

Journal of Environmental Science and Technology

ISSN 1994-7887

ට OPEN ACCESS

Journal of Environmental Science and Technology

ISSN 1994-7887 DOI: 10.3923/jest.2018.28.38

Research Article Natural Radioactivity Levels and Radiological Hazards in Soil Samples Around Abu Karqas Sugar Factory

¹Reda Elsaman, ^{2,3}Mohammed Ahmed Ali Omer, ⁴El-Montaser Mahmoud Seleem and ¹Atef El-Taher

¹Department of Physics, Faculty of Science, Al-Azhar University, Assuit Branch, 71524 Assuit, Egypt ²Department of Radiologic Technology, College of Applied Medical Science, Qassim University, P.O. Box 6800, Postal Code 51452, Buraidah, Saudi Arabia

³College of Medical Radiologic Science, Sudan University of Science and Technology, Khartoum, Sudan

⁴Department of Geology, Faculty of Science, Al-Azhar University, Assuit Branch, 71524 Assuit, Egypt

Abstract

Background and Objective: Soil contributes significantly to the internal and external exposure to environmental radioactivity by gamma rays and beta radiation that increase the risk to human health, therefore, the present study dealt with measuring radiation levels and radionuclides distribution (226 Ra, 232 Th and 40 K) for soil around non-nuclear industries by studying the effect of residues of Abu Karqas Sugar Factory on agricultural soil. **Materials and Methods:** Twenty five soil samples (N = 25) were collected from different locations around Abu Karqas Sugar Factory, Upper Egypt. Activity measurements have been performed by gamma-ray spectrometer, employing a high-resolution scintillation detector Nal (TI) crystal 3×3 inch. Also multi-variate statistical analysis such as variance, skewness, kurtosis, Pearson correlation and cluster analysis was performed utilizing Statistics Software Bundle SPSS version 19.0 for Windows. In addition, the radiological hazards were calculated for the investigated samples. **Results:** The study indicated that, the average values of activity ranged from 8±0.7 to 33±2, 8±0.3 to 19±1 and from 111±4 to 209±12 Bq kg⁻¹ for ²²⁶R, ²³²Th and ⁴⁰K, respectively. **Conclusion:** According to the obtained results, all samples would not present significant radiological hazards.

Key words: Abu Karqas Sugar Factory, agricultural soil, radiological hazard, upper Egypt, gamma-ray spectrometer

Citation: Reda Elsaman, Mohammed Ahmed Ali Omer, El-Montaser Mahmoud Seleem and Atef El-Taher, 2018. Natural radioactivity levels and radiological hazards in soil samples around Abu Karqas Sugar Factory. J. Environ. Sci. Technol., 11: 28-38.

Corresponding Author: Reda Elsaman, Department of Physics, Faculty of Science, Al-Azhar University, Assuit Branch, 71524 Assuit, Egypt Tel: 00201013302376

Copyright: © 2018 Reda Elsaman *et al.* This is an open access article distributed under the terms of the creative commons attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Competing Interest: The authors have declared that no competing interest exists.

Data Availability: All relevant data are within the paper and its supporting information files.

INTRODUCTION

About 96% of the total radiation dose is from natural sources exists in various geological formations such as soils, rocks, sediments, vegetation, water and air, while 4% is of artificial origin¹. Soil is the most important source of the terrestrial radionuclides whose activity concentrations depend primarily on the geological and geochemical conditions of each region in the world². Terrestrial radionuclides contain the radioactive series of uranium-radium (238U-226Ra), thorium (²³²Th) and radioactive potassium (⁴⁰K) in the earth's crust³. Long-term exposure to uranium and radium through inhalation has several health effects such as chronic lung diseases, acute leucopenia, anemia and necrosis of the mouth. Radium causes bone, cranial and nasal tumors. Thorium exposure can cause lung, hepatic, bone and kidney cancers and leukemia⁴. Hence, humans should be aware of their natural environment with regard to the radiation effects due to the naturally occurring and induced radioactive elements⁵.

Soil contributes significantly to the internal and external exposure to environmental radioactivity by gamma rays and beta radiation that increase the risk to human health. The level of exposure depends on the climatic factors, fertilizing, local geology, drainage patterns which are different at each region in the world⁶. Therefore, the aim of the present research was to study the effect of residues of Abu Karqas Sugar Factory in Al-Ibrahimeh canal by measuring the concentrations of ²²⁶Ra, ²³²Th and ⁴⁰K in the agricultural soil around the factory.

MATERIALS AND METHODS

Samples description: This study was done in the period between June-November, 2017. Twenty five samples of agricultural soil were collected from different regions around Abu Karqas Sugar Factory (Fig. 1). The samples coded by (S1-S25). Soil is a mixture of mineral and organic matter, the composition and proportion of these components greatly influence soil physical properties, including texture, structure

Fig. 1: Map showing the studied area

and porosity, the fraction of pore space in a soil and it is mainly made up of oxygen (46.7%), silicon (27%), aluminum (8.1%) and iron (5.0%).

Sample collection and preparation: The agricultural soil samples were collected by a coring tool to a depth of 5 cm or to the depth of the plough line⁷. The collected samples each were about 600 g in weight. All samples were dried in an oven at about 110°C for 24 h to ensure that moisture is completely removed. All samples were crushed, homogenized and sieved through a 200 μ m, which was the optimum size enriched in heavy minerals. Samples were placed in polyethylene beaker, of 250 cm³ volume each and weighted. The beakers were completely sealed for 4 weeks to reach secular equilibrium radium and thorium and their progenies^{8,9}.

Instrumentation and calibration: Radioactivity measurements were determined by using gamma ray spectrometer, employing a high-resolution scintillation detector Nal (TI) crystal 3×3 inch. It had a hermetically sealed assembly, which included a Nal (TI) crystal, coupled with a PC-MCA Canberra Accuspec. To decrease the gamma-ray background, a cylindrical lead shield (100 mm thick) with a fixed bottom and movable cover shielded the detector. The lead shield contained an inner concentric cylinder of copper (0.3 mm thick) in order to absorb X-rays generated in the lead^{10,11}. In order to determine the background distribution in the environment around the detector, an empty sealed beaker was counted in the same manner and in the same geometry as the samples. The measurement time of the activity or background was 43,200 sec. The background spectra were used to correct the net peak area of the gamma rays of the measured isotopes. A dedicated software program was used Genie-2000. The detection array was energy calibrated using 60Co (1173.2 and 1332.5 keV), 133Ba (356.1 keV) and ¹³⁷Cs (661.9 keV). The curve of efficiency calibration was made using different energy peaks covering the range up to ~2000 keV. The ²²⁶Ra radionuclide was predestined from the 351.9 keV γ-peak of ²¹⁴Pb and 609.3, 1120.3, 1728.6 and 1764 keV γ-peak of ²¹⁴Bi. The ²³²Th radionuclide was predestined from the 911.2 keV γ -peak of ²²⁸Ac and the 238.6 keV γ -peak of ²¹²Pb. The ⁴⁰K radionuclide was estimated using the 1461 keV γ -peak from ⁴⁰K itself¹²⁻¹⁴. For guality control, the uncertainties of the measured values have been calculated from all parameters.

Multivariate statistical analysis

Basic statistics: Statistical behavior of the measured data (range, minimum, maximum, sum, arithmetic mean (AM),

arithmetic standard deviation (SD), variance, skewness, kurtosis and the type of frequency distribution for the three radionuclides for all the soil samples were performed utilizing Statistics Software Bundle SPSS version 19.0 for Windows. Skewness characterized the degree of asymmetry of a distribution around its mean^{15,16}. Kurtosis is a measure of the peakedness of the probability distribution of a real-valued random variable. It characterizes the relative flatness or peakedness of a distribution compared with the normal distribution. Positive kurtosis indicates a relatively peaked distribution.

Pearson's correlation coefficient and cluster analysis: Cluster analysis and Pearson correlation were done keeping in mind the end goal to clear up the relationship among the factors, particularly the impact of dregs radiological parameters on the appropriation of common radionuclides. Principal components analysis (PCA) is the most common technique used to summarize patterns among variables in multivariate datasets. The PCA is a way of identifying patterns in variables and expressing data in such a way as to highlight their similarities and differences. The main advantage of PCA is that, once the patterns have been found, data can be compressed reducing the number of dimensions, without much loss of information¹⁷.

RESULTS AND DISCUSSION

The distribution of the detected radionuclides, ²²⁶Ra, ²³²Th and ⁴⁰K and their corresponding total uncertainties for samples under investigation were listed in Table 1. While Fig. 2 shows a comparison between the activity concentrations in Bq kg⁻¹ for all soil samples under investigation. From these results, the ⁴⁰K activity concentration dominated over that of the ²²⁶Ra and ²³²Th elemental activities. The highest value of activity concentration for ²²⁶Ra was found in soil sample coded by (S15), while the lowest one was found in sample coded by (S17). For ²³²Th values, the highest value of activity concentrations in soil sample coded by (S25), while the lowest value in soil sample code by (S12). In case of ⁴⁰K, the lowest value was found in soil sample code by (S25), while the highest one was in (S16) sample. The variation of radionuclides concentration in studied soil samples may be due to the geological and geographical conditions¹⁸ and/or the using of chemical fertilizers. The worldwide average concentrations of the radionuclides ²²⁶Ra, ²³²Th and ⁴⁰K, reported by UNSCEAR¹⁹ are 35, 35 and 370 Bg kg⁻¹, respectively. The results showed that the average activity concentrations of ²²⁶Ra, ²³²Th and ⁴⁰K in soil samples were J. Environ. Sci. Technol., 11 (1): 28-38, 2018

Fig. 2: Comparison between values of ²²⁶Ra, ²³²Th and ⁴⁰K activity concentration in Bq kg⁻¹ for soil samples around Abu Karqas Sugar Factory

Table 1:	Activity concentrations (Bq kg ⁻¹) of ²²⁶ Ra, ²³² Th and ⁴⁰ K in soil samples
	around Abu Korqas sugar factory

	Activity (Bq kg	Activity (Bq kg ⁻¹)				
Sample						
codes	²²⁶ Ra	²³² Th	⁴⁰ K			
S1	19±1.0	11±0.5	195±10			
S2	15±1.0	10±0.5	168±8			
S3	22±2.0	10±0.5	180±9			
S4	20±1.0	14±0.8	142±7			
S5	25±2.0	11±0.5	127±5			
S6	29±2.0	9±0.4	179±9			
S7	24±2.0	13±0.7	182±9			
S8	26±2.0	15±0.8	128±5			
S9	24±2.0	14±0.3	111±4			
S10	30±3.0	11±0.5	168±9			
S11	27±1.0	15±0.6	155±7			
S12	29±2.0	8±0.3	174±9			
S13	28±2.0	17±0.9	124±5			
S14	29±5.0	12±0.6	131±6			
S15	33±2.0	18±1.0	155±8			
S16	25±2.0	18±1.0	209±12			
S17	8±0.7	8±0.3	115±5			
S18	14±0.7	12±0.6	122±5			
S19	15±3.0	9±0.4	200±11			
S20	19±11.0	11±0.5	179±9			
S21	11±5.0	10±0.5	193±14			
S22	23±2.0	8±0.2	180±6			
S23	22±2.0	11±0.4	176±13			
S24	28±5.0	11±0.5	152±10			
S25	13±0.4	19±1.0	111±4			
Minimum	8±0.7	8±0.3	111±4			
Maximum	33±2.0	19±1.0	209±12			
Average	22.32±2.0	12.2±0.6	158.24±8			

⁴⁰K: Potassium, ²³²Th: Thorium, ²²⁶Ra: Radium

lower than the worldwide average concentrations. Table 2 shows a comparison of the radioactivity concentrations in the soil with other areas of the world.

Table 2: Comparison of the activity concentrations of the soil with other countries

	Activity (Bq kg ⁻¹)				
Countries	²²⁶ Ra	²³² Th	⁴⁰ K		
India (Tamil Nadu) ²⁰		27-794.3	44-251.4		
Egypt (El-Mynia) ²¹	16.7	13.8	382		
Saudi Arabia (Al-Qassim) ²²		2.5-39	212-915		
Algeria ²³	53.2	50.03	311		
Brazil (Panama) ²⁴	10.22	7.27	54.75		
Egypt (Abou Zabal region) ²⁵	31.12	10.96	264.1		
Saudi Arabia (El Taif) ²⁶		18.6	162.8		
Niger (Jos Plateau)27	NM	734	115.8		
Egypt (Alexandria)28	16.43	18.31	268.16		
Pakistan(Pakka Anna) ²⁹	30-38	50-64	560-635		
Egypt (present study)	22.32±2	12.2±0.6	158.24±8		

⁴⁰K: Potassium, ²³²Th: Thorium, ²²⁶Ra: Radium

Statistical behavior of the measured data (range, minimum, maximum, sum, arithmetic mean (AM), arithmetic standard deviation (SD), variance, skewness, kurtosis and the type of frequency distribution for the three radionuclides for all the soil samples) presented in Table 3. The basic statistics show that the AM of activity concentrations are different from each other. The precipitation affects the natural radioactivity of the soils, when rain water mixed with SO₂ of the air, then rain become acidic. Acid rain causes accelerated mobilization of many materials in sediments, especially ²³⁸U ³⁰. The highest value of AM was observed for ⁴⁰K (158.2 Bq kg⁻¹) and the lowest was for ²³²Th (12.2 Bq kg⁻¹). The basic statistics showed that the AM of activity concentrations for all locations were different from each other.

The values of skewness and kurtosis for ²²⁶Ra, ⁴⁰K and ²³²Th were near to 0 and negative, respectively therefore, this

Table 3: Descriptive statistics of radiological parameters

Radioactivity	/										Frequency
variables	Ν	Range	Minimum	Maximum	Sum	Mean	SD	Variance	Skewness	Kurtosis	distribution
²²⁶ Ra	25	25	8	33	558	22.3	6.62	43.81	-0.55	-0.57	Normal
⁴⁰ K	25	98	111	209	3956	158.2	30.13	907.61	-0.17	-1.25	Normal
²³² Th	25	11	8	19	305	12.2	3.27	10.67	0.70	-0.45	Normal
			222-1 -1 -	22/2 2 1:							

SD: Standard division, ⁴⁰K: Potassium, ²³²Th: Thorium, ²²⁶Ra: Radium

Fig. 3: Frequency distribution of ²²⁶Ra

Fig. 4: Frequency distribution of ²³²Th

radionuclide follows normal distribution. While positive skewness indicates a distribution with an asymmetric tail extending towards values that were more positive as observed in ²³²Th but negative skewness indicated a distribution with an asymmetric tail extending towards values that were more negative as observed in ²²⁶Ra and ⁴⁰K. Lower skewness value form generally normal distributions. Negative kurtosis indicated a relatively flat distribution (shown in this study case). Higher kurtosis means more of the variance was the result of infrequent extreme deviations.

The frequency distribution for a ll radioactive variables in sediment samples were analyzed, where the histograms given in Fig. 3, 4 and 5. The graph of ²²⁶Ra and ⁴⁰K showed that these radionuclides demonstrate a normal

Fig. 5: Frequency distribution of ⁴⁰K

(bell-shape) distribution. But ²³²Th exhibited some degree of multi-modality. This multi-modal feature of the radio elements demonstrated the complexity of minerals in sediment samples.

The results for Pearson correlation coefficients between all studied radioactive variables for soil samples shown in Table 4. From these results, the high good positive correlation coefficient was absorbed between ²³²Th and ²²⁶Ra because radium and thorium decay series occurs together in nature^{31,21}. The positive correlation coefficient was absorbed between ²²⁶Ra, ²³²Th and ⁴⁰K with all the radiological parameters. This implied that there is very strong relationship between the radionuclides in soil and descriptive statistic.

Table 5 shows the results of data analyzed by graph pad prism 5 programs. As shown in Table 5, 232 Th was high, significantly different (p<0.001) from 40 K in the mean concentration activity, also 232 Th was significantly different from 226 Ra (p<0.05) in concentration activity. 226 Ra was high significantly different (p<0.001) from 40 K in the mean concentration activity.

Finally, cluster analysis was performed using average linkage method, to calculate the Euclidean distance between the variables. The derived dendrogram is shown in Fig. 6. In this dendrogram, all 6 parameters were grouped into five statistically significant clusters.

Radiological hazard indices

Radium equivalent activity (Raeq): The radium equivalent activity was used to obtain the sum of activities to compare

J. Environ. Sci. Technol., 11 (1): 28-38, 2018

Fig. 6: Dendrogram shows the clustering of radionuclide sand their radiological parameters

Tuble 1.1 curson conclution coefficients between rudioucurity valuables in son sumples
--

	in coefficients betw	centradioactivity varia	bies in son samples				
Radioactivity variables	²²⁶ Ra	²³² Th	⁴⁰ K	D	AED	H _{ex}	l _y
²²⁶ Ra	1						
²³² Th	0.246	1					
⁴⁰ K	0.041	-0.324	1				
D	0.857	0.612	0.179	1			
AED	0.857	0.612	0.179	1	1		
H _{ex}	0.877	0.618	0.120	0.998	0.998	1	
l,	0.863	0.600	0.186	1	1	0.998	1

H_{ex}: External hazard index, AED: Annual effective doses, I₂: Gamma index, D: Absorbed gamma dose rate, ⁴⁰K: Potassium, ²³²Th: Thorium, ²²⁶Ra: Radium

Table 5: Results of data analyzed by graph pad prism 5 programs

Newman-Keuls multiple						
comparison test	Mean different	q	p<0.05	Summary		
²³² Th vs ⁴⁰ K	-146.00	40.780	Yes	***		
²³² Th vs ²²⁶ Ra	-10.12	2.826	Yes	*		
²²⁶ Ra vs ⁴⁰ K	-135.90	37.950	Yes	***		

***Very high significantly different at p<0.001, **High significantly different at p<0.01, *Significantly different at p<0.05, 40K: Potassium, 222Th: Thorium, 226Ra: Radium

the activity concentration of soil samples, which contain 226 Ra, 232 Th and 40 K. The radium equivalent activities (Ra_{eq}) have been calculated on the estimation that 370 Bq kg⁻¹ of 226 Ra, 259 Bq kg⁻¹ of 232 Th and 4810 Bq kg⁻¹ of 40 K produces the same gamma ray dose rate. Therefore, the Ra_{eq} was given by Beretka and Mathew³²:

$$Ra_{eq} = A_{ra} + 1.43A_{Th} + 0.077A_{k}$$
(1)

where, A_{Ra} , A_{Th} and A_{K} were the activities of ²²⁶Ra, ²³²Th and ⁴⁰K (Bq kg⁻¹), respectively. The results of radium equivalent activities (Ra_{eq}) for soil were presented in Table 6. From Table 6, it was observed that, the values of radium equivalent

fluctuate from 27.49 Bq kg⁻¹ in soil sample coded by (S17) to 69.59 Bq kg⁻¹ in soil sample coded by (S15). These values were lower than the allowed maximum value³² of 370 Bq kg⁻¹. Figure 7 showed the relative contributions to Ra_{eq} owing to ²²⁶Ra, ²³²Th and ⁴⁰K for soil samples. It was noticed that ²²⁶Ra and ²³²Th were the main contributor to Ra_{eq} in all samples.

Absorbed gamma dose rate (D): The measured activity concentrations of ²²⁶Ra, ²³²Th and ⁴⁰K were converted into doses by applying the conversion factors 0.462, 0.604 and 0.0417 for uranium, thorium and potassium¹⁹, respectively. These factors were used to calculate the total dose rate (nGy h⁻¹) using the following equation:

Fig. 7: Relative contribution (%) of ²²⁶ Ra, ²³² Th and ⁴⁰ K to	Ra _{eq} in soil samples Abu	Karqas Sugar Factory
--	--------------------------------------	----------------------

				Hazard indice	25		
Sample							
codes	Ra _{eq} (Bq kg ⁻¹)	D (nGy h ⁻¹)	AED (µSv/year)	H _{ex}	H _{in}	lγ	ELCR
S1	48.38	23.78	28.88	0.186	0.134	0.368	1.01E-04
S2	41.06	20.25	24.59	0.155	0.114	0.313	8.61E-05
S3	48.90	23.75	28.85	0.195	0.135	0.368	1.01E-04
S4	49.96	23.91	29.04	0.192	0.138	0.369	1.02E-04
S5	49.62	23.42	28.44	0.204	0.136	0.363	9.95E-05
S6	54.40	26.04	31.62	0.229	0.150	0.404	1.11E-04
S7	55.33	26.68	32.40	0.218	0.153	0.413	1.13E-04
S8	56.41	26.54	32.23	0.225	0.155	0.410	1.13E-04
S9	51.79	24.29	29.50	0.207	0.142	0.375	1.03E-04
S10	57.49	27.32	33.18	0.240	0.158	0.424	1.16E-04
S11	59.30	28.12	34.16	0.236	0.163	0.435	1.20E-04
S12	52.62	25.16	30.56	0.224	0.145	0.391	1.07E-04
S13	60.99	28.54	34.66	0.243	0.167	0.441	1.21E-04
S14	55.33	25.96	31.53	0.230	0.152	0.402	1.10E-04
S15	69.59	32.67	39.68	0.280	0.191	0.505	1.39E-04
S16	65.37	31.58	38.35	0.248	0.181	0.488	1.34E-04
S17	27.49	13.66	16.59	0.098	0.076	0.211	5.81E-05
S18	39.70	19.17	23.28	0.147	0.110	0.296	8.15E-05
S19	41.87	20.96	25.46	0.157	0.117	0.325	8.91E-05
S20	47.26	23.09	28.05	0.182	0.131	0.357	9.82E-05
S21	38.81	19.62	23.82	0.138	0.108	0.303	8.34E-05
S22	47.04	22.86	27.76	0.193	0.130	0.355	9.72E-05
S23	50.05	24.24	29.44	0.198	0.139	0.375	1.03E-04
S24	54.37	25.77	31.30	0.225	0.150	0.399	1.10E-04
S25	47.94	22.90	27.81	0.167	0.132	0.351	9.74E-05
Minimum	27.49	13.66	16.59	0.076	0.098	0.211	5.81E-05
Maximum	69.59	32.67	39.68	0.191	0.280	0.505	1.39E-04
Average	50.84	24.41	29.65	0.140	0.201	0.378	1.04E-04

Table 6: Ra_{eq} , D, AED and hazard indices (H_{ex} , H_{in} , I_{γ} and ELCR) for investigated samples

Ra_{eq}: Radium equivalent activity, D: Absorbed gamma dose rate, AED: Annual effective doses, H_{ex}: External hazard index, H_{in}: internal hazard index, I_r: Gamma index, ELCR: Excess lifetime cancer risk

Fig. 8: Relative contribution (%) of ²²⁶Ra, ²³²Th and ⁴⁰K to D and AED in soil samples Abu Karqas Sugar Factory

$$D = 0.462A_{Ra} + 0.604A_{Th} + 0.0417A_{K}$$
(2)

where, A_{Rar} , A_{Th} and A_{K} has the same meaning as in Eq. 1. The calculated values of absorbed gamma dose rate for the samples were presented in column 2 of Table 6 and ranged from 13.66-32.67 nGy h⁻¹, those were lower than the allowed maximum value¹⁹ of 59 nGy h⁻¹. The contributions to dose rate (D) and annual effective doses (AED) owing to ²²⁶Ra and ²³²Th higher than the contributions owing to ⁴⁰K, except in samples coded by (S19 and S21), the ⁴⁰K is highest one as shown in Fig. 8.

Annual effective dose (AED): The annual effective dose rate outdoors in units of (μ Sv/year) is calculated by the following formula¹⁹:

AED = Absorbed dose (nGy
$$h^{-1}$$
)×8760 h×0.7 Sv Gy/year×0.2×10⁻³ (3)

The AED values for the soil samples vary from 16.59-39.68 μ Sv/year, these values were lower than the world average values³³ at 70 mSv/year as observed in Table 6.

Hazard indices: Beretka and Mathew³² defined tow indices that represented external and internal radiation hazards. The external hazard index (H_{ex}) was determined from the criterion formula as:

$$H_{ex} = \frac{C_{Ra}}{370} + \frac{C_{Th}}{259} + \frac{C_{K}}{4180} \le 1$$
(4)

where, C_{Ra} , C_{Th} and C_K are activities of ²²⁶Ra, ²³²Th and ⁴⁰K, respectively in Bq kg⁻¹. On the other hand, the internal hazard index (H_{in}) given the internal exposure to carcinogenic radon and its short-lived progeny and it was given by the following formula^{32,33}:

$$H_{in} = (A_{Ra}/185 + A_{Th}/259 + A_{K}/4810) \le 1$$
(5)

where, A_{Rar} , A_{Th} and A_{K} having the same meaning as in Eq. 1. Table 6 showed that the calculated average values of hazard indices for all samples were less than unity¹⁹, which did not cause any harm to the farmers and populations in region under investigation. Figure 9 shows the relative contributions to H_{in} owing to ²²⁶Ra, ²³²Th and ⁴⁰K for soil samples. As shown in Fig. 9, ²²⁶Ra was main contributor to H_{in} in all soil samples.

Gamma index (I_v): Another radiation hazard index called the representative level index, I_v, was defined from the following formula³⁴, where, A_{Ra}, A_{Th} and A_K having the same meaning as in Eq. 1:

$$I_{\gamma} = 0.0067 A_{Ra} + 0.01 A_{Th} + 0.00067 A_{K}$$
 (6)

The calculated I_{γ} values for the samples under investigation were given in Table 6. It was cleared that the soil samples lower than unity³⁵. Figure 10 showed the relative contribution to I_{γ} owing to ²²⁶Ra, ²³²Th and ⁴⁰k, from this figure ²²⁶Ra was the higher contribution to I_{γ} in all

J. Environ. Sci. Technol., 11 (1): 28-38, 2018

Fig. 9: Relative contribution (%) of ²²⁶Ra, ²³²Th and ⁴⁰K to H_{in} in soil samples Abu Karqas Sugar Factory

Fig. 10: Relative contribution (%) of ²²⁶Ra, ²³²Th and ⁴⁰K to I, in soil samples Abu Karqas Sugar Factory

soil samples, except in samples coded by (S18 and S25), ²³²Th was the higher contribution.

Excess lifetime cancer risk (ELCR): Excess lifetime cancer risk (ELCR) could be defined as the excess probability of developing cancer at a lifetime due to exposure level of human to radiation. Excess lifetime cancer risk (ELCR) was calculated by using the following Eq.³⁶⁻⁴¹:

$$ELCR = EDR \times DL \times RF$$
 (7)

Where:

EDR = Annual effective dose equivalent

DL = Duration of life (30-70 years)

 $RF = Risk factor (Sv^{-1}) fatal cancer risk per Sievert. For stochastic effects, ICRP 60 uses values of (RF = 0.05) for public$

The values of excess lifetime cancer risk (ELCR) for soil samples listed in Table 6. As shown in Table 6, it could be seen that, the values of excess lifetime cancer risk were ranged

from 5.81E-05-1.39E-04, these values were less than the worldwide recommended value¹⁶ of 29E-05.

The current study results showed that the average activity concentrations of ²²⁶Ra, ²³²Th and ⁴⁰K in soil samples were lower than the worldwide average concentrations. The variation of radionuclides concentration in studied soil samples may be due to the geological and geographical conditions¹⁸ and/or the using of chemical fertilizers. It was recommended to reduce the dependence on chemical fertilizers to fertilize the soil, because these fertilizers contain high concentration of radioactive material, which may leads to health and environmental problems in the future.

CONCLUSION

As shown from the results, the activity concentration of naturally occurring radionuclides in soil samples around Abu Karqas Sugar Factory were within the world average ranges which are 35, 35 and 370 Bq kg⁻¹ for ²²⁶Ra, ²³²Th and ⁴⁰K, respectively. The radiological hazards in all soil samples were lower than the world average, so it is safe for farmers, population living and can be used as a building raw materials or other human activities without any radiological risk.

SIGNIFICANCE STATEMENT

This study discovers the natural radioactivity levels and associated radiation hazards in soil samples around non-nuclear industry. The novelty of the present study is evidence that there is no effect of non-nuclear industries on the concentrations of ²²⁶Ra, ²³²Th and ⁴⁰K for some environmental samples (soil), by studying the effect of residues of Abu Kargas Sugar Factory on agricultural soil.

This study is the first investigated in this area, so this study can be used as a baseline data for future investigations in pollution assessment and natural radioactivity mapping and could serve as a reference data for monitoring pollution studies in future.

REFERENCES

- Saleh, H. and M. Abu Shayeb, 2014. Natural radioactivity distribution of Southern part of Jordan (Ma'an) Soil. Ann. Nucl. Energy, 65: 184-189.
- 2. El-Taher, A. and M A.K. Abdelhalim, 2014. Elemental analysis of soils from Toshki by using instrumental neutron activation analysis techniques. J. Radioanal. Nucl. Chem., 300: 431-435.

- Karatash, M., S. T urhan, A. Varinlioglu and Z. Yegingil, 2016. Natural and fallout radioactivity levels and radiation hazard evaluation in soil samples. Environ. Earth Sci., Vol. 75. 10.1007/s12665-016-5414-y.
- Taskin, H., M. Karavus, P. Ay, A. Topuzoglu, S. Hidiroglu and G. Karahan, 2009. Radionuclide concentrations in soil and lifetime cancer risk due to gamma radioactivity in Kirklareli, Turkey. J. Environ. Radioact., 100: 49-53.
- Jassim, A.Z., H.H. Al-Gazaly and A.A. Abojassim, 2016. Natural radioactivity levels in soil samples for some locations of Missan government, Iraq. J. Environ. Sci. Pollut. Res., 2: 39-41.
- Ajayi, O.S., 2009. Measurement of activity concentrations of ⁴⁰K, ²²⁶Ra and ²³²Th for assessment of radiation hazards from soils of the Southwestern region of Nigeria. Radiat. Environ. Biophys., 48: 323-332.
- 7. IAEA., 1989. Measurements of radionuclides in food and the environment. Technical Report Series No. 295, International Atomic Energy Agency, Vienna.
- 8. El-Gamal, A., S. Nasr and A. El-Taher, 2007. Study of the spatial distribution of natural radioactivity in the upper Egypt Nile river sediments. Radiat. Meas., 42: 457-465.
- El-Taher, A. and S.S. Althoyaib, 2012. Natural radioactivity levels and heavy metals in chemical and organic fertilizers used in Kingdom of Saudi Arabia. Applied Radiat. Isot., 70: 290-295.
- El-Taher, A. and M.A.M. Uosif, 2006. The assessment of the radiation hazard indices due to uranium and thorium in some Egyptian environmental matrices. J. Phys. D: Applied Phys., 39: 4516-4521.
- Uosif, M.A.M. and A. El-Taher, 2008. Radiological assessment of Abu-Tartur phosphate, Western desert Egypt. J. Radiat. Prot. Dosimetry, 130: 228-235.
- El-Taher, A. and S. Makhluf, 2010. Natural radioactivity levels in phosphate fertilize r and its environmental implications in Assuit governorate, Upper Egypt. Indian J. Pure Applied Phys., 48: 697-702.
- 13. El-Taher, A., 2011. Terrestrial gamma radioactivity levels and their corresponding extent exposure of environmental samples from Wadi El Assuity protective area, Assuit, Upper Egypt. Radiat. Prot. Dosim., 145: 405-410.
- 14. El-Taher, A., 2012. Assessment of natural radioactivity levels and radiation hazards for building materials used in Qassim Area, Saudi Arabia. Rom. J. Phys., 57: 726-735.
- Groeneveld, R.A. and G. Meeden, 1984. Measuring skewness and kurtosis. J. Ro. Stat. Soc. Series D (The Statistician), 33: 391-399.
- El-Taher, A., A. Nossair, A.H. Azzam, K.L. Kratz and A.S. Abdel-Halim, 2004. Determination of traces of uranium and thorium in some Egyptian environmental matrices by instrumental neutron activation analysis. Environ. Prot. Eng., 30: 19-30.

- 17. Facchinelli, A., E. Sacchi and L. Mallen, 2001. Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environ. Pollut., 114: 313-324.
- El-Taher, A., R. Garcia-Tenorio and A.E.M. Khater, 2016. Ecological impacts of Al-Jalamid phosphate mining, Saudi Arabia: Soil elemental characterization and spatial distribution with INAA. Applied Radiat. Isot., 107: 382-390.
- 19. UNSCEAR., 2000. United Nations scientific committee on the effects of atomic radiation. Sources, Effects and Risks of Ionizing Radiation. Report to the General Assembly with Annex B. United Nations, New York.
- Ajithra, A.K., B. Venkatraman, M.T. Jose, S. Chandrasekar and G. Shanthi, 2017. Assessment of natural radioactivity and associated radiation indices in soil samples from the high background radiation area, Kanyakumari district, Tamil Nadu, India. Radiat. Prot. Environ., 40: 27-33.
- 21. El-Taher, A., 2003. Elemental studies of environmental samples from upper Egypt by neutron activation analysis. Ph.D. Thesis, Al-Azhar University, Assuit, Egypt.
- 22. El-Taher, A. and J.H. Al-Zahrani, 2014. Radioactivity measurements and radiation dose assessments in soil of Al-Qassim region, Saudi Arabia. Indian J. Pure Applied Phys., 52: 147-154.
- 23. Boukhenfouf, W. and A. Boucenna, 2011. The radioactivity measurements in soils and fertilizers using gamma spectrometry technique. J. Environ. Radioact., 102: 336-339.
- 24. Becegato, V.A., F.J.F. Ferreira and W.C.P. Machado, 2008. Concentration of radioactive elements (U, Th and K) derived from phosphatic fertilizers in cultivated soils. Braz. Arch. Biol. Technol., 51: 1255-1266.
- 25. Diab, H.M., S.A. Nouh, A. Hamdy and S.A. El-Fiki, 2008. Evaluation of natural radioactivity in a cultivated area around a fertilizer factory. J. Nucl. Radiat. Phys., 3: 53-62.
- El-Aydarous, A., 2007. Gamma radioactivity levels and their corresponding external exposure of some soil samples from Taif Governorate, Saudi Arabia. Global J. Environ. Res., 1: 49-53.
- Jibiri, N.N., I.P. Farai and S.K. Alausa, 2007. Estimation of annual effective dose due to natural radioactive elements in ingestion of foodstuffs in tin mining area of Jos-Plateau, Nigeria. J. Environ. Radioact., 94: 31-40.
- Saleh, I.H., A.F. Hafez, N.H. Elanany, H.A. Motaweh and M.A. Naim, 2007. Radiological study on soils, foodstuff and fertilizers in the Alexandria region, Egypt. Turk. J. Eng. Environ. Sci., 31: 9-17.

- 29. Akhtar, N., M. Tufail, M. Ashraf and M.M. Iqbal, 2005. Measurement of environmental radioactivity for estimation of radiation exposure from saline soil of Lahore, Pakistan. Radiat. Measur., 39: 11-14.
- 30. Sheppard, S.C. and M.I. Sheppard, 1988. Modeling estimates of the effect of acid rain on background radiation dose. Environ. Health Perspect., 78: 197-206.
- Madkour, H.A., A. El-Taher, A.N. El-Hagag Ahmed, A.W. Mohamed and T.M. El-Erian, 2012. Contamination of coastal sediments in El-Hamrawein Harbour, Red Sea, Egypt. J. Environ. Sci. Technol., 5: 210-221.
- 32. Beretka, J. and P.J. Matthew, 1985. Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Phys., 48: 87-95.
- Orgun, Y., N. Altinsoy, S.Y. Sahin, Y. Gungor, A.H. Gultekin, G. Karahan and Z. Karack, 2007. Natural and anthropogenic radionuclides in rocks and beach sands from Ezine region (Canakkale), Western Anatolia, Turkey. Applied Radiat. Isotopes, 65: 739-747.
- 34. NEA-OECD., 1979. Exposure to radiation from natural radioactivity in building materials. Report by NEA Group of Experts, OECD, Paris.
- 35. El-Taher, A. and H.A. Madkour, 2014. Environmental and radio-ecological studies on shallow marine sediments from harbour areas along the Red Sea coast of Egypt for identification of anthropogenic impacts. Isotopes Environ. Health Stud., 50: 120-133.
- ICRP-60, 1991. 1990 Recommendations of the international commission on radiological protection. Ann. ICRP., Vol. 21, No. 1-3.
- El-Taher, A., 2010. Determination of chromium and trace elements in El-Rubshi chromite from Eastern Desert, Egypt by neutron activation analysis. Applied Radiat. Isot., 68: 1864-1868.
- 38. El-Taher, A., 2010. Elemental content of feldspar from Eastern Desert, Egypt, determined by INAA and XRF. Applied Radiat. Isot., 68: 1185-1188.
- El-Taher, A., 2012. Elemental analysis of granite by Instrumental Neutron Activation Analysis (INAA) and X-ray Fluorescence Analysis (XRF). Applied Radiat. Isot., 70: 350-354.
- 40. El-Taher, A. and M.A.K. Abdelhalim, 2013. Elemental analysis of phosphate fertilizer consumed in Saudi Arabia. Life Sci. J., 10: 701-708.
- El-Taher, A. and M.A.K Abdelhalim, 2014. Elemental analysis of limestone by instrumental neutron activation analysis. J. Radioanal. Nuclear Chem., 299: 1949-1953.