

# Journal of **Entomology**

ISSN 1812-5670



Journal of Entomology 11 (5): 248-260, 2014 ISSN 1812-5670 / DOI: 10.3923/je.2014.248.260 © 2014 Academic Journals Inc.

# Antibiosis Mechanism of Resistance to Larger Grain Borer, Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae) in Maize

<sup>1,3</sup>E. Nhamucho, <sup>2</sup>S. Mugo, <sup>1</sup>M. Kinyua, <sup>1</sup>L. Gohole, <sup>2</sup>T. Tefera and <sup>1,3</sup>E. Mulima
 <sup>1</sup>University of Eldoret, Chepkoilel campus, P.O. Box 1125-30100, Eldoret, Kenya
 <sup>2</sup>International Maize and Wheat Improvement Center (CIMMYT), P.O. Box 1041, Nairobi, 00621, Kenya
 <sup>3</sup>Mozambique Agricultural Research Institute (IIAM), P.O. Box 3658, FPLM Avenue. N 2698, Maputo, Mozambique

Corresponding Author: E. Nhamucho, Mozambique Agricultural Research Institute (IIAM), P.O. Box 3658, FPLM Avenue. N 2698, Maputo, Mozambique Tel: +258-829640710

#### ABSTRACT

Host plant resistance is a valuable component of integrated pest management in maize. Maize stored on-farm without controlled moisture content and insecticide treatment is highly susceptible to damage by Larger Grain Borer (LGB), Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae). The aim of this study was to determine the resistance of Mozambican maize genotypes against P. truncatus. Seventeen maize genotypes composed of seven experimental hybrids, one released hybrid, two improved open pollinated varieties (OPV), three landraces from Mozambique and four checks (two resistant and two susceptible) from Kenya were screened for their resistance to LGB. The  $F_1$  and  $F_2$  hybrids were evaluated at Kiboko, Kenya in a completely randomized design trial, replicated four times in a post-harvest laboratory. A selection index computed from the number of LGB, grain weight loss (%), seed damage (%) and flour weight were used to categorize the materials as either resistance or susceptible. Fifty percent of the F, hybrids tested were resistant, 25% moderately resistant and 25% susceptible. Twenty five percent of F<sub>2</sub> hybrids evaluated were resistant and 75% susceptible. EV8430DMRSR, an OPV and Kandjerendjere, a landrace were the most resistant genotypes with less than 10% weight loss and less than 25% seed damage. This study showed that high protein content contributed towards resistance while high starch contributed to susceptibility. It was concluded that antibiosis mechanism could contribute to LGB resistance in maize. The identified resistant genotypes could be used as cultivar or as source of resistance in maize breeding programs for resistance to LGB.

**Key words:** Maize, Zea mays, post-harvest, Prostephanus truncatus, resistance

#### INTRODUCTION

Larger Grain Borer (LGB), Prostephanus truncatus (Horn), is an important pest of maize, dried cassava and woody plants in the tropics. The LGB was introduced in Africa in 1970s from Mexico (Markham et al., 1991). The pest is associated with 9-90% grain loss on stored maize depending on the periods of storage (Bett and Nguyo, 2007; Gueye et al., 2008; Markham et al., 1991; Schneider et al., 2004; Tefera et al., 2010). Treatment of maize for storage with insecticides has been recommended to protect the grain from LGB. However, pesticides pose health and environmental risks and are too expensive for small-holder farmers (Dhliwayo and Pixley, 2003; Golob, 2002). Biological control is a suitable strategy but takes too long to be effective. Developing

resistant maize to LGB is a viable option to reduce the costs of production and storage. The objectives of this study were to: (1) Identify sources of resistance in Mozambique elite maize for resistance to LGB and (2) Determine the influence of biochemical and physical kernel properties on resistance to LGB in maize.

### MATERIAL AND METHODS

**Experimental material and site:** Thirteen Mozambican maize genotypes, two susceptible and two resistant checks from Kenya were evaluated for resistance to LGB (Table 1 and 2).

Mozambican maize genotypes included one released and seven experimental hybrids, two Open Pollinated Varieties (OPVs) and three landraces. The experimental hybrids were developed from inbred lines with good combining ability. Mozambican improved genotypes were chosen based on their relative importance in the Mozambique Maize Breeding Program. Landraces were chosen based on popularity with farmers. All seeds were produced under irrigation at CIMMYT's research field at the Kenya Agricultural Research Institute (KARI) Kiboko Farm except the  $F_1$  seed for commercial checks (PH4 and H513) which were obtained from commercial sources. Kiboko is located at 2°15' S and 37°75' E, at altitude of 950 m and receives an annual rainfall of 530 mm. The soils are sand clays while temperatures range between 14.3-35.1°C annually. The  $F_1$  and  $F_2$  hybrids, OPVs and landraces were produced by hand pollination between August and December 2010 and the  $F_2$  hybrids produced between October 2010 and February 2011. Fertilizers were applied at the rate of 60 kg N and 60 kg  $P_2O_5$  ha<sup>-1</sup>. Nitrogen fertilizer was applied in two splits and irrigation was done when necessary. Fields were hand-weeded and the crop harvested manually at physiological maturity.

**Laboratory rearing of LGB:** LGB was reared on maize grain according to the methods described by Tefera *et al.* (2010). Four hundred grams of H513 grain (susceptible hybrid) with 11-12%

|  | Table 1: List of genotypes | evaluated for mai | ze resistance to the | larger grain horer | at KARI Kiboko, Kenya |
|--|----------------------------|-------------------|----------------------|--------------------|-----------------------|
|--|----------------------------|-------------------|----------------------|--------------------|-----------------------|

| Entry          | Genotype                            | Type                             | Status                    | Origin             |
|----------------|-------------------------------------|----------------------------------|---------------------------|--------------------|
| 1              | (P2×P4)                             | Single cross hybrid              | Experimental hybrid       | IIAM-Mozambique    |
| 2              | (P3×P6)                             | Single cross hybrid              | Experimental hybrid       | IIAM-Mozambique    |
| 3              | Hluvukane                           | Three way cross hybrid           | Released hybrid           | IIAM-Mozambique    |
| 4              | (P4×P7)×P2                          | Three way cross hybrid           | Experimental hybrid       | IIAM-Mozambique    |
| 5              | (P3×P7)×(P4×P6)                     | Double cross hybrid              | Experimental hybrid       | IIAM-Mozambique    |
| 6              | (P4×P6)×(P3×P7)                     | Double cross hybrid (reciprocal) | Experimental hybrid       | IIAM-Mozambique    |
| 7              | (P2×P7)×(P4×P6)                     | Double cross hybrid              | Experimental hybrid       | IIAM-Mozambique    |
| 8              | $(P4\times P6)\times (P2\times P7)$ | Double cross hybrid (reciprocal) | Experimental hybrid       | IIAM-Mozambique    |
| 9              | Djandza                             | Open pollinated variety (OPV)    | Released OPV              | IIAM-Mozambique    |
| 10             | EV8430DMRSR                         | Open pollinated variety (OPV)    | Released in 2011 as Dimba | IIAM-Mozambique    |
| 11             | Kandjerendjere                      | Landrace                         | Landrace                  | Mozambique         |
| 12             | Xidiwane                            | Landrace                         | Landrace                  | Mozambique         |
| 13             | Sacana                              | Landrace                         | Landrace                  | Mozambique         |
| ${\bf Checks}$ |                                     |                                  |                           |                    |
| 14             | CKPH08020                           | Three way cross hybrid           | Resistant check           | CIMMYT-Kenya       |
| 15             | CKPH08028                           | Three way cross hybrid           | Resistant check           | CIMMYT-Kenya       |
| 16             | PH4                                 | Top cross hydrid                 | Susceptible check         | Kenya seed company |
| 17             | H513                                | Top cross hydrid                 | Susceptible check         | Kenya seed company |

Table 2: Pedigree of the S5 maize inbred lines used to form the hybrids evaluated in this study

| Inbreed lines | Pedigree                  | Origin          |
|---------------|---------------------------|-----------------|
| Parent 2 (P2) | ZM521-15-1-1-3-B          | IIAM-Mozambique |
| Parent 3 (P3) | ZM621-19-1-1-3-1-B        | IIAM-Mozambique |
| Parent 4 (P4) | SUWAN8075DMR-79-2-1-2-2-B | IIAM-Mozambique |
| Parent 6 (P6) | MATUBASG-14-1-4-3-1-B     | IIAM-Mozambique |
| Parent 7 (P7) | SYNSYNF1FS-4-6-1-2-1-B    | IIAM-Mozambique |

moisture content were placed in 1 L glass jars covered with perforated lids. Two hundred unsexed adult LGB were introduced into the jars. The jars were maintained at Controlled Temperature and Humidity (CTH) at KARI-Kiboko Post-harvest Laboratory at ambient temperatures (27±2°C), 65-70% relative humidity and 12:12 (light:Dark) photoperiod. After 35 days, newly emerged LGB adults were daily transferred to fresh grain in glass jars and kept in the CTH room until sufficient numbers of insects were obtained.

Screening for LGB: Experiments were set in KARI-Kiboko Post-harvest Laboratory. After harvest, the maize was sun dried for a week, then fumigated with Gastoxin<sup>TM</sup> phosphine fumigant for seven days in plastic drums to kill any insect that may have been present on the grain. Five cobs of each genotype were then hand-shelled and dried to 12-13% moisture content. Two separate sets of the laboratory experiments were evaluated. The first set composed of eight  $F_1$  hybrids, two OPVs, three landraces, two resistant and susceptible checks while the second composed of  $F_2$  seed of four hybrids, two OPVs, three landraces, two resistant and susceptible checks.

In each experiment, samples of 100±1 g of clean, undamaged maize grains of each genotype were weighed and placed in clean 250 cm³ glass jars. The tops of the lids of these jars were cut out, leaving only the screw-top rings with fine wire gauze, to promote air circulation in the jar and avert the insects from escaping. The jars were left in a CTH room for one week for acclimatization at 28±2°C and 65±5% RH with 12:12 photoperiod to achieve uniform grain moisture content and grain temperature among all samples. After acclimatization, 30 active and unsexed 20-25 days old LGB adults were picked randomly from laboratory culture and introduced into each jar. The jars were laid in completely randomized design with four replications and kept undisturbed in the CTH room for 90 days. Temperature and relative humidity in CTH room was maintained at 27±2°C and 65-70%, respectively with 12:12 photoperiod.

Data collection: Data was collected on number of living and dead LGBs, number and weight of damaged and undamaged grain, weight of flour produced by the borers in individual jars after 90 days of incubation. Glass jars were opened and the content separated into damaged and undamaged grains, insects and flour using 4.7 mm and 1.0 mm sieves for each jar. Damaged grains had visible holes and/or tunnels. An electronic scale (Ohaus, 0.0001 g, 400 g) was used to weigh damaged and undamaged grains and flour weight was expressed as a percentage of the initial grain weight. Seed damage was expressed as a proportion of damaged seed over the total number of seeds sampled and the percentage of weight loss was estimated using the count and weigh method as described below by Boxall (1986):

Weight loss (%) = 
$$\frac{Wu \times Nd - Wd \times Nu}{Wu \times (Nd + Nu)} \times 100$$
 (1)

where, Wu is weight of undamaged grains, Wd is weight of insect damaged grains, Nu is the number of undamaged grains and Nd is the number of insect damaged grains.

The percentage reduction in grain weight among the genotypes relative to the susceptible check was computed using the genotype with the highest weight loss:

$$R = \frac{\text{Weight loss of entry (\%) - Weight loss of the most susceptible check (\%)}}{\text{Weight loss of the most susceptible check (\%)}} \times 100$$
 (2)

where, R is percentage reduction for each genotype compared to the most susceptible check the percentage reduction data was multiplied by negative 1 (-1), to present them as positive values for convenience.

Physical and biochemical parameters: Physical and biochemical maize kernel parameters have been reported to confer resistance to maize weevil (Arnason *et al.*, 1997). Parameters measured included grain hardness, protein content, starch and oil contents. Sample tested consisted of 10 kernels for each genotype replicated thrice. Grain hardness was determined by the force to break the maize kernel using the displacement force test station model 921A. The average force of 10 kernels was used as the force to break the kernel of that genotype. Protein, starch and oil contents in the maize kernel were measured using the Infratec<sup>TM</sup> 1241 Grain Analyzer (Graintech, 2011).

Data analysis: Data on percentages was angular-transformed and count data was log transformed before analysis of variance using GenStat 12th edition statistical software (GenStat, 2010). The analysis of variance and correlation analyses for grain weight loss, flour weight, seed damage, number of dead and living borers, protein content, oil content, starch and force to break maize kernels were calculated. Tukey's range test at (p<0.05) was used to compare genotype means. Selection index based on susceptibility parameters was computed to classify the genotypes into resistant or susceptible by summing the ratios between values and overall mean and dividing the number of parameters considered. Susceptibility parameters considered were number of living adults, weight loss (%), flour weight (%) and seed damage (%). Classification of genotypes into susceptibility and resistant groups was based on Bergvinson *et al.* (2002) method where,  $\leq 0.6 = \text{Highly resistant}$ ; 0.61-0.8 = Moderately resistant; 0.81 to 1.0 = Moderately susceptible and >1.0 = Highly susceptible.

#### RESULTS

Grain weight loss, seed damage, flour weight and number of live and dead LGB for the  $F_1$  generation set: There were highly significant differences (p<0.001) among genotypes for all the above traits in the  $F_1$  generation. This set had a mean weight loss of 12.2% with H513 (susceptible check) recording the highest weight loss of 26.6% and double cross (P4×P6)×(P2×P7) recording the lowest weight loss of 6.18%. The individual means of seed damage in the  $F_1$  set ranged between 16.4 and 62.9% where Xidiwane and (P4×P6)×(P2×P7) showed the highest and the lowest weight losses respectively with a grand mean weight loss of 32.4% (Table 3). The genotypes in this set showed a grand mean of 12.78% for flour weight produced from LGB damage with individual means ranging between 5.2 and 40.9% (Table 3).

Table 3: Means of parameters for maize resistance to the LGB in the F1 generation set

| Genotype        | Weight loss (%)                | Seed damage (%)                | Flour weight (%)             | No. of LGB dead            | No. of LGB alive       |
|-----------------|--------------------------------|--------------------------------|------------------------------|----------------------------|------------------------|
| (P2×P4)         | 7.87±1.15 <sup>ab</sup>        | 22.47±3.51 <sup>ab</sup>       | 5.65±0.38 <sup>ab</sup>      | 26±7ª                      | 25±11 <sup>ab</sup>    |
| (P3×P6)         | 15.89±0.86°                    | $31.56 \pm 1.39^{bcde}$        | $9.17\pm0.85^{d}$            | $56\pm15^{\mathrm{bcdef}}$ | $45\pm26^{ m abc}$     |
| Hluvukane       | $6.71\pm0.19^{a}$              | 18.69±3.06 <sup>a</sup>        | $5.72 \pm 0.71^{ab}$         | $31\pm16^{ab}$             | 30±8 <sup>ab</sup>     |
| (P4×P7)×P2      | $8.81 \pm 1.49^{ m abc}$       | $27.29 \pm 5.39^{abcd}$        | $7.34\pm0.96^{\text{tot}}$   | $73 \pm 16^{\mathrm{def}}$ | $38\pm18^{ab}$         |
| (P3×P7)×(P4×P6) | $15.25{\pm}1.28^{\rm de}$      | $43.13 \pm 7.38^{\rm e}$       | 15.21±0.68°                  | 75±16°f                    | $116 \pm 17^{c de}$    |
| (P4×P6)×(P3×P7) | $8.31 \pm 0.35^{ab}$           | $23.81 \pm 5.03^{ab}$          | $7.18 \pm 0.59^{\text{tot}}$ | $35\pm10^{\mathrm{abc}}$   | $46\pm21^{abc}$        |
| (P2×P7)×(P4×P6) | $7.36\pm1.03^{ab}$             | $20.92\pm3.60^{ab}$            | $7.81 \pm 0.48^{\rm cd}$     | $34\pm11^{\mathrm{ab}}$    | $45\pm37^{ab}$         |
| (P4×P6)×(P2×P7) | 6.18±1.98 <sup>a</sup>         | 16.38±5.63ª                    | 5.24±1.01 <sup>a</sup>       | $35\pm9^{abc}$             | $35\pm14^{ab}$         |
| Djandza         | $11.71 \pm 1.00^{cd}$          | $39.56 \pm 8.15^{de}$          | 20.96±1.18 <sup>f</sup>      | $93 \pm 14^{\rm f}$        | $169{\pm}15^{\rm de}$  |
| EV8430DMRSR     | $7.89 \pm 1.43^{ab}$           | $20.30\pm6.60^{ab}$            | $5.83 \pm 0.97^{abc}$        | $50\pm14^{ m abcdef}$      | 23±11ª                 |
| Kandjerendjere  | $9.91 \pm 0.35^{bc}$           | $24.30 \pm 5.30^{abc}$         | $7.76 \pm 1.09^{\rm cd}$     | $36\pm7^{\mathrm{abcd}}$   | 35±30 <sup>ab</sup>    |
| Xidiwane        | $21.49 \pm 2.19^{g}$           | 62.94±0.80 <sup>€</sup>        | $34.58 \pm 1.21^{\rm g}$     | $91 \pm 15^{f}$            | 337±16°                |
| Sacana          | $16.98 \pm 1.33^{ef}$          | 43.72±6.71°                    | 12.85±1.40°                  | $50\pm16^{ m abcdef}$      | $73\pm29^{bcd}$        |
| CKPH08020       | $9.73 \pm 0.11^{bc}$           | 36.92±3.30° de                 | $8.85 \pm 0.71^{d}$          | $67\pm5^{\rm cdef}$        | $44\pm 9^{abc}$        |
| CKPH08028       | $8.75 \pm 1.63^{\mathrm{abc}}$ | $22.47 \pm 2.74^{ab}$          | $6.23 \pm 0.82^{abc}$        | 29±14ª                     | $25\pm4^{\mathrm{ab}}$ |
| PH4             | $20.44 \pm 1.03^{\mathrm{fg}}$ | $45.04\pm1.02^{\rm ef}$        | $20.53\pm0.94^{\rm f}$       | 39±9 <sup>abcde</sup>      | $143 \pm 29^{de}$      |
| H513            | $26.62 \pm 1.69^{h}$           | $58.24 \pm 3.20^{\mathrm{fg}}$ | $40.91\pm1.40^{h}$           | $59\pm14^{\mathrm{bcdef}}$ | 255±21°                |
| Mean            | 12.16                          | 32.37                          | 12.78                        | 51                         | 84                     |
| Max             | 26.62                          | 62.94                          | 40.91                        | 93                         | 337                    |
| Min             | 6.18                           | 16.38                          | 5.24                         | 26                         | 23                     |

Means followed by same letters within a column are not significantly different at 5% level of Tukey's range test, P2: ZM521-15-1-1-1-3-B, P3:= ZM621-19-1-1-3-1-B, P4: SUWAN8075DMR-79-2-1-2-2-B, P6: MATUBASG-14-1-4-3-1-B, P7: SYNSYNF1FS-4-6-1-2-1-B

Individual means of live LGB on this set ranged between 23 and 337 insects with a grand mean of 84. The lowest number of live insects was observed on EV8430DMRSR and highest observed on Xidiwane.

The F<sub>1</sub> set had a grand mean of 51 dead LGB with individual means ranging between 26 and 93 insects. The lowest number of dead LGB was recorded on (P2×P4) while the highest was observed on Djandza.

Grain hardness, protein, starch and oil contents for the  $F_1$  generation set: There were highly significant differences (p<0.001) among genotypes for grain hardness, protein, starch and oil contents in the  $F_1$  generation.

The force to break the kernels in F<sub>1</sub> set ranged between 128.3 and 216.7 Newton (N) with a mean of 195.07 N. The highest force was recorded on the resistant check CKPH08028 while the lowest force was recorded on Hluvukane (Table 4). The grand mean of the F<sub>1</sub> set for protein content was 12.8% with (P3×P6) having the highest protein content of 15.2% and H513 (susceptible check) having the lowest protein content of 8.6% (Table 4).

In the  $F_1$  sets, H513 recorded the highest starch content of 69.9% while (P3×P6) recorded the lowest of 66.3%. The grand mean was 67.2% (Table 5). The  $F_1$  individual means for oil content ranged between 4.9 and 5.9% with EV8430DMRSR and H513 recording the highest and the lowest oil contents with a mean of 5.5% (Table 4).

Grain weight loss, seed damage, flour weight and number of live and dead LGB for the  $F_2$  generation set: There were highly significant differences (p<0.001) among genotypes for grain weight loss, seed damage and flour weight and number of live and dead LGB in the  $F_2$  generation.

Table 4: Means for the seed biochemical parameters related to resistance to the LGB in F1 generation set

| Genotype        | Protein (%)                     | Starch (%)                             | Oil (%)                               | Force (N)                  |
|-----------------|---------------------------------|----------------------------------------|---------------------------------------|----------------------------|
| (P2×P4)         | $14.30{\pm}0.17^{\rm j}$        | 66.70±0.36abc                          | $5.20\pm0.10^{ab}$                    | $215.00\pm1.44^{\rm hi}$   |
| (P3×P6)         | $15.17{\pm}0.15^{k}$            | 66.30±0.20ª                            | $5.33\pm0.06^{bc}$                    | $212.00{\pm}0.86^{\rm hi}$ |
| Hluvukane       | $12.53 \pm 0.06^{\mathrm{de}}$  | $67.67 \pm 0.12^{\mathrm{def}}$        | $5.40 \pm 0.17^{\rm bcd}$             | $128.30\pm1.34^{a}$        |
| (P4×P7)×P2      | $13.33\pm0.06^{hi}$             | $66.77 \pm 0.15^{\mathrm{abc}}$        | $5.63 \pm 0.12^{\rm defg}$            | $198.20 \pm 1.94^{\rm f}$  |
| (P3×P7)×(P4×P6) | $12.73 {\pm} 0.21^{\rm ef}$     | $67.33 \pm 0.25^{bcdef}$               | $5.50\pm0.10^{\rm cde}$               | $206.50 \pm 1.62^{g}$      |
| (P4×P6)×(P3×P7) | $13.67 \pm 0.15^{i}$            | $66.67 \pm 0.12^{ab}$                  | $5.53 \pm 0.12^{\rm cdef}$            | $213.50\pm1.17^{\rm hi}$   |
| (P2×P7)×(P4×P6) | $12.83 \pm 0.12^{\mathrm{efg}}$ | $66.57\pm0.51^{ab}$                    | $5.77 \pm 0.06^{\rm efg}$             | $203.90 \pm 0.16^{fg}$     |
| (P4×P6)×(P2×P7) | $13.23 \pm 0.31^{\rm ghi}$      | $66.97 \pm 0.25^{\mathrm{abcde}}$      | $5.57 \pm 0.06^{\circ  \mathrm{def}}$ | 182.30±1.91 <sup>cd</sup>  |
| Djandza         | $12.23{\pm}0.15^{\rm cd}$       | 67.90±0.00 <sup>f</sup>                | $5.37 \pm 0.06^{bcd}$                 | $181.40\pm0.90^{\circ}$    |
| EV8430DMRSR     | $13.13 \pm 0.12^{\mathrm{fgh}}$ | 66.90±0.20 <sup>abcde</sup>            | 5.90±0.00 <sup>g</sup>                | $214.70{\pm}0.51^{\rm hi}$ |
| Kandjerendjere  | $13.30\pm0.06^{hi}$             | $66.87 \pm 0.06^{\mathrm{abcd}}$       | $5.53\pm0.06^{\circ def}$             | $198.10\pm1.76^{\rm f}$    |
| Xidiwane        | $11.80 \pm 0.14^{bc}$           | $67.77 \pm 0.38^{ef}$                  | $5.47 \pm 0.12^{\mathrm{bcd}}$        | $172.40 \pm 2.16^{b}$      |
| Sacana          | $12.73 \pm 0.12^{\rm ef}$       | $66.77 \pm 0.42^{\mathrm{abc}}$        | $5.80 \pm 0.10^{\rm fg}$              | $210.00\pm1.43^{\rm gh}$   |
| CKPH08020       | $12.73 \pm 0.06^{ef}$           | $67.17 \pm 0.06^{ m abcdef}$           | $5.63 \pm 0.06^{\rm defg}$            | 191.30±1.07°               |
| CKPH08028       | $13.20 \pm 0.00^{\rm gh}$       | $67.17 \pm 0.21^{\mathrm{abcdef}}$     | $5.57 \pm 0.06^{\circ \text{def}}$    | $216.70\pm0.66^{i}$        |
| PH4             | $11.57 \pm 0.21^{\rm b}$        | $67.57 \pm 0.46^{\circ  \mathrm{def}}$ | $5.80 \pm 0.10^{\rm fg}$              | $188.20 \pm 2.53^{de}$     |
| H513            | 8.60±0.20 <sup>a</sup>          | 69.90±0.50 <sup>g</sup>                | $4.93\pm0.12^{a}$                     | $182.80 \pm 1.34^{cd}$     |
| Mean            | 12.77                           | 67.23                                  | 5.53                                  | 195.07                     |
| Max             | 15.17                           | 69.90                                  | 5.90                                  | 216.70                     |
| Min             | 8.60                            | 66.30                                  | 4.93                                  | 128.30                     |

Means followed by same letters within a column are not significantly different at 5% level of Tukey's range test, P2: ZM521-15-1-1-1-3-B, P3: ZM621-19-1-1-3-1-B , P4: SUWAN8075DMR-79-2-1-2-2-B, P6: MATUBASG-14-1-4-3-1-B and P7: SYNSYNF1FS-4-6-1-2-1-B

The mean weight loss of  $F_2$  sets was 18.1% with Xidiwane and EV8430DMRSR showing highest and lowest weight loss of 34.9 and 6.8%, respectively (Table 5). The  $F_2$  set recorded a grand mean of 40.7% for seed damage where the individual means ranged between 16.3 and 63.8%. Xidiwane and EV8430DMRSR recorded the highest and lowest seed damage of 63.8 and 16.3%, respectively The  $F_2$  set individual means for produced flour weight due to LGB damage ranged between 5.5% and 44.0% with a mean of 16.8%. Xidiwane recorded the highest flour weight while EV8430DMRSR, CKPH08020 and CKPH08028 recorded the lowest flour weight (Table 5).

The mean for dead LGB in  $F_2$  set was 53 with individual means ranging between 21 and 135. Xidiwane recorded the highest number of dead LGBs while CKPH08028 and (P2×P4) recorded the lowest (Table 5). The individual  $F_2$  means for living LGBs ranged from 24 to 356 with a general mean of 127 insects (Table 5). Xidiwane had the highest number of living insects and (P3×P7)×(P4×P6) the lowest.

Grain hardness, protein, starch and oil contents for the  $F_2$  generation set: There were highly significant differences (p<0.001) among genotypes for grain hardness, protein, starch and oil contents in the  $F_2$  generation. The  $F_2$  individual means of the force to break the kernels ranged from 170.8 to 214.10 N with a grand mean of 191.55 N. Xidiwane showed the lowest force and EV8430DMRSR the highest. For protein content, the individual means ranged from 11.7 to 14.1% with a grand mean of 13.0%. EV8430DMRSR and Xidiwane recorded the highest and lowest protein content, respectively (Table 6).

The individual means for endosperm starch in the  $F_2$  set ranged from 66.9 to 68.0% with Hluvukane and EV8430DMRSR recording the highest and the lowest starch contents, respectively.

Table 5: Means of parameters for maize resistance to the LGB in  $F_2$  generation set

| Variet | у                             | Weight loss (%)                  | Seed damage (%)                 | Flour weight (%)                | No. of LGB dead          | No.of LGB alive                    |
|--------|-------------------------------|----------------------------------|---------------------------------|---------------------------------|--------------------------|------------------------------------|
| (P2×P4 | 4)                            | 21.22±3.77 <sup>cdef</sup>       | $44.37 \pm 5.63^{\rm cdef}$     | $18.61 \pm 2.26^{\rm cd}$       | 21±09 <sup>ab</sup>      | 128±25 <sup>bcde</sup>             |
| Hluvul | kane                          | $16.00 \pm 3.50^{abcde}$         | $39.82 \pm 10.06^{bcde}$        | $16.64 \pm 4.47^{\text{tod}}$   | $47\pm24^{ m abc}$       | $78\pm35^{\mathrm{abc}\mathrm{d}}$ |
| (P4×P′ | 7)×P2                         | $14.78 \pm 5.23^{ m abcd}$       | $36.11 \pm 11.66^{abcd}$        | $12.98 \pm 4.40^{\mathrm{abc}}$ | $41\pm21^{\mathrm{abc}}$ | $82\pm30^{bcd}$                    |
| (P3×P′ | 7)×(P4×P6)                    | $10.99 \pm 4.83^{\mathrm{abc}}$  | 25.69±9.67 <sup>abc</sup>       | $9.13 \pm 4.46^{ab}$            | $51\pm27^{ m abc}$       | $24\pm014^{a}$                     |
| Djanda | za                            | $18.45{\pm}4.98^{\text{bc de}}$  | $51.41 \pm 1.12^{\mathrm{def}}$ | 19.39±3.69 <sup>cd</sup>        | $37\pm33^{\mathrm{abc}}$ | $153\pm47^{\mathrm{cde}}$          |
| EV843  | ODMRSR                        | 6.84±3.98a                       | $16.29\pm7.84^{a}$              | 5.53±1.83ª                      | $29 \pm 18^{ab}$         | $38\pm28^{ab}$                     |
| Kandje | erenjere                      | $9.53 \pm 4.35^{ab}$             | $25.19\pm13.80^{abc}$           | $10.62 \pm 4.69^{\mathrm{abc}}$ | $35\pm10^{\rm abc}$      | $69\pm40^{ m abcd}$                |
| Xidiwa | ane                           | $34.91 \pm 5.07^{\rm f}$         | 63.79±3.57 <sup>t</sup>         | 43.98±1.87°                     | 135±45°                  | 356±36°                            |
| Sacana | a                             | $18.09 \pm 3.19^{\mathrm{bcde}}$ | $41.19 \pm 4.82^{\text{bcdef}}$ | $17.65\pm3.59^{\text{bcd}}$     | $82\pm21^{\mathrm{abc}}$ | $125 \pm 42^{\mathrm{bcde}}$       |
| CKPH   | 08020                         | $10.87 \pm 2.98^{abc}$           | $26.43 \pm 4.98^{abc}$          | $7.50\pm4.05^{a}$               | $36\pm15^{\mathrm{abc}}$ | $64\pm39^{abc}$                    |
| CKPH   | 08028                         | $9.42 \pm 4.37^{ab}$             | $21.82 \pm 8.75^{ab}$           | $6.32\pm4.15^{a}$               | 21±13ª                   | $49\pm43^{ab}$                     |
| PH4    | $25.45 \pm 2.80^{\text{def}}$ | $49.07 \pm 4.91^{\mathrm{def}}$  | $19.95\pm3.48^{\rm cd}$         | $41\pm34^{ m abc}$              | $190\pm33^{\rm cde}$     |                                    |
| H513   | $28.70 {\pm} 5.27^{\rm ef}$   | $61.08\pm9.82^{ef}$              | $26.69\pm5.14^{d}$              | $109\pm23^{bc}$                 | $216 \pm 34^{de}$        |                                    |
| Mean   | 18.07                         | 40.71                            | 16.75                           | 53                              | 127                      |                                    |
| Max    | 34.91                         | 63.79                            | 43.98                           | 135                             | 356                      |                                    |
| Min    | 6.84                          | 16.29                            | 5.53                            | 21                              | 24                       |                                    |

Means followed by same letters within a column are not significantly different at 5% level of Tukey's range test, P2 = ZM521-15-1-1-3-B, P3 = ZM621-19-1-1-3-1-B, P4 = SUWAN8075 DMR-79-2-1-2-2-B, P6 = MATUBASG-14-1-4-3-1-B and P7 = SYNSYNF1FS-4-6-1-2-1-B

Table 6: Means for the seed biochemical parameters related to resistance to the LGB in  $F_2$  generation set

| Genotype        | Protein (%)                    | Starch (%)                       | Oil (%)                        | Force (N)                       |
|-----------------|--------------------------------|----------------------------------|--------------------------------|---------------------------------|
| (P2×P4)         | 12.83±0.12°d                   | 67.83±0.15 <sup>cd</sup>         | 5.40±0.10 <sup>abcde</sup>     | 188.8±2.34 <sup>de</sup>        |
| (P4×P7)×P2      | $13.50 \pm 0.10^{\mathrm{fg}}$ | $67.33 \pm 0.06^{abcd}$          | $5.53 \pm 0.06^{\text{bcdef}}$ | $190.1 \pm 2.12^{\text{de}}$    |
| Hluvukane       | $12.43 \pm 0.12^{bc}$          | $68.03\pm0.55^{d}$               | $5.27 \pm 0.15^{ab}$           | 187.1±3.81 <sup>cd</sup>        |
| (P3×P7)×(P4×P6) | $13.80 \pm 0.26^{\mathrm{gh}}$ | $67.07 \pm 0.40^{ab}$            | $5.37 \pm 0.15^{\rm abcd}$     | $194.0 \pm 2.34^{\text{def}}$   |
| EV8430DMRSR     | $14.10\pm0.10^{\rm h}$         | $66.90\pm0.17^a$                 | $5.63\pm0.06^{def}$            | $214.1 \pm 1.58^{g}$            |
| Djandza         | $12.93 \pm 0.06^{\mathrm{de}}$ | $67.90\pm0.26^{d}$               | 5.23±0.06ª                     | 181.3±2.05 <sup>bc</sup>        |
| Kandjerenjere   | $13.93\pm0.15^{h}$             | $67.33 \pm 0.15^{\mathrm{abcd}}$ | $5.20\pm0.00^{a}$              | $195.7 \pm 3.10^{\mathrm{ef}}$  |
| Sacana          | $13.27 \pm 0.06$ ef            | $67.43 \pm 0.06^{abcd}$          | $5.63\pm0.06^{def}$            | 209.7±1.21 <sup>g</sup>         |
| Xidiwane        | $11.67 \pm 0.15^a$             | $67.70\pm0.10^{bcd}$             | $5.67 \pm 0.12^{\mathrm{ef}}$  | 170.8±3.78ª                     |
| CKPH08020       | $12.93 \pm 0.06^{\mathrm{de}}$ | $67.43 \pm 0.15^{ m abcd}$       | $5.80\pm0.10^{\rm f}$          | $194.2 \pm 1.03^{\rm ef}$       |
| CKPH08028       | $13.43 \pm 0.06^{\mathrm{fg}}$ | $67.13 \pm 0.06^{\mathrm{abc}}$  | $5.80\pm0.00^{f}$              | 197.4±2.51 <sup>f</sup>         |
| PH4             | $12.17 \pm 0.21^{b}$           | $67.67 \pm 0.32^{bcd}$           | $5.60\pm0.10^{\rm cdef}$       | $175.2 \pm 1.45^{\mathrm{ab}}$  |
| H513            | $12.10\pm0.17^{\rm b}$         | $67.87 \pm 0.12^d$               | $5.33\pm0.06^{abc}$            | $191.7 \pm 1.24^{\mathrm{def}}$ |
| Mean            | 13.01                          | 67.51                            | 5.50                           | 191.55                          |
| Max             | 14.10                          | 68.03                            | 5.80                           | 214.10                          |
| Min             | 11.67                          | 66.90                            | 5.20                           | 170.80                          |

Means followed by same letter(s) within a column are not significantly different at 5% level of Tukey's range test, P2: ZM521-15-1-1-1-3-B, P3: ZM621-19-1-1-3-1-B, P4: SUWAN8075DMR-79-2-1-2-2-B, P6: MATUBASG-14-1-4-3-1-B and P7: SYNSYNF1FS-4-6-1-2-1-B

The grand mean of starch content among the  $F_2$  hybrids was 67.5%. The highest oil content of 5.8% was recorded on CKPH08020 and CKPH08028 while the lowest content of 5.2% was recorded on Kandjerendjere and Djandza. The mean of the oil content in this set was 5.2%.

Reduction in grain weight loss: The F<sub>1</sub> hybrid (P4×P6)×(P2×P7) showed the highest percentage reduction of 76.8% in weight loss due to LGB damage while Xidiwane recorded the lowest with

Table 7: Percentage of reduction in weight loss over susceptible check against the LGB

|                 | Percentage of reduction over check |                          |
|-----------------|------------------------------------|--------------------------|
| Genotype        | F1 generation set (H513)           | F2 generation set (H513) |
| (P2×P4)         | 70.45                              | 26.06                    |
| Hluvukane       | 74.79                              | 44.26                    |
| (P4×P7)×P2      | 66.92                              | 48.48                    |
| (P3×P7)×(P4×P6) | 42.56                              | 61.72                    |
| Djandza         | 56.00                              | 35.72                    |
| EV8430DMRSR     | 70.36                              | 76.18                    |
| Kindjerendjere  | 62.78                              | 66.78                    |
| Xidi wane       | 19.27                              | -21.65                   |
| Sacana          | 36.21                              | 36.97                    |
| CKPH08020       | 63.45                              | 62.14                    |
| CKPH08028       | 67.12                              | 67.16                    |
| PH4             | 23.24                              | 11.34                    |
| (P3×P6)         | 40.32                              | -                        |
| (P4×P6)×(P3×P7) | 68.77                              | -                        |
| P2×P7)×(P4×P6)  | 72.37                              | -                        |
| (P4×P6)×(P2×P7) | 76.79                              | -                        |
| H513            | -                                  | -                        |
| Mean            | 56.96                              | 42.93                    |
| Max             | 76.79                              | 76.18                    |
| Min             | 19.27                              | -21.65                   |

P2 = ZM521-15-1-1-1-3-B, P3 = ZM621-19-1-1-3-1-B, P4 = SUWAN8075DMR-79-2-1-2-2-B, P6 = MATUBASG-14-1-4-3-1-B and P7 = SYNSYNF1FS-4-6-1-2-1-B

19.3% (Table 7). The overall mean for the reduction in weight loss was 57.0%. The grand mean of  $F_2$  hybrids weight loss reduction due to LGB damage was 42.9% with individual means ranging between (-21.7) and 76.2%. Xidiwane and EV8430DMRSR showed the lowest and the highest reduction in weight loss respectively.

Determination of resistance based on selection index: The  $F_1$  hybrids were highly and moderately highly resistant compared to  $F_2$  generation (Table 8). The individual mean selection indices ranged between 0.45 and 2.54. The lowest and highest selection index was observed on  $(P4\times P6)\times (P2\times P7)$  and Xidiwane, respectively. The  $F_2$  individual mean selection indices ranged from 0.37 to 2.32. EV8030SRDMR and Xidiwane recorded the highest and lowest selection indices, respectively.

Correlations among important traits: The number of LGB, flour weight, grain weight loss and seed damage showed strong and significant correlations among them. In the  $F_1$  set, LGB alive (r = 0.8766), WL (r = 0.8694) and SD (r = 0.8502) were positive and significantly correlated with flour weight (Table 9). Starch content showed significant negative correlation with protein (r = -0.9006). In the  $F_2$  generation, positive and significant correlations were observed among FW with LGB alive (r = 0.8340), WL (r = 0.9172) and SD (r = 0.9141) (Table 10). Positive and significant correlation were also observed among WL with LGB alive (r = 0.8428) and SD (r = 0.9489). Starch content presented negative and significant correlation with protein content (-0.7041).

Table 8: Selection index (SI) and reaction of the genotypes in the F1 and F2 generation against the larger grain borer (LGB)

|                 | F1 generation |                        | F2 generation |                        |  |
|-----------------|---------------|------------------------|---------------|------------------------|--|
| Genotype        | SI            | Reaction               | SI            | Reaction               |  |
| (P2×P4)         | 0.51          | Highly resistant       | 1.14          | Highly susceptible     |  |
| Hluvukane       | 0.47          | Highly resistant       | 0.90          | Moderately susceptible |  |
| (P4×P7)×P2      | 0.63          | Moderately Resistant   | 0.81          | Moderately susceptible |  |
| (P3×P7)×(P4×P6) | 1.26          | Highly susceptible     | 0.51          | Highly resistant       |  |
| Djandza         | 1.42          | Highly susceptible     | 1.21          | Highly susceptible     |  |
| EV8430DMRSR     | 0.49          | Highly resistant       | 0.37          | Highly resistant       |  |
| Kandjerendjere  | 0.64          | Moderately Resistant   | 0.60          | Highly resistant       |  |
| Xidiwane        | 2.54          | Highly susceptible     | 2.32          | Highly susceptible     |  |
| Sacana          | 1.13          | Highly susceptible     | 1.05          | Highly susceptible     |  |
| CKPH08020       | 0.77          | Moderately Resistant   | 0.57          | Highly resistant       |  |
| CKPH08028       | 0.54          | Highly resistant       | 0.47          | Highly resistant       |  |
| PH4             | 1.56          | Highly susceptible     | 1.38          | Highly susceptible     |  |
| H513            | 2.50          | Highly susceptible     | 1.66          | Highly susceptible     |  |
| (P3×P6)         | 0.87          | Moderately susceptible |               |                        |  |
| (P4×P6)×(P3×P7) | 0.62          | Moderately Resistant   |               |                        |  |
| (P2×P7)×(P4×P6) | 0.59          | Highly resistant       |               |                        |  |
| (P4×P6)×(P2×P7) | 0.45          | Highly resistant       |               |                        |  |
| Mean            | 1.00          |                        | 1.00          |                        |  |
| Max             | 2.54          |                        | 2.32          |                        |  |
| Min             | 0.45          |                        | 0.37          |                        |  |

 $P2: ZM521-15-1-1-1-3-B, \ P3: \ ZM621-19-1-1-3-1-B, \ P4: \ SUWAN8075DMR-79-2-1-2-2-B, \ P6: \ MATUBASG \ 14-1-4-3-1-B \ and \ P7: \ SYNSYNF1FS-4-6-1-2-1-B$ 

 $Table \ 9: Correlation \ coefficients \ among \ parameters \ for \ maize \ resistance \ to \ the \ LGB \ in \ the \ F1 \ generation \ set$ 

| Parameters  | LGB_alive (#) | SD (%)     | WL (%)      | FW (%)      | Protein (%) | Starch (%) |
|-------------|---------------|------------|-------------|-------------|-------------|------------|
| SD (%)      | 0.5910***     |            |             |             |             |            |
| WL (%)      | 0.7653***     | 0.5732***  |             |             |             |            |
| FW          | 0.8766***     | 0.8502***  | 0.8694***   |             |             |            |
| Protein (%) | - 0.6100***   | - 0.2812*  | - 0.5880*** | -0. 7913*** |             |            |
| Starch (%)  | 0.6127***     | -0.5862*** | 0.5620***   | 0.7788***   | -0. 9006*** |            |
| Force (N)   | -0.2088ns     | - 0.103ns  | -0.0225 ns  | - 0.2203ns  | 0.4147**    | -0.4586*** |

<sup>\*,\*\*,\*\*\*</sup>Significant at 5, 1, 0.1% level, ns: Non significant

Table 10: Correlation coefficients among parameters for maize resistance to the LGB in the F2 generation set

| Parameters  | LGB_alive (#) | SD (%)     | WL (%)     | FW (%)     | Protein (%) | Starch (%) |
|-------------|---------------|------------|------------|------------|-------------|------------|
| SD (%)      | 0.8405***     |            |            |            |             |            |
| WL (%)      | 0.8428***     | 0.9489***  |            |            |             |            |
| FW (%)      | 0.8340***     | 0.9141***  | 0.9172***  |            |             |            |
| Protein (%) | -0.7026***    | 0.7503***  | -0.7737*** | -0.8067*** |             |            |
| Starch (%)  | 0.5061***     | 0.3780*    | 0.3805*    | 0.5932***  | -0.7041***  |            |
| Force (N)   | -0.5158***    | -0.5759*** | -0.5467*** | -0.6434*** | 0.7303***   | -0.4039*   |

<sup>\*,\*\*,\*\*\*</sup>Significant at 5, 1, 0.1% level, ns: Non significant, LGB\_alive: No. of living LGB, SD: Seed damage (%), WL: Grain weight loss (%), FW: Flour weight (%), Protein: Protein content in kernel (%) and Starch: Starch content in the kernel (%)

#### DISCUSSION

Low numbers of living LGBs indicated resistance. This is due to the fact that the insects could not feed and reproduce. Abraham (1991) reported that damage severity during storage depended on the number of emerging adults and the duration of each generation. Grains of the resistant maize genotypes hindered LGB feeding and reproduction suggesting antibiosis mechanism of resistance. The high number of dead LGB observed in the susceptible genotypes could be attributed to biological process such as aging and high density. The number of living LGB that caused damage on the grain was high in the  $F_2$  than in the  $F_1$ . This observation supports previous reports that  $F_2$  hybrids tend to be more susceptible than the  $F_1$  due to segregation. Segregation suggests a mixture of resistant, semi-resistant and susceptible in the  $F_2$  population. Resistant materials are likely to be lower in the segregating population than in the non-segregating population. The observation of low progeny numbers in the resistant materials is supported by Kumar (2002), who reported that susceptible maize genotypes showed high LGB progeny numbers.

LGB susceptible maize showed high flour weight, seed damage and weight loss. This could be attributed to the high number of living LGB insects on the susceptible genotypes. Genotypes that allowed more LGB development were more damaged, leading to high flour, weight loss and seed damage. Damage by LGB converted grain into powder within a short period of time by extensive tunneling maize grain. The flour produced during the insects' feeding consists of insect eggs, endosperm flour and excreta unfit for both livestock and human consumption (Tefera et al., 2011). This study showed that resistant genotypes produced less flour, suffered low seed damage and little grain weight loss. This observation is in agreement with (Kumar, 2002; Likhayo et al., 2010; Mugo et al., 2010; Tefera et al., 2011).

Most maize genotypes with low starch and high protein contents in the grain showed resistance to LGB, except (P3×P6) in the  $F_1$  and (P4×P7)×P2 in the  $F_2$  generation. This observation suggests that the influence of starch and protein contents may not be effective indicators for LGB resistance. Genotypes with high starch content had soft kernels, thus more susceptible compared to the genotypes with lower starch levels. Proteins are composed of amino acids and some amino acids, including lysine and tryptophan and some types of protein have been reported to confer resistance to the maize weevil (Abebe et al., 2009). Proteins with antibiosis effects have been reported in maize among field pests (Pechan et al., 2002). In this study, data was collected on the total amount of protein thus further studies are needed to determine the protein type favorable to the LGB. Maize genotypes with high protein content tend to be more resistant to maize weevil (Derera et al., 2001; Dhliwayo and Pixley, 2003; Garcia-Lara et al., 2004; Siwale et al., 2009). Resistance to storage insect is strongly correlated to physical factors such as tight husk covers, kernel hardness and low moisture content (Mugo et al., 2010). Phenolic content, particularly ferulic acid in the kernels which is linked to grain hardness is associated with resistance (Arnason et al., 1992, 1993, 1997; Tepping et al., 1988) Chemical factors such as amylase and sugar contents have also been reported as factors for weevils resistance (Singh and McCain, 1963). Kernel hardness is unlikely to be an important factor for resistance to LGB, since the insect pest is also a wood pest.

From the selection index computed from key traits including the number of emerged LGBs, flour weight, seed damage and grain weight loss, one improved Mozambican OPV, EV8430DMRSR and the landrace Kandjerendjere showed resistance. Hybrid (P4×P7)×P2 had moderate resistance at  $F_1$  but moderately susceptible at the  $F_2$  generation. This result suggests that grain characteristics of the evaluated genotype contributed to resistance and there are differences in response between  $F_1$  and  $F_2$  for resistance to LGB. This findings are in agreement with Derera *et al.* (2001) who

reported that there was no relationship between performance of  $F_1$  and  $F_2$  generations of maize for resistance to the maize weevil. Lack of correlation between the two generations is due to the fact that  $F_1$  are not segregating unlike the  $F_2$ .

Positive and highly significant correlation among resistance traits such as grain weight loss, number of live LGBs, seed damage (%) and flour produced (%) in  $F_1$  and  $F_2$  hybrids was observed. The number of live LGB could be considered as a primary parameter since it influences all the other parameters. This observation has also been reported by others (Kumar, 2002; Mugo et al., 2010; Mwololo et al., 2010; Tefera et al., 2011). Among the biochemical properties collected on the seed, only protein and starch showed consistent results in  $F_1$  and  $F_2$  maize hybrids. Negative and significant correlation was observed on protein content with respect to the number of live LGB, flour weight and weight loss. High protein content was associated with resistance to LGB while high starch levels contributed towards susceptibility. High starch content was associated with maize grain softness which contributes to vulnerability to grain damage by insects.

#### CONCLUSION

This study found out that high protein content contributed towards resistance while high starch contributed to susceptibility. It was concluded that antibiosis mechanism could contribute to LGB resistance in maize. The resistant genotypes identified could be used as cultivars by farmers and as sources of resistance in maize breeding programs for resistance to LGB.

#### ACKNOWLEDGMENTS

We gratefully acknowledge the Alliance for Green Revolution in Africa (AGRA) for funding this study. The authors are also grateful to the Syngenta Foundation for Sustainable Agriculture for supporting this work through the Insect Resistant Maize for Africa (IRMA) project. We also thank the CIMMYT team for their assistance during experimental set-up, data collection and study writing.

#### REFERENCES

- Abebe, F., T. Tefera, S. Mugo, Y. Beyene and S. Vidal, 2009. Resistance of maize varieties to the maize weevil *Sitophilus zeamais* (Motsch.) (Coleoptera: Curculionidae). Afr. J. Biotechnol., 8: 5937-5943.
- Abraham, T., 1991. The biology, significance and control of themaize weevil, *Sitophilus zeamais* Motsch. (Coleoptera: Curculionidae) on stored maize. M.Sc. Thesis, The School of Graduate Studies of Alemaya, University of Agriculture, Ethiopia.
- Arnason, J.T., B. Baum, J. Gale, J.D.H. Lambert and D. Bergvinson *et al.*, 1993. Variation in resistance of Mexican landraces of maize to maize weevil *Sitophilus zeamais*, in relation to taxonomic and biochemical parameters. Euphytica, 74: 227-236.
- Arnason, J.T., B.C. de Beyssac, B.J.R. Philogene, D. Bergvinson, J.A. Serratos and J.A. Mihm, 1997. Mechanisms of Resistance in Maize Grain to the Maize Weevil and the Larger Grain Borer. In: Insect Resistant Maize: Recent Advances and Utilization, Mihm, J.A. (Ed.). CIMMYT, Mexico City, ISBN-13: 9789686923797, pp: 91-95.
- Arnason, J.T., J. Gale, B.C. de Beyssac, A. Sen and S.S. Miller *et al.*, 1992. Role of phenolics in resistance of maize grain to the stored grain insects, *Prostephanus truncatus* (Horn) and *Sitophilus zeamais* (Motsch). J. Stored Prod. Res., 28: 119-126.

- Bergvinson, D.J., S.K. Vasal, N.N. Singh, V.P.S. Panwar and J.C. Sekhar, 2002. Advances in conventional breeding for insect resistance in tropical maize. Proceedings of the 8th Asian Regional Maize Workshop, August 5-8, 2002, Bangkok, Thailand, pp. 325-338.
- Bett, C. and R. Nguyo, 2007. Post-harvest storage practices and techniques used by farmers in semi-arid eastern and central Kenya. Proceedings of the 8th African Crop Science Society Conference, October 27-31, 2007, El-Minia, Egypt, pp: 1023-1227.
- Boxall, R., 1986. A critical review of the methodology for assessing farm level grain losses after harvest. Report of the Tropical Development and Research Institute, Great Britain, TDR G191, pp: 1-139.
- Derera, J., K.V. Pixley and P.D. Giga, 2001. Resistance of maize to the maize weevil: I. Antibiosis. Afr. Crop Sci. J., 9: 431-440.
- Dhliwayo, T. and K.V. Pixley, 2003. Divergent selection for resistance to maize weevil in six maize populations. Crop Sci., 43: 2043-2049.
- Garcia-Lara, S., D.J. Bergvinson, A.J. Burt, A.I. Ramputh, D.M. Diaz-Pontones and J.T. Arnason, 2004. The role of pericarp cell wall components in maize weevil resistance. Crop Sci., 44: 1546-1552.
- GenStat, 2010. GenStat Release 12 Reference Manual-Part 3: Procedure Library. 12th Edn., VSN International, Hemel Hempstead, UK.
- Golob, P., 2002. Chemical, physical and cultural control of *Prostephanus truncatus*. J. Integr. Pest Manage. Rev., 7: 254-277.
- Graintech, 2011. Grain analyser-FOSS infratec 1241. Graintech Scientific, Hilleroed, Denmark.
- Gueye, M.T., G. Goergen, D. Badiane, K. Hell and L. Lamboni, 2008. First report on occurrence of the larger grain borer *Prostephanus truncatus* (Horn) (Coleoptera: Bostrichidae) in Senegal. Afr. Entomol., 16: 309-311.
- Kumar, H., 2002. Resistance in maize to the Larger Grain Borer, *Prostephanus truncatus* (Horn) (Coleoptera: Bostrichidae). J. Stored Prod. Res., 38: 267-280.
- Likhayo, P., S. Mugo, J. Gethi, E. Sikinyi and J. Ngeny, 2010. Screening of early maturing maize in the national performance trial for resistance to storage insect pests. Proceedings of the 12th KARI biennial Scientific Conference, November 8-12, 2010, Nairobi, Kenya, pp. 205-210.
- Markham, R.H., V.F. Wright and R.M. Rios-Ibarra, 1991. A selective review of research on *Prostephanus truncatus* (Horn) (Col. Bostrichidae) with an annonated and updated bibliography. CEIBA, 32: 1-90.
- Mugo, S., P. Likhayo, H. Karaya, J. Gethi and S. Njoka *et al.*, 2010. Screening maize germplasm for resistance to maize weevil (*Sitophilus zeamais* Motschulsky) and larger grain borer (*Prostephanus truncatus* (Horn)) pests in Kenya. Proceedings of the 12th KARI biennial Scientific Conference, November 8-12, 2010, Nairobi, Kenya, pp. 393-402.
- Mwololo, J.K., S. Mugo, P. Okori, T. Tadele and S.W. Munyiri, 2010. Genetic diversity for resistance to larger grain borer in maize hybrids and open pollinated varieties in Kenya. Proceedings of the 2nd RUFORUM Biennial Regional Conference on Building Capacity for Food Security in Africa, September 20-24, 2010, Entebbe, Uganda, pp. 535-539.
- Pechan, T., A. Cohen, W.P. Williams and D.S. Luthe, 2002. Insect feeding mobilizes a unique plant defense protease that disrupts the peritrophic matrix of caterpillars. Proc. Natl. Acad. Sci., 99: 13319-13323.

- Schneider, H., C. Borgemeister, M. Setamou, H. Affognon and A. Bell *et al.*, 2004. Biological control of the larger grain borer *Prostephanus truncatus* (Horn) (Coleoptera: Bostrichidae) by its predator *Teretrius nigrescens* (Lewis) (Coleoptera: Histeridae) in Togo and Benin. Biol. Control, 30: 241-255.
- Singh, D.N. and F.S. McCain, 1963. Relationship of some nutritional properties of the corn kernel to weevil infestation. Crop Sci., 3: 259-261.
- Siwale, J., K. Mbata, J. Mcrobert and D. Lungu, 2009. Comparative resistance of improved maize genotype and landraces to maize weevil. Afr. Crop Sci. J., 17: 1-16.
- Tefera, T., S. Mugo, P. Likhayo and Y. Beyene, 2011. Resistance of three-way cross experimental maize hybrids to post-harvest insect pests, the larger grain borer (*Prostephanus truncatus*) and maize weevil (*Sitophilus zeamais*). Int. J. Trop. Insect Sci., 31: 3-12.
- Tefera, T., S. Mugo, R. Tende and P. Likhayo, 2010. Mass Rearing of Stem Borers, Maize Weevil and Larger Grain Borer Insect Pests of Maize. CIMMYT, Nairobi, Kenya, ISBN-13: 9789290592853, Pages: 36.
- Tepping, P.W., D.E. Legg, J.G. Rodriguez and C.G. Ponelei, 1988. Influence of maize pericarp surface relief on resistance to the maize weevil (Coleoptera: Curculionidae). J. Kansas Entomol. Soc., 61: 237-241.