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Abstract 
Rainfall runoff models are highly useful for water resources planning and development. In the present study, an effort has been made
to develop three types of artificial intelligence techniques (genetic algorithms, fuzzy logic and artificial neural network) based rainfall
runoff GR2M prediction model using current monthly rainfall, potential evapotranspiration and river basin area and give an output
monthly runoff. The aim of this study is to evaluate the objective function between these three intelligence techniques in the Medjerda
river basin, north east of Algeria. To do so, the mathematical model of GR2M is improved in MATLAB/Simulink and the proposed
intelligence techniques are used. First, the offline GA setting is used to optimize the GR2M parameters. Second, technical intelligence,
FL and ANN tuning online are used to consign to regulate by an adaptative control of the GR2M parameters. The GR2M model presented
in our study with these proposed artificial intelligence techniques have been simulated in MATLAB/Simulink®. The performance of the
model was evaluated qualitatively and quantitatively by visual observation and employing various statistical indices viz., correlation
coefficient, root mean square error, coefficient of efficiency and volumetric error. The results showed that the neural network (ANN) is
an effective algorithm to forecast rainfall runoff relation more accurately than the other techniques.
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INTRODUCTION

Hydrological modeling is an important tool used in the
management  of  water  resources,  especially  in  arid and
semi-arid regions, where water resources are characterized by
their scarcity and their erratic distributions in time and space.
Models are also expected to provide useful information
required in the design of hydraulic structures and the
protection against floods. Models should accurately describe
the various stages of rainfall runoff transformation, particularly
the process related to flood formation and the emergence of
low flows. Nevertheless, the complexity of the natural
phenomena involved in the rainfall runoff transformation
makes hydrological studies very complicated (Plantier, 2003).
This complexity is further accentuated by the erratic spatial
distribution of rainfall and watershed physiographic
characteristics such as soil texture, relief and vegetation cover.
It is almost impossible to model in an analytical fashion the
different aspects of rainfall runoff transformation. Therefore
conceptual lumped or distributed hydrological models are
generally considered (Duan et al., 1992).

Conceptual models, such as the rural engineering model
(GR) of Cemagref, are known to be robust, reliable and easy to
use as they require limited data (rainfall, evapotranspiration
and runoff series) for calibration, validation and simulation
exercises. This type of model was shown to be quite useful in
synthesizing the hydro-climatic information available in a
watershed and in simulating its  hydrological  response
(Kouassi et al., 2013). 

The conceptual model used in this study is GR2M model,
which is a two parameters model that transforms monthly
precipitation data into monthly rainfall time series for a given
watershed and under given conditions. The model is based on
the analogy of two reservoirs for both production (soil
infiltration) and routing or transfer function. Therefore, before
its use, the model needs to be calibrated to determine
appropriate parameters. For a given watershed, calibration
exercise has to be conducted for parameters using similar
conditions. This would imply that the pre-calibrated model
needs to be used with caution if changes occur, for instance,
in land use, vegetation cover, etc. (Mouelhi et al., 2006).

Traditionally, model calibration is performed by trial and
error procedures, where different values are attributed to the
model parameters X1 and X2 and simulation is performed.
Then, simulated runoff series are compared to observed
discharge data via statistical and graphical procedures.
Simulations are then repeated until a reasonably good
agreement between measured and simulated discharge time
series is achieved. However, these procedure maybe lengthy

and tedious and therefore alternative procedures are required.
Indeed, calibration can be made systematic using artificial
intelligence techniques (genetic algorithms, fuzzy logic and
artificial neuron networks), which are becoming very powerful
tools for the identification, optimization and control of the
calibration parameters. Different studies applied genetic
algorithm (Goldberg, 1989) for calibrating rainfall runoff
models (Duan et al., 1993; Efstratiadis and Koutsoyiannis, 2002;
Franchini and Galeati, 1997; Franchini, 1996; Franchini et al.,
1998; Gupta et al., 1999; Thyer et al., 1999; Nasseri et al., 2011).
Khazaei et al. (2014) presented an automatic calibration tool
to calibrate the ARNO conceptual rainfall runoff model using
a genetic algorithm (SGA). Babovic and Keijzer (2002) used
genetic programming for creating rainfall runoff model and
showed that the obtained models and had a better results
than conceptual models. 

Fuzzy Logic (FL), which represents a natural language
resulting from the sets theory, was the subject of different
studies such as, Bardossy and Duckstein (1995), Deka and
Chandramouli (2003). Hundecha et al. (2001) employed fuzzy
rule based routines to generate runoff from precipitation. The
methodology  was  applied  to  conceptual,  modular  and
semi-distributed  model  and  proved  FL   to  be  effective.
Pawar et al. (2013) reveals that fuzzy logic rule based model
was found to be satisfactory on the basis of performance
evaluation and can be applied for runoff prediction from study
watershed.

Finally, the reliability of Artificial Neural  Networks  (ANN)
in modeling non-linear phenomena was clearly shown in
different scientific  and  engineering  applications. In
particular, its  use  was  shown  to  be  quite  efficient in rainfall
runoff modeling Elliott (1993), Coulibaly et al. (1999),
Shamseldin et al. (2002, 2007) and Shrestha et al. (2005).
Neuron models may directly relate rainfall to runoff, without
going into details with respect to the involved hydrological
process. This has the advantage of reducing the input data to
a minimum (Randrianarivony et al., 2009). 

Ali and Dechemi (2004) found artificial neural techniques
to yield satisfactory results for the case of small watershed
because of their underlying assumption of linear rainfall runoff
relationship. Huang et al. (2004) simulated discharges in
Apalachicola river (Floride, USA) using a feed-forward ANN
model with reasonably good results at different  time  scales.
A comprehensive review of ANN applications in hydrology can
be found in the publication of the ASCE Task Committee on
Application of Artificial Neural Networks in Hydrology (2000).
In  addition,  Shamseldin  (1997),  Kumar  et  al.  (2005) and
Mutlu et al. (2008) compared ANNs with different input
variables for runoff simulation. The  comparisons  showed  that
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the ANN models applying both with rainfall and discharge as
input variables gave better results than the models with
rainfall as the input. When the model utilizes of rainfall values
as the input variables, the simulated hydrographs do not
match the measured hydrographs so well (Halff et al., 1993;
Filho and dos Santos, 2006). The results of Solaimani (2009)
show clearly that the artificial neural networks are capable of
model rainfall runoff relationship in the arid and semiarid
regions in which the rainfall and runoff are very irregular, thus,
confirming the general enhancement achieved by using
neural networks in many other hydrological fields.

The current study  is  divided  into  three  different  parts,
(1) Modeling and simulation using the conceptual model
GR2M in MATLAB/Simulink interface, (2) Off-line optimization
of  the   proposed   model  based  on  genetic  algorithm and
(3) On-line adaptation of the conceptual model parameters
based on fuzzy logic and artificial neural network. The GR2M
model is calibrated and applied to Medjerda sub-watershed,
North-Eastern Algeria. The GA technique is first used and the
calibration is then further refined using both FL and ANN
technique. The results obtained are compared and the
advantages of using both techniques in predicting discharges
are discussed using the proposed case study. 

MATERIALS AND METHODS

GR2M model into MATLAB: The available information is great
importance to choice the hydrological model. In this
information we have is the area of the basin and times series
of rainfall and runoff. This oriented us towards lumped empiric
hydrologic model that acts as input two of these are GR2M
developed at the French CEMAGREF (Mouelhi et al., 2006). 

Modeling  has   allowed   us   to   present   and   simplify
the   equations   to   solve    the    model    of    our    system    in
MATLAB/Simulink (Fig. 1), for this model we starting the point

knowledge in this system is a production store whose capacity
is the parameter x1 and actual content is S and a routing store
whose capacity is set to 60 mm and actual content is R. The
input variables according to the available data are monthly of
rainfall (precipitation) (P), runoff monthly at the outlet of the
basin (Q) and evaporation monthly (E). 

A part Ps of rainfall P is directed to production store,
whose content becomes S1. The excess part P1 is directed to
the routing store. To take account of the evapotranspiration in
the production store, a part S of E is extracted from this store.
This new content of production store loses a quantity P2. The
P2 is added to the routing store. Total water P3 input of the
routing store and its content pass to R1. At this step, a fraction
x2*R1 of R1 is reserved for the routing store and the difference
is taken away from the basin as groundwater exchange. The
level in the routing store becomes R2. Then the output runoff
Q is estimated.

GR2M applied in genetic algorithms: Genetic Algorithms
(GA) are computerized search  and optimization tools based
on a methodology inspired from the “Survival of Fittest”
heuristic. One important  feature in this heuristic is its
durability and adaptability because it provides a flexible
balance between effectiveness and necessary characteristics
for  survival  in  different  environments  and   conditions
(Johari et al., 2011). The  optimization  technique  starts from
a single point in the solution search space, then its search
proceeds using a group of solutions representing the
population of chromosomes at a time and navigates the
search space using its three evolutionary methods; selection,
crossover and mutation to reach the global optimum. The
fitness function was used to evaluate the GR2M model
calibration parameters (X1  and  X2)  of  each  generation.  This
function is the Integral of the Squared Error (ISE), for which the
mathematical expression can be written as:

Fig. 1: Simulink MATLAB
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Fig. 2: Block diagram of a fuzzy logic system

Table 1: Rule list table of linguistic variables
Outputs X1 and X2
-----------------------------------------------------------------------------------------

e/de NB NM NS ZE PS PM PB
NB NB NB NB NM NM NS ZE
NM NB NB NM NM NS ZE PS
NS NB NM NM NS ZE PS PM
ZE NM NM NS ZE PS PM PM
PS NM NS ZE PS PM PM PB
PM NS ZE PS PM PM PB PB
PB ZE PS PM PM PB PB PB
NB: Negative big, NM: Negative medium, NS: Negative small, ZE: Zero, PS:
Positive small, PM: Positive medium and PB: Positive big

(1) 
T

2ISE ε t . t
0

 

where, g = Qobs-Qsim, Qobs is the observed discharge (m3/sec)
and Qsim is the simulated discharge (m3/sec).

The GA operators impose the quality solution, thereby
increasing the probability of finding global optima, with
minimum ISE values.

GR2M applied in fuzzy logic: A general fuzzy system has
basically four components known as fuzzification, fuzzy rule
base, fuzzy output engine and defuzzification (Fig. 2).
In the fuzzification interface, the fuzzy control initially

converts the crisp error and its rate of change in displacement
into fuzzy variables, which are mapped into linguistic labels.
Membership Functions (MF) are defined within the normalized
range [-1,1] and associated with each label as follow: Negative
Big (NB), Negative Medium (NM), Negative Small (NS),
Negative Very Small (NVS), Zero (ZE), positive very small (NPS),
Positive Small (PS), Positive Medium (PM) and Positive Big (PB).
Seven MFs are chosen for error (e)  and  error  rate  (de) and
two parameters for output. All the MFs are symmetrical for
positive and negative values of the variables. Thus, maximum
7×7 = 49 rules can be formed as tabulated in Table 1 and the
membership function used for the output of variables (X1 and
X2) is presented in Fig. 3.

Fig. 3: Inputs and outputs of the fuzzy logic controller

The surface error and membership functions for the
inputs (error and change of error) and output of fuzzy control
are shown in Fig. 4(a-f). A knowledge base presented by a set
of if-then rule, containing the definition of the fuzzy subsets is
used to achieve good control. An inference mechanism is the
heart of a fuzzy control, which performs the fuzzy reasoning
upon the fuzzy control rules is the main component of the
fuzzy controller. In this study the type of inference used is
Mamadani. A defuzzification interface converts the
conclusions of the inference mechanism into actual inputs for
the process.
In this study, Center Of Area (COA) equation is used as a

deffuzification method, which can be presented as:

(2)

n

i B i
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where, Cg is the centroid of the truncated fuzzy output set B,
MB(yi) is the membership value of the element yi in the fuzzy
output of set B and n represent the number of elements.

Neural networks: Modeling of the GR2M with feed forward
neural network is composed in this work. The scale of the
input and output data is an important matter to consider,
especially when the operating ranges of process parameters
are different. As a result, all the input parameters are equally
important in the training of network. The architecture of the
designed network comprises two input neurons
corresponding to two input parameters, an output layer with
one neuron corresponding to one output parameter (Fig. 5).
The transfer functions which have been used are tansig and
purelin in hidden and output layers  respectively.  The  transfer
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Fig. 4(a-f): Characteristics   of   GR2M  fuzzy   logic   control,   (a)   Membership  function  “e”,   (b)   Membership   function   “de“,
(c) Membership function “X1“, (d) Membership function “X2“, (e) Control surface “X1“ and (f) Control surface “X2“

function tansig is a hyperbolic tangent sigmoid transfer
function and purelin is a linear transfer function. 

Study area and data used: The sub-watershed Medjerda is a
one of the five component basins of Medjerda-Mellegue,
which is situated in the southeast of Northern Algeria with a
surface of 7870 km2. The area of our study is located in the
wilaya of Souk-Ahras between the 7E37' and 8E25' East
meridians and the 36E05' and 36E27' Northern parallels. It is
bordered by the coastal and Constantine basins to the north,
algerotunisienne to the east, the Seybouse basin to the west
and the  Mellegue  upstream  and  downstream  basins  to  the

south (Fig. 6). The climate of the Northern Algeria is influenced
by the Mediterranean and is characterized by two types of
seasons: the wet and cold season and the dry and hot season.
The area of our study is typified by a semi-arid climate. The
monthly average temperature varies between 5 and 30EC. The
winter constitutes the cold period of the year with minimal
monthly averages lower than 5EC. The summer, with
maximum monthly averages higher than 30EC, is the hot
period  of  the  year. The  prevalent  wind  directions  are
north-north-west in winter and north-east and south in
summer. The air moisture of in the study area varies between
55 and 70% in the cold  period  (winter)  and  between  40  and
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Fig. 5: Architecture of the designed network

Fig. 6: Medjerda watershed

55% in the hot period (summer). The monthly potential
evapotranspiration varies between 90 and 150 mm. Rainfall
and discharge data were obtained from the National Agency
of Hydraulic Resources (NAHR) and consist of monthly
precipitation data of the Medjerda river basin from September,
1966 to December, 1995. The potential evapotranspiration
(ETP in mm/month) is subject to the very strong variability in
flow and precipitation; we assumed the monthly ETP to be
quasi-constant from one year to another. In the Mediterranean
climate of Algeria, the real evapotranspiration is largely
determined not by the ETP, but by the available water as well
the rain. Thus,  in  the  context  of  this  study,  the  ETP  was  a

corrective term and the monthly average potential
evapotranspiration will be enough to correctly represent the
ETP for each month (Dechemi et al., 2007). To validate the
model, we use hydrometric and rainfall data with a period of
observation from September, 1965 to December, 1995. 

RESULTS AND DISCUSSION 

To examine the ability of the real GA to optimize the
parameters of our model, different crossover and mutation
rates are used. Ten runs were used with different initial seeds
resulting in different initial starting populations  of  points  and
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Table 2: The results of 10 running’s of the genetic algorithm
Running X1 X2 ISE
1 0.8517 0.9874 13.4129
2 0.7143 1.6236 9.8105
3 0.7638 1.7638 4.6946
4 0.9794 0.9794 7.0686
5 1.0463 0.8695 9.1105
6 0.9876 1.1228 6.7087
7 0.6232 0.799 4.9885
8 0.7754 0.8754 0.797
9 1.1585 0.9228 4.9183
10 0.9751 0.6751 3.3184
ISE: Integral square of error

Table 3: Statistical indices-comparison between three intelligence techniques
Running GA FL ANN
Coefficient of correlation (R) 0.98 0.98 0.99
Coefficient of efficiency (E) 0.98 0.94 0.99
Root-Mean-Square Error (RMSE) 0.765 0.763 0.0012
GA: Genetic algorithms, FL: Fuzzy logic, ANN: Artificial neural network

different operations. Table 2 shows the best points found in
each of the 10 runs and X1, X2 and ISE. Set of parameters
corresponding to the smallest ISE values are then considered
as models parameters.

The research in the Table 2 show that all ten optimization
runs proved to be able to locate the global optima for X1 and
X2. In some runs, the search landed at a local optimum. This
happened only when the objective function value of the local
optimum was similar to that of the global optimum. In term of
minimizing the objective function, the GA has shown to be
both capable and robust for the eight run’s with ISE = 0.80.
Cooper et al. (1997) show that the GA use probabilistic
transition rules, not deterministic ones and they are generally
more straight forward to apply and can provide a number of
potential solutions to a given problem. This study was
conducted to control the parameters (x1 and x2) with FL and
ANN model for Medjerda station (Souk-Ahras). 

Various simulations were carried out by using
MATLAB/Simulink to assess the performance of the integrator
with a fuzzy controller on the feedback. The fuzzy controller
used for estimating the parameters was developed with the
MATLAB fuzzy toolbox. Simulations were performed to
investigate transient state and steady state performance of the
proposed parameters estimator. In this way, the performance
of the proposed model was analyzed by means of a variety of
statistical criteria coefficient of correlation (R), coefficient of
efficiency (E), Root-Mean Square Error (RMSE) between the
calculated and computed flow values. Although it is
commonly accepted that the lower the RMSE the better the
model performance, Singh et al. (2005) have detailed the
indication RMSE based on the observations standard
deviation.

The statistics of the above criteria for different techniques
is presented in Table 3.

(3)
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It is observed from the Table 3 that performance of both
the models in terms of statistical indices is very similar and
satisfactory. The higher values of correlation coefficient for
control as well as different model show good agreement
between observed and predicted values of runoff. While
evaluating capability of the model for predicting runoff values
away from the mean, efficiency of both the models is found to
be greater than 90%, which according to Shamseldin (1997) is
very reasonable. Lesser value of RMSE indicates the model
performance is comparatively better to predict the parameters
X1 and X2. Hence, the comparative performance of the run off
results by applying physical checks in Fig. 7. All models show
good agreement with experimental results. When compared
the intelligence techniques, the ANN model has shown a
significant forecast improvement than the model FL as 3 and
13% for GA. For the flow dynamics (Fig. 7), there is a good
reproduction of observed and calculated hydrographs are
indeed very well synchronized with the months appear floods
and low flows. But, there are some differences between these
hydrographs for GA particularly at extreme speeds and fails to
adequately simulate the lower flow peaks. Besides being more
efficient, neural networks are also more economical than the
FL and GA technique. Indeed, with only two parameters (X1
and X2) as input, the neural patterns appear more powerful
and satisfying; the modeler spends less with neural models
with other artificial intelligence. It would be cheaper to use
neural models that require more variables.

The quantitative performance of the model was also
assessed by another measure i.e., volumetric error and is given
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Fig. 7(a-c): Simulated and observed runoff

in Fig. 8. Using the AI based model, the values of volumetric
error of study watershed for control period are 0.298% for GA,
0.772% for FL and 0.628% ANN, respectively.

The comparison of the computing time constitutes one of
the justifying shutters of simulation. From the starting
assumptions, several reasons could explain a marked
improvement of computing time. The artificial intelligences
are very difficult executions which subdivide the step of time
instep of smaller internal times. The number and the size of
the internal subdivisions not being known in advance, inside
a step of time and of a step of time to the other, it remains
always difficult to quantify the total duration of the execution
of AI in advance which depends on the conditions of
convergence met during the execution and other factors. It is
indeed necessary to take account of the execution time of
instructions of the system necessary to the execution of the
program. This last time depends on the load of the system due
in particular to the other programs in the course of execution.

Fig. 8(a-c): Error between simulated and observed runoff

The execution times are then measured in both cases and the
same conditions for implementation. 

Thus, according to Table 4 we reach the following
conclusions:

C To use the GA, the parameters of GR2 M model are fixed.
The ISE is large but acceptable; ISE is high during tuning
and low during drive operation and has a minimum
settling time for the fixed parameters of the GR2 M model
as well as a low cost

C To use the FL, the parameters of the GR2 M model are
variable, the ISE is medium and a good starting transient
performance also provides a medium settling time and a
medium cost as a result of the design of the circuit in
fuzzy logic

C To use the ANN, the parameters of the GR2 M model are
variables, including a small ISE and a very good starting
transient performance also provides a large  settling  time
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Table 4: Comparison among intelligence techniques
Settling Starting transient

Parameter ISE time (sec) performance Computational effort
GA 0.797 65 Good High during tuning and low

during drive operation
FL 0.01 409 Good High
ANN 0 5894 Very good High
GA: Genetic algorithms, FL: Fuzzy logic, ANN: Artificial neural network and ISE:
Integral square of error

and a high cost as a result of the design of the circuit in
the artificial neural networks with a complexity in the
phase of implementation

The summary of results for the three AI approaches used
in this study, that all model simulate very well  the  flow  of  the
station Medjerda watershed. But ANN has been a preferred
choice among the various soft computing techniques for
modeling rainfall runoff phenomenon. Indeed, control of
optimization parameters (X1 and X2) to the GR2M model, CE
obtained is very important and higher compared to the other
two (GA and FL) and the correlation coefficient R is greater
than 0.90 reflecting the strong correlation between the
measured flow rates and those calculated by the ANN.
Comparing the results obtained in this study with those

of some authors, we note that the results here are different
from those obtained by Ali (2006) with a neural network, Nash
criteria was obtained by this study is 60%. This results is due to
the structure of the model developed here which is directed
as a result of the introduction of the flows measured at the
preceding time as an additional input of the neural network.
The study of De Vos and Rientjes (2007) shows that
performance of RNA is superior than HBV model for objective
functions on low flows and floods but less for a new objective
function including the shape of the hydrograph. If the forecast
time increases, the HBV model is superior to the RNA for all
objective functions. Also, the comparison of the performance
model between ANN and FL to predict the stream flow
modeling of Savitri Basin (Kothari and Gharde, 2015) prove
that ANN model performance is quite superior.
In another side, Lohani et al. (2011) compares Artificial

Neural Network (ANN), Fuzzy Logic (FL) and Linear Transfer
Function (LTF)-based approaches for daily rainfall runoff
modeling. This study applied the potential of Takagi Sugeno
(TS) fuzzy model and the impact of antecedent soil moisture
conditions in the performance of the daily rainfall runoff
models. The results show that the fuzzy modeling approach is
uniformly outperforming the LTF and also always superior to
the ANN-based models.

CONCLUSION

In this way the proposed model can find the appropriate
(X1 and X2) are the coefficient of the GR2M model for rainfall
runoff process. Artificial Intelligence (AI) techniques such as
neural   networks,   fuzzy   logic   and   genetic   algorithms   are
applied in the normal operating conditions. The obtained
simulation results of adaptive structures (fuzzy logic and
artificial neural networks) show more robustness against the
GR2M parameters as well as high disturbance rejection
capability compared to the fixed structure technique (genetic
algorithm) and the ANN technique is more superior overall. All
models show good agreement with experimental results.
When compared to the ANN and FL models, the ANN model
has shown a significant forecast improvement. The results
indicate that the ANN model is an effective algorithm to
forecast the parameters of R-R. In addition, this study presents
technical and commercial index performances composed of
the Integral of Squared Error (ISE), settling time and starting
transient performance. The computational effort and the cost
of implementation for using these intelligence approaches are
considered in tuning the GR2M parameters.
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