RD (%)	No.	RD (%)	No.	RD (%)	Total
2011-2012																		
Sep. 2011	1039	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Oct. 2011	926	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Nov. 2011	619	6	19	28	4.52	13.0	61.91	8	38.09	0	0	0	0	0	0	0	0	21
Dec. 2011	562	8	28	48	8.54	19.0	57.58	11	33.33	ന	60.6	0	0	0	0	0	0	33
Jan. 2012	509	49	38	87	17.09	30.0	51.72	18	31.03	2	12.07	¢1	3.46	1.0	1.72	0	0	58
Feb. 2012	421	28	49	107	25.42	38.0	50.00	53	30.26	6	11.84	ಣ	3.95	2.0	2.63	П	1.32	92
Mar. 2012	318	99	63	129	40.57	46.0	55.42	18	21.69	ю	6.03	2	8.43	4.0	4.82	ಣ	3.61	83
Apr. 2012	286	20	43	93	32.52	24.0	39.34	13	21.31	7	11.48	6	14.75	6.0	9.84	6.1	3.28	61
Total	4680			429	128.60	170.0	51.20	91	27.41	31	9.34	21	6.33	13.0	3.92	9	1.80	332
$Mean\pm SE$	585±96.07			61.5 ± 17.48	16.08 ± 5.45	21.2		11.3		3.8		2.6		1.6		0.7		41.5
2012 - 2013																		
Oct. 2012	1107	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Nov. 2012	961	0	13	13	1.35	8	100.00	0	0	0	0	0	0	0	0	0	0	8
Dec. 2012	719	15	33	48	6.68	20.0	62.50	8	22	ಣ	9.38	1	3.12	0	0	0	0	32
Jan. 2013	582	37	45	82	14.09	29.0	50.88	17	29.82	9	10.53	ಣ	5.26	2.0	3.51	0	0	57
Feb. 2013	489	90	51	111	22.69	33.0	50.77	12	18.46	6	13.85	тО	69.2	4.0	6.15	61	3.08	92
Mar. 2013	403	92	63	139	34.49	41.0	47.13	15	17.24	11	12.64	10	11.49	0.9	6.89	4	4.60	87
Total	4261			393	79.3	131.0	52.61	52	20.88	63	11.65	19	7.63	12.0	4.82	9	2.41	249
Mean±SE	710.1 ± 112.55			65.5±22.43	13.22 ± 5.48	21.8		8.6		4.8		3.1		2.0		3		41.5

A: No. of mummies counted at the date of inspection, B: No. of mummified host appeared during laboratory rearing, RD: Relative density

Table 4: Monthly percentage of parasitism of *Hyalopterus purni* by *Diaeretiella rapae* on (Hagna) plants at Sharqia Governorate during two successive seasons 2011-2012 and 2012-2013

						Emerş	ged parasitoid					
Sampling	No. of examined	No.	of mu	ımmies	Total	D. rap	 vae 		lius colemani 	Aphe	linus sp.	
date	aphid	A	В	Total	parasitism (%)	No.	RD (%)	No.	RD (%)	No.	RD (%)	Total
Season 201	1-2012											
Sep. 2011	569	0	0	0	O	0	0	0	0	0	0	O
Oct. 2011	497	0	6	6	1.21	2	66.67	1	33.33	0	0	3
Nov. 2011	449	7	13	20	4.45	7	50.00	6	42.86	1	7.14	14
Dec. 2012	471	12	19	31	6.58	12	52.19	8	34.78	3	13.04	23
Jan. 2012	454	9	16	25	5.51	7	50.00	5	35.71	2	14.29	14
Feb. 2012	381	13	19	32	8.39	14	63.64	6	27.27	2	6.09	22
Mar. 2012	355	10	13	23	6.48	8	53.33	4	26.67	3	20.00	15
Total	3176			137	32.62	50	54.95	30	32.97	11	12.08	91
${\bf Mean \pm SE}$	453.7 ± 26.91			19.5±4.61	4.66 ± 1.15	7.1		4.2		1.5		13
Season 2012	2-2013											
Oct. 2012	573	6	4	10	1.75	5	83.30	1	17.70	0	0	6
Nov. 2012	458	8	11	19	4.15	8	61.54	5	38.46	0	0	13
Dec. 2012	576	14	18	32	5.56	11	50.00	8	36.36	3	13.64	22
Jan. 2013	491	10	20	30	6.11	9	47.37	6	31.58	4	21.05	19
Feb. 2013	448	12	19	31	6.92	11	52.38	7	33.33	3	14.29	21
Mar. 2013	415	15	17	32	7.71	8	44.44	8	44.44	2	11.12	18
Total	2961			154	32.2	52	52.53	35	35.35	12	12.12	99
Mean±SE	493.5±27.46			25.6±3.73	5.37±2.15	8.6		5.8		2		16.5

A: No. of mummies counted at the date of inspection, B: No. of mummified host appeared during laboratory rearing, RD: Relative density

Table 5: Mean seasonal percentage of parasitism of aphid parasitoids on certain aphid species on some plants at Sharqia Governorate during the two successive seasons 2011-2012 and 2012-2013

						Percentages	s of parasitism
		No. of	Total No.	Mean No.	Ratio of		
Host plants	Host aphid	samples	of aphids	of mummies	mummies: Aphid	Min.	Max.
Season 2011-2	012						
Cabbage	$B.\ brassicae$	20	447.00±32.39	160.62 ± 12.46	1:2.78	4.72	83.84
Faba bean	$A.\ craccivora$	20	540.00 ± 70.00	44.16 ± 7.680	1:12.23	2.58	13.94
Dafla	A. nerii	27	585.00 ± 96.07	61.50 ± 17.48	1:9.51	1.01	35.14
Hagna	$H.\ pruni$	24	453.71 ± 26.91	19.57 ± 4.610	1:23.18	2.22	6.36
Season 2012-2	013						
Cabbage	$B.\ brassicae$	19	444.00 ± 48.26	169.80 ± 39.17	1:2.61	4.01	91.21
Faba bean	A. $craccivora$	22	525.80 ± 51.98	39.20 ± 8.680	1:13.41	1.37	15.01
Dafla	$A.\ nerii$	24	710.17 ± 112.55	65.50 ± 22.43	1:10.84	1.85	40.78
Hagna	$H.\ pruni$	22	493.50 ± 27.46	25.67 ± 3.730	1:19.22	0.76	7.25

Longevity: From data presented in Table 6, it could be generally observed that adult females lived for a longer period than male ones.

Sex ratio: Data presented show the sex ratio of adult parasitoids of *D. rapae* in the two generations on the last aphid species its were (Female:Male) 1.2:1, 1.07:1, 1.1014 and 1.09:1 on *B. brassicae*, *A. craccivora*, *A. nerii* and *H. pruni*, respectively.

Table 6: Development time in days of the parasitoid Diaeretiella rapae on certain aphid species at 20± 1°C and 50 RH (%)

	Duration of life cycle (da	ays)					
					Longevity		
		Sting-mummy	Mummy-adult	Total			Sex ratio
Host plants	Host aphid	(Mean±SD)	(Mean±SD)	(sting-adult)	2	o*	₽ ♂*
Cabbage	Brevicoryne brassicae	11.16±0.62 ^{ab}	4.42 ± 0.67^{bc}	15.58±0.69 ^b	6.10±0.14	3.5±0.210	1.2:1
Faba bean	$Aphis\ craccivora$	9.05±0.63°	3.12±0.67ª	$12.17 \pm 0.75^{\circ}$	4.96 ± 0.33	3.36 ± 0.18	1.07:1
Dafla	$Aphis\ nerii$	12.37 ± 0.84^a	5.15 ± 0.33^{b}	17.52±0.70ª	4.50 ± 0.22	2.78 ± 0.14	1.014:1
Reed plants	Hyalopterus pruni	11.67 ± 0.82^{b}	$3.70\pm0.43^{\circ}$	$15.37\pm0.71^{\rm b}$	5.01 ± 0.13	3.24 ± 0.43	1.09:1
Sowthstil	Hypermoyzus lactucae	0	0	0			
$\mathrm{LSD}_{0.05}$		1.846	1.393	1.786			
р		0.0000***	0.0000***	0.0000***			

Data expressed as Mean±SD, * $p \le 0.05$ **,*** $p \le 0.01$. Mean under each variety having different letters in the same raw denote a significant different ($p \le 0.05$)

Table 7: Performance of the parasitoid $Diaeretiella\ rapae$ towards certain aphid species under laboratory conditions 20 ± 1 C and 68 ± 5 % RH

H. aphid species	B. brassicae	Aphis nerii	A. craccivora	H. pruni	Hypermoyzus lactucae
No. of mummies/Jar	66.78±2.3ª	42.44±3.59 ^b	28.42±3.35°	17.51 ± 1.39^{d}	0
Parasitism (%)	44.52 ± 1.54^{a}	28.29 ± 2.40^{b}	18.95±2.23°	11.79 ± 2.06^{d}	0
Emergence (%)	81.42±1.73 ^a	$61.25\pm2.94^{\circ}$	73.48 ± 1.53^{b}	57.05±3.35°	0

Host preference: Data presented in (Table 7) indicated performance the parasitoid *D. rapae* towards certain aphid species under laboratory conditions. Total numbers of mummies were 66.78±2.3, 42.44±3.59, 28.42±3.35 and 17.52±1.39 on *B. brassicae*, *A. nerii*, *A. craccivora* and *H. pruni*, respectively. Statistical analysis of data showed significant differences among the parasitoid and aphid species at 20±1°C. highest percentage of parasitoid reached 44.52% at *B. brassicae* while the minimum was 11.79% at *H. pruni*. Aslo, the highest percentage of adult emergence was 81.42 on *B. brassicae* while the minimum was 57.05% on *H. pruni*.

Nutrient compounds of different aphid species: Data presented in (Table 8) show the level of total protein in the supernatant of the homogenated aphid species Hypermoyzus lactucae and H. pruni recorded the highest significant level (34.733±1.22 and 34.533±1.23 mg g⁻¹ t. wt., respectively). While B. brassicae gave the lowest significant one (12.89±0.560 mg g⁻¹ t. wt.), p = 0.0000.

Results also indicate significant increase in the total carbohydrate was regarded in the case of $H.\ pruni$ (23.10±0.95 mg g⁻¹. t. wt). Reversely, $A.\ nerii$, $B.\ brassicae$ and $A.\ craccivora$ recorded the lowest significant reduction (10.73±0.45, 10.49±0.33 and 10.42±0.40 mg g⁻¹. t. wt., respectively p = 0.0000 (Table 8).

As for total lipids, B. brassicae manifested the highest significant level of total lipids $(4.616\pm0.27~{\rm mg~g^{-1}~t.~wt.})$ followed by H. pruni 1.573 ± 0.09 , A. craccivora 1.21 ± 0.006 , Hypermoyzus lactucae 1.143 ± 0.04 and A. nerii $0.88\pm0.04~{\rm mg~g^{-1}.t.~wt.}$) p = 0.0000 (Table 8).

A. craccivora and B. brassicae produced the highest significant increase in free amino acids $(4.266\pm0.15 \text{ and } 1.65\pm0.09 \text{ mg g}^{-1}. \text{ b.wt.})$, respectively (Table 8). On the other hand, Hypermoyzus lactucae recorded the least significant decrease $(0.556\pm0.04 \text{ mg g}^{-1} \text{ t. wt.}, \text{ p} = 0.0000)$.

Table 8: Nutrient compounds of different aphid species

	Total protein	Total carbohydrates	Total lipids	Free amino acids
Species	$(\mathrm{mg}\;\mathrm{g}^{-1}\;\mathrm{b.wt.})$	$(\text{mg g}^{-1} \text{ b.wt.})$	$(\text{mg g}^{-1} \text{ b.wt.})$	$(\text{mg g}^{-1} \text{ b.wt.})$
B. brassicae	12.896±0.56°	10.49±0.33°	4.616±0.27ª	1.65±0.09 ^b
$H.\ pruni$	34.533 ± 1.23^a	23.10±0.95ª	1.573 ± 0.09^{b}	0.596±0.06°
A. craccivora	30.00 ± 1.04^{b}	$10.42 \pm 0.40^{\circ}$	1.21 ± 0.006^{bc}	4.266 ± 0.15^{a}
A. nerii	32.033±0.98	$10.73 \pm 0.45^{\circ}$	$0.88 \pm 0.04^{\circ}$	0.726±0.01°
H. lactucae	34.733 ± 1.22^a	12.903 ± 0.64^{b}	$1.143\pm0.04^{\circ}$	0.556±0.04°
$\mathrm{LSD}_{0.05}$	3.260	1.884	0.419	0.298
p	0.0000****	0.0000***	0.0000***	0.0000***

Data expressed as Mean±SD, * $p \le 0.05$ **-*** $p \le 0.01$, mean under each variety having different letters in the same raw denote a significant different ($p \le 0.05$)

DISCUSSION

In the current study, we found that the primary parasitoids associated with four aphid species in the field namely, B. brassicae, A. craccivora, A. nerii, H. pruni. These species infested cabbage, faba bean, Dafla and reed plants (Hagna). The results indicated those three aphids parasitoids were emerged from the mummified aphids of B. brassicae namely; D. rapae, Pachyneuron sp. and Alloxysta sp. Four aphids parasitoids were emerged from the mummified aphids of A. craccivora namely; D. rapae, Ephedrus persicae, Trioxys sp. and Aphidencyrtus sp. Aphis nerii was the dominant aphid species infesting Dafla plants. Six aphids parasitoids were emerged from its mummies namely; D. rapae, Aphidius matricariae, Aphelinus sp., Pachyneuron sp., Alloxysta and Aphidencyrtus sp. Meanwhile, three aphid parasitoids were emerged from the mummified aphids of H. pruni namely; D. rapae, Aphidius colemani and Aphelinus sp. Obtained results showed that D. rapae was the dominant aphid species in this study.

The results agree with (El-Maghraby, 1993; Abdel-Megid, 1999; Zhang and Hassan, 2003) and Saleh (2012) found that B. brassicae was the aphid species infesting cabbage and cauliflower crops and the main parasitoid emerged from the mummified aphid was D. rapae. On the other hand, Abdel-Samad (1996), Ragab et al. (2002a), Rakhshani et al. (2006) and Saleh et al. (2009b) mentioned the parasitoid, D. rapae, L. fabarum, Ephedrus sp. and a hyperparasitoid, Aphidencyrtus sp., emerged from mummified aphid A. craccivora. Meanwhile on oleander plants, Kavallieratos et al. (2001) and Maghraby (2012) showed that the most common parasitoid species attacking A. nerii were A. colemani, Binodoxys angelicae, D. rapae and P. volucre. Also, (Vaz et al., 2004) found that parasitoids on A. nerii were L. testaceipes and A. colemani and the hyperparasitoids were Pachyneuron sp. and S. aphidivorus. These results agree with those of (Ibrahim and Afifi, 1994; Megahed, 2000) and Saleh et al. (2006) who mentioned that the aphid H. pruni is one of the important aphid species infesting common reed and plum trees in Egypt. On reed plants (Stary, 1970; Ibrahim and Afifi 1994; Megahed, 2000) and (Maghraby, 2012) who showed that A. colemani and D. rapae are considered among important parasitoid species on the aphid H. pruni.

The results in this investigation indicated that the mean seasonal percentages of parasitism were ranged between 4.72-83.84, 2.58-13.94, 1.01-35.14, 2.22-6.36% and 4.01-91.21, 1.37-15.01, 1.85-40.78, 0.76-7.25% on *B. brassicae* (cabbage), *A. craccivora* (faba bean), *A. nerii* (Dafla) and *H. pruni* (Reed plant) during both seasons, respectively (Table 5).

However (Vaz et al., 2004; Saleh, 2012) and (Maghraby, 2012) showed that the aphid B. brassicae is a major pest on crucifer plants in several parts of the world especially cabbage in

Egypt, also, reported that *D. rapae* played the major role towards suppressing *B. brassicae* population. (Saleh, 2012) mentioned that the total means of parasitism rates of *D. rapae* were 23.58 and 28.06 on cauliflower plants during two seasons. In addition (Maghraby, 2012) in Egypt showed that the mean parasitism rates were 34.6, 36.13 and 28.73 and 32.24 on cabbage and cauliflower plants during 2010-2012 seasons, respectively.

However, Abdel-Samad (1996) in Egypt, reported that the rate of parasitism on A. craccivora ranged between 15.4 and 22.0% during March on this aphid species. Also, Ragab et al. (2002b) stated that the highest total percentage of parasitism was 15.14% in February in the first season and 17.40% in January in the second season. Saleh et al., (2009a) showed that the Ephedrus sp., on A. craccivora were 8.17 and 6.45% during the two seasons of their study.

The highest percentages of parasitism on A. nerii were 40.57% in the first of March 2011-12 and 34.49% during the third week of March in the second one 2012-13, respectively. The mean percentage of parasitism was 16.08±5.45 and 13.22±5.48 during both seasons, respectively (Table 3). These results agree with those of (Mackauer and Volki, 1993) who mentioned that the parasitism rates on A. nerii tend to range between 1.0 and 10.0%. Although parasitism rates ranged between 30.0 and 45.69% on some host plants Asclepias and Dafla plants (Sandra et al., 2004; Saleh et al., 2009b).

Results agree with findings of Megahed (2000) and (Saleh *et al.*, 2006), who mentioned that the percentage of parasitism mentioned that the percentage of parasitism on *H. pruni* ranged between 6.64-7.5%.

In the respect of biological parameters (Saleh *et al.*, 2009a) reported that sex ratio of the parasitoid *D. rapae* (females: Males) was 1.7:1 by rearing the parasitoid for five successive generations, sex ratio was almost 1:1 in the first three generations, but males dominated in the 4th and 5th generations.

However, El-Batran et al. (1996) mentioned that the parasatoid D. rapae completed its life cycle in B. brassicae. Also, Ragab et al. (2002b) reported that D. rapae completed its life cycle in a period of 12-18 days at 19.5°C on B. brassicae and 11-15 days on A. craccivora. On the other hand, Saleh (2008) reported that the total development period of the parasitoid D. rapae lasted 16-24 days, with an average of 19.87, 24.39, 16.34 and 18.55 days in B. brassicae, A. nerii, A. craccivora and H. pruni, respectively at 16°C and 77% R.H.

The results in this research indicated that performance of the parasitoid *D. rapae* towards certain aphid species under laboratory conditions. Total numbers of mummies were 66.78±2.3, 42.44±3.59, 28.42±3.35 and 17.52±1.39 on *B. brassicae*, *A. nerii*, *A. craccivora* and *H. pruni*, respectively.

Similar finding was recorded by Elliot et al. (1994) in USA and Ragab et al. (2002a) in Egypt who mentioned that D. rapae parasitized on many aphid species (B. brassicae, A. craccivora, A. nerii, M. persicae, S. avane, H. pruni and A. gossypii). On the other hand El-Naggar et al. (2008) and (Ralec et al., 2011) showed that the parasitoid density in relation to host density had influenced percentage of parasitism and emergence. The percentage of parasitism increased with the increase in numbers of parasitoid.

Due to the nutrient compounds of different aphid species, available informations indicated that, there are few researches about the relation between parasitism percentages and nutrition components of different species of aphids. A result of the ongoing needs of parasitoids to get their food to continue to grow and develop, they are looking for a suitable host that ensures it is available

source of nutrition. Parasitoids larvae grow at different rates in different aphid hosts of similar sizes, which makes us suggest that this preference is linked to the quality of the nutrition they provided these hosts (Sequeira and Mackauer, 1993). The host species may influence the rate of development and the survival of a parasitoid. A host may be unsuitable due to the lack of some necessary nutritional or hormonal resource (Carver and Sullivan, 1988; Kant et al., 2008). Our data on D. rapae showed that host aphid species, B. brassicae, A. nerii and A. craccivora were nutritionally and physiologically suitable for parasitoid development but B. brassicae was considered the best host among the species tested, adult emergence and higher parasitization.

That is probably attributed to its higher nutrient composition of total lipids and free amino acids. These amino acids rapidly incorporate to produce large amounts of proteins which are necessary for the developing parasitoid. Lipids can convert to proteins to substitute the reduction in protein content or produce supplementary energy used for growth and development. In addition, they include important hormones and pheromones (Downer, 1978).

However (Abdul Rehman and Powell, 2010) mentioned that aphid parasitoids have considerable potential as biological control agents but their efficiency is dependent upon their presence in the right place at the right time and right host: parasitoid ratio. Understanding parasitoid behavior, together with identification of physical and chemical cues regulating the behavior, is providing exciting opportunities for manipulation of parasitoids in the field, as populations introduced through inundative releases.

CONCLUSION

Diaeretialla rapae is an important primary parasitoid of a wide range of aphid species and is considered a promising biological control agent against aphid species especially cabbage aphid in cabbage and cauliflower fields and it recommended to be an item of Integrated Pest Management Programs in Egyptians fields designed to control B. brassicae.

ACKNOWLEDGMENTS

Many thanks to Prof. Dr. A. El-Heneidy, Biological Control Department. Agricultural Research Center. Giza, Egypt for the identification of the parasitoid species in this investigation.

REFERENCES

- Abdel-Megid, J.E., 1999. The cabbage aphid *Brevicoryne brassicae* (L.) (Homoptera: Aphididae) and its associated parasitoids on cauliflower plantations at Zagazig district. J. Agric. Sci. Mansoura Univ., 24: 7741-7752.
- Abdel-Samad, S.S.M., 1996. Studies on natural enemies of certain insects attacking leguminous crop. M.Sc. Thesis, Faculty of Agriculture, Ain Shams University.
- Abdul Rehman and W. Powell, 2010. Host selection behavior of aphid parasitoids (Aphidiidae: Hymenoptera). J. Plant Breed. Crop Sci., 2: 299-311.
- Carver, M. and D.J. Sulivan, 1988. Encapsulative Defense Reactions of Aphids (Hemiptera: Aphididae) to Insect Parasitoids (Hymenotera: Aphididae) and Aphelinidae (Minireview). In: Ecology and Effectiveness of Aphidophaga: Proceedings of an International Symposium, Niemczyk, E. and A.F.G. Dixon (Eds.). SPB Academic Publishing, Hague, pp: 299-303.
- CoStat Statistical Software, 2005. Microcomputer program analysis version 6.311. CoHort Software, Monterey, California, USA.,

- Crompton, M. and L.M. Birt, 1967. Changes in the amounts of carbohydrates, phosphagen and related compounds during the metamorphosis of the blowfly, *Lucilia cuprina*. J. Insect Physiol., 13: 1575-1592.
- Downer, R.C., 1978. Functional Role of Lipid in Insects. In: Biochemistry of Insects, Rockstein, M. (Ed.). Academic Press, London, pp. 58-93.
- Dubois, M., K.A. Gilles, J.K. Hamilton, P.A. Rebers and F. Smith, 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem., 28: 350-356.
- El-Batran, L.A., S.S. Awadallah and H.M. Fathy, 1996. On some predators and parasitoids of the cabbage aphid *Brevicoryne brassicae* (L.) in Mansoura district. Egypt. J. Biol. Pest Cont., 6: 35-38.
- El-Maghraby, M.M.A., 1993. Seasonal abundance of the cruciferous aphid *Brevicoryne brassicae* L. Homoptera, Aphididae, in relation to the primary and hyper parasitoids on cauliflower in Zagazig region, Egypt. Zagazig J. Agric. Res., 20: 1627-1639.
- El-Naggar, E.M., A.M. Abou El-Nagar, A.A. Ghanim and A.A. Saleh, 2008. Mass production and field application of some aphid natural enemies. Egypt. J. Agric. Res., 86: 623-624.
- Elliot, N.C., B.W. French, D.K. Reed, J.D. Burd and S.D. Kindler, 1994. Host species effects on parasitization by a Syrian population of *Diaeretiella rapae* M'Intosh (Hymenoptera: Aphidiidae). Can. Entomol., 126: 1515-1517.
- Farrell, J.A. and M.W. Stufkens, 1990. The Impact of *Aphidius rhopalosiphi* (Hymenoptera: Aphidiidae) on populations of the rose grain aphid (*Metoplophium dirhodum*) (Hemiptera: Aphidiidae) on cereals in Canterbury, New Zealand. Bul. Entomol. Res., 80: 377-383.
- Gornall, A.G., C.J. Bardawill and M.M. David, 1949. Determination of serum proteins by means of the biuret reaction. J. Biol. Chem., 177: 751-766.
- Hagvar, E.B. and T. Hofsvang, 1991. Aphid parasitoids (Hymenoptera, Aphidiidae): biology, host selection and use in biological control. Biocontrol News Inform., 12: 13-42.
- Ibrahim, A.M.A. and A.I. Afifi, 1994. *Aphidiius colemani* Viereck and *Aphidius picipes* (Ness) as a parasitoid on the mealy plum aphid, *Hyalopterus pruni* (Geoffroy) on peach in Egypt. Egypt. J. Biol. Pest Control., 1: 45-56.
- Kant, R., W.R.M. Sandanayaka, X.Z. He and Q. Wang, 2008. Effect of host age on searching and oviposition behaviour of *Diaeretiella rapea* (M'Intosh) (Hymenoptera: Aphidiidae). NewZealand Plant Protect., 61: 355-361.
- Kavallieratos, N.G., S.G.P., Lykoressis, S.A. Stathas and C.G. Athanassionu, 2001. The aphidiinae (Hymenoptera: Icheumonoidae: Braconidae) of Greece. Phytoparasitica, 29: 306-340.
- Knight, J.A., S. Anderson and J.M. Rawle, 1972. Chemical basis of the sulfo-phospho-vanillin reaction for estimating total serum lipids. Clin. Chem., 18: 199-202.
- Lee, Y.P. and T. Takahashi, 1966. An improved colorimetric determination of amino acids with the use of ninhydrin. Anal. Biochem., 14: 71-77.
- Mackauer, M. and W. Volki, 1993. Regulation of aphid populations by aphidiid wasps: Does parasitoid foraging behaviour or hyperparasitism limit impact? Oecologia, 94: 339-350.
- Maghraby, H.M., 2012. Studies on the parasitoid *Diaeretiella rapae* on some aphid species in Sharkia Governorate. M.Sc. Thesis, Future of Agricultures Moshtohor University.

- Megahed, H.E.A., 2000. Studies on aphids. Ph.D. Thesis, Future of Agricultures Zag University. Pike, K.S., P. Stary, T. Miller, D. Allison and G. Graf *et al.*, 1999. Host range and habitats of the aphid parasitoid *Diaeretiella rapae* (Hymenoptera: Aphidiidae) in Washington State. Environ. Entomol., 28: 61-71.
- Pike, K.S., P. Stary, T. Miller, D. Allison and G. Graf *et al.*, 1999. Host range and habitats of the aphid parasitoid *Diaeretiella rapae* (Hymenoptera: Aphidiidae) in Washington State. Environ. Entomol., 28: 61-71.
- Ragab, M.E., A.A. Abou El-Naga, A.A. Ghanim and A.A. Salah, 2002a. Effect of host aphid species temperature and food supply on some biological characteristics of the two aphid parasitoids *Diaeretialla rapae* (M'Intosh) and Aphidius sp. (Nees) (Hymenoptera: Aphidiidae). J. Agric. Sci. Mansoura Univ., 27: 4997-5002.
- Ragab, M.E., A.M. Abou El-Naga, A.A. Ghanim and A.A. Saleh, 2002b. Ecological studies on certain aphid parasitoids especially those of *Aphis craccivora* Koch. J. Agric. Sci. Mansoura Univ., 27: 2611-2620.
- Rakhshani, E., A.A. Talebi, S. Manzari, A. Rezwani and H. Rakhshani, 2006. An investigation on alfa lafa aphids and their parasitoids in different parts of Iran with a key to the parasitoids (Hemiptera: Aphididae: Hymenoptera: Braconidae: Aphidiinae). J. Entomol. Soc. Iran, 25: 1-14.
- Ralec, A.L., A. Ribule, A. Barragan and Y. Outreman, 2011. Host range limitation caused by incomplete host regulation in an Aphid parasitoid. J. Insect Physiol., 57: 363-371.
- Saleh, A.A.A., M.S. Hashem and A.A. Abd-Elsamed, 2006. Aphidius colemani Viereck and Diaeretiella rapae (M' Intosh) as parasitoids on the common reed aphid Hyalopterus purni (Geoffroy) in Egypt. Egypt. J. Biol. Pest Cont., 16: 93-97.
- Saleh, A.A.A., 2008. Ecological and biological studies of *Diearetiella rapae* (M' Intosh) (Hymenoptera: Aphidiidae) the parasitoid of some aphid species in Egypt. Proceedings of the 2nd Arab Conference of Applied Biological Pest Control, April 7-10, 2008, Cairo, Egypt.
- Saleh, A.A.A., W.M.H. Desuky and E.M. Nadia, 2009a. Studies on some parasitoids of the cowpea aphid *Aphis craccivora* Koch. (Hymenoptera: Aphidae) in Egypt. Egypt. J. Biol. Pest Cont., 19: 11-16.
- Saleh, A.A.A., H.E.M. Salem and W.G.T. Gatwary, 2009b. The role of primary parasitoids and hyperparasitoids associated with oleander aphid Aphis nerii Boyer DeFonscolombe (Homoptera: Aphididae). Bull. Soc. Entomol. Egypt, 86: 115-129.
- Saleh, A.A.A., 2012. Evaluation of release of *Diaeretiella rapae* (M' Intosh) for controlling the cruciferous aphid *Brevicoryne brassicae* L. on cauliflower plants at Sharkia Governorate, Egypt. J. Plant Prot. Path. Mansoura Univ., 3: 307-318.
- Sandra, E.H., J.C. Scott and D.H. Mark, 2004. Effects of variation among plant species on the interaction between a herbivore and its parasitoid. Ecol. Entomol., 29: 44-51.
- Sequeira, R. and M. Mackauer, 1993. The nutritional ecology of a parasitoid wasp *Ephedrus californicus* Baker (Hymenoptera: Aphidiidae). Can. Entomol., 125: 423-430.
- Snedecor, G.W. and G.W. Cochran, 1980. Statistical Methods. 2nd Edn., Iowa State University Press, USA.
- Stary, P., 1970. Biology of Aphid Parasites (Hymenoptera: Aphidiidae) with Respect to Integrated Control Series. Vol. 6, Springer, New York, Pages: 656.

- Vaz, L.A.L., M.T. Tavares and C. Lomonaco, 2004. Diversity and size of parasitic Hymenoptera of *Brevicoryne brassicae* L. and *Aphis nerii* Boyer de Fonscolombe (Hemiptera: Aphidae). Neotrop. Entomol., 33: 225-230.
- Vinson, S.B. and G.F. Iwantsch, 1980. Host suitability for insect parasitoids. Annu. Rev. Entomol., 25: 397-419.
- Walker, G.P., L.R. Nault and D.E. Simonet, 1984. Natural mortality factors acting on potato aphid (*Macrosiphum euphorbiae*) populations in processing-tomato fields in ohio. Environ. Entomol., 13: 724-732.
- Zaki, F.N., M.F. El-Shaarawy and N.A. Farag, 1999. Release of two predators and two parasitoids to control aphids and whiteflies. J. Pest Sci., 72: 19-20.
- Zhang, W.Q. and S.A. Hassan, 2003. Use of the parasitoid *Diaeretiella rapae* (M' Intosh) to control the cabbage aphid *Brevicoryne brassica* (L.) China. J. Applied Entomol., 127: 522-526.