

Journal of Environmental Science and Technology

ISSN 1994-7887

ISSN 1994-7887 DOI: 10.3923/jest.2019.164.176

Research Article Studies on the Growth Rate, Oil Yield and Properties of Some Indigenous Freshwater Microalgae Species

¹Felix Uzochukwu Asoiro, ¹Wilfred Ifeanyi Okonkwo and ²Nkechinyere Onyekwere Nweze

¹Department of Agricultural and Bioresources Engineering, University of Nigeria, 410001 Nsukka, Enugu State, Nigeria ²Department of Plant Science and Biotechnology, University of Nigeria, Nsukka, Nigeria

Abstract

Background and Objective: Freshwater bodies within Nsukka, Nigeria had been shown to be rich in indigenous strains of *Desmodesmus armatus, Desmodesmus subspicatus, Chlorella lewinii, Dictyosphaerium* sp. and *Cosmarium* sp. with outstanding growth and bio-oil characteristics. Objective of this study was to undertake studies on the growth rate, oil yield and properties of some indigenous fresh water microalgae species, for biodiesel applications. **Materials and Methods:** Microalgae species were isolated from freshwater pool within Nsukka environs. Two-litre bubble column photobioreactors (PBRs) were used for the cultivation. Growth rate for the autotrophic and mixotrophic were assessed. Chemical flocculation using aluminum sulfate (4 g cm⁻³) assisted by centrifugation, at 3500 rpm for 15 min was employed for harvesting of the microalgae biomass. Oil was extracted from biomass by means of accelerated solvent extraction (ASE) using Soxhlet extractor with n-hexane. Experimental design in completely randomized design (CRD) was conducted. Data was analyzed using descriptive and inferential statistics with SPSS, version 21. **Results:** Results showed that growth and specific growth rate for the mixotrophic cultivation (i.e., with glucose) were higher than that of the autotrophic (i.e., without glucose). Extraction temperature has significant effect (p≤0.05) on most of the oil properties evaluated. *Desmodesmus armatus* gave the optimum oil yield of 72.62% at 92.53°C, whereas *Cosmariums*p. produced the least oil yield of 45.53% at 91.72°C. **Conclusion:** These findings suggested that indigenous freshwater microalgae species from Nigeria have high growth rate, oil yield and promising oil properties that made it a suitable 3rd generation alternative feedstock for biodiesel applications.

Key words: Desmodesmus sp., photobioreactor, bio-oil yield, kinematic viscosity, specific growth rate

Citation: Felix Uzochukwu Asoiro, Wilfred Ifeanyi Okonkwo and Nkechinyere Onyekwere Nweze, 2019. Studies on the growth rate, oil yield and properties of some indigenous freshwater microalgae species. J. Environ. Sci. Technol., 12: 164.176.

Corresponding Author: Felix Uzochukwu Asoiro, Department of Agricultural and Bioresources Engineering, University of Nigeria, 410001 Nsukka, Enugu State, Nigeria Tel: +234-806-358-8320

Copyright: © 2019 Felix Uzochukwu Asoiro *et al.* This is an open access article distributed under the terms of the creative commons attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Competing Interest: The authors have declared that no competing interest exists.

Data Availability: All relevant data are within the paper and its supporting information files.

INTRODUCTION

Current global research is geared towards renewable energy, away from fossil resources. Fossil-based power-generating resources contribute to increase in global carbon footprints (a greenhouse gas) in the atmosphere, global warming, environmental degradation, greenhouse effects, climate change¹ and political instability for some oil producing regions.

Renewable energy is known to ameliorate these challenges. Carbon dioxide (CO₂) and other harmful compounds produced by industries and automobiles can be absorbed by microscopic plants like microalgae¹⁻³. Microalgae is a 3rd-generation feedstock with high growth rate (GR), photosynthesis efficiency⁴, efficient CO₂ sequestration^{2,3} and great capability to be cultivated on marginal agricultural lands, salty water, brackish water, thereby eliminating the food versus fuel conflict.

According to Wu et al.5, oil extraction represents one of the first critical step in biodiesel production from microalgae. Research showed that oil extraction from microalgae is dynamic in nature and complex. Biodiesel quality from microalgae could be positively manipulated by selecting process extraction conditions that favors extraction of oils over optimal extraction conditions thereby producing positive effects on both oil yield and properties⁶. Numerous researches have studied the effects of process conditions on oil yield and oil properties of exotic microalgae species. Liauw et al.7 determined the impact of oil extraction temperatures on acid value (AV) of neem seed oil. Ejim and Kamen⁸ investigated the physiochemical characterization of algae oil from Nike lake, Enugu, Nigeria in comparison with other oil seeds. Sanjay et al.9 did a study on the isolation of diatom Navicula Cryptocephald and characterization of the extracted oil for biodiesel production. The physico-chemical properties of cynobacteria oils for biodiesel production was assessed by Da Ros et al. 10. Song and Shi 11 had conducted a study on the exploitation of oil-bearing microalgae for oil and biodiesel production while Bordoloi et al.¹² characterized bio-oil from Scenedesmus dimorphus and its sub-fractions. Islam et al.6 investigated the effect of moisture content and temperature on high pressure liquid/oil extraction form microalgae using accelerated solvent extraction (ASE) method. The feasibility of biofuel production form Chlorella protothecoides oil with respect to its fuel properties and blending characteristics with petroleum diesel was investigated by Chen et al.¹³. Using central composite design with response surface methodology (RSM), Zeb et al.¹⁴ also investigated the effects of process conditions (biomass-toSolvent (BS) ratio, time, temperature) on bio-oil properties and yield from *Saccharina japonrica*, using supercritical solvent extraction means. Rahman and Nahar¹⁵ conducted a study on the production and characterization of algal biodiesel from Spirulina maxima. Stanley *et al.*¹⁶ extracted and characterized microalgae oil. In a review, Kumar and Sharma¹⁷ assessed the potential of microalgae oil for biodiesel production. Kanda *et al.*¹⁸ conducted research on the oil yield and properties of numerous blue-green microalgae species by solvent extraction using dimethyl ether (DME). However, very little information in literature on the growth characteristics as well as the optimum oil extraction temperature, time and oil properties for some indigenous freshwater microalgae species.

Therefore, this study seeks to determine the growth and specific growth rate as well as the effects of temperature and time on oil yield and properties of indigenous fresh water microalgae species.

MATERIALS AND METHODS

Materials: In the research work which lasted 3 years, species of Desmodesmus armatus, Desmodesmus subspicatus, Chlorella lewinii, Dictyosphaerium spp. and Cosmarium spp. were isolated from Onuiyi, Nsukka, in Nigeria in pools of freshwater, that indicated greenish colour as evidence of microalgae presence, between April and November, 2016 and at the hours of 10 am and 5 pm. Species were identified, subcultured and cultivated at laboratory of the Department of Plant Science and Biotechnology, University of Nigeria, Nsukka. Fifteen bubble column 2 L photobioreactors (PBR) with 1.5 L working volume were used for the cultivation. The PBR systems consist of 6 fluorescent lamps (15 W, 150 V) with continuous illumination of 129 µmol photons m⁻² sec⁻¹, determined using conversion and calibration factors of 800 lumens and 0.0135, respectively per lamp mounted by the sides and stationed at 20 cm from each other with an aguarium air pump. Chemical flocculation using aluminum sulfate (4 g cm⁻³) assisted by centrifugation operating at 3500 rpm for 15 min was used for harvesting of the microalgae biomass.

Determination of growth rate (GR) and specific growth rates

(SGR): Cell GR is normally determined as change in cell concentration per given period of time. GR was evaluated using the expression (Eq. 1) by Ogbonna¹⁹:

$$\frac{dX}{dt} = \frac{X_2 - X_1}{t_2 - t_1} \tag{1}$$

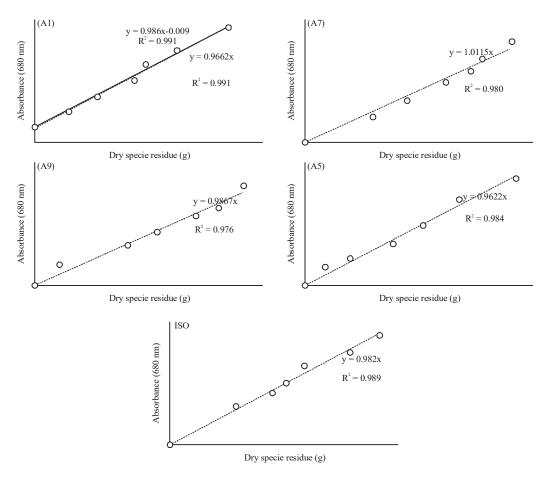


Fig. 1: Standard curve for extrapolating the microalgae cell concentrations (X, g cm⁻³/day) of (A1) *Desmodesmus armatus*, (A7) *Desmodesmus subspicatus*, (A9) *Chlorella lewinii*, (A5) *Dictyosphaerium* sp. and (ISO) *Cosmarium* sp.

where, X_1 and X_2 are cell concentrations (g cm⁻³) which were interpolated from the Standard Curve (SC) (Fig. 1) while t_1 and t_2 were the days of cultivation.

The SGR (/day) is the growth rate for individual unit cell. It is the ratio of the cell GR per cell concentration. The SGR (μ) was calculated using Eq. 2 developed by Ogbonna¹⁹:

$$\mu = \frac{X_2 - X_1}{t_2 - t_1} \times \frac{1}{x} \tag{2}$$

where, x is average cell concentration between t_1 and t_2 which was computed using Eq. 3:

$$\chi = \frac{X_1 + X_2}{2} \tag{3}$$

Determination of oil yield (OY): Oil was extracted from the harvested dried microalgae biomass at temperature ranging from 40-120°C at 20°C intervals and time ranging from

30-210 min at 30 min intervals by accelerated solvent extraction (ASE) using Soxhlet extractor with normal hexane. OY (% by wt) was evaluated using Eq. 4:

$$OY = 100 \left(\frac{M_O}{M_{MA}} \right) \tag{4}$$

where, M_{\circ} is mass of oil in grams and M_{MA} is mass of microalgae biomass in grams.

Determination of bio-oil properties: Association of Official Analytical Chemists (AOAC)²⁰ was employed to investigate the microalgae oil density (OD). The Kinematic viscosity (KV) (centistokes) of the oil was determined by using a kinematic viscometer (Model K21590, Koehler Instrument Company, incorporated, NY, USA)²⁰. American Oil Chemists' Society (AOCS)²¹ was used to access the acid value (AV) and oleic acid value (OAV) (% by wt) of the extracted oil, using potassium hydroxide and phenolphthalein as indicator. Ash content (AC),

iodine values (IV) and saponification value (SV) were determined according to the method by AOAC²⁰ with slight modification. Hydroxyl value (HV) was determined by Wikipedia. An improvised method by Garba et al.²² was used to evaluate the flash point (FP) (°C). Manual method according to El-Refaie et al.²³, Akbar et al.²⁴ and Dijkstra and Van Opstal²⁵ were used to evaluate the pour point (PP). In determining the cloud point (CP), about 3 cm³ of the oil was placed into a test tube and kept on an ice bath with a thermometer fixed. The temperature at which the oil begins to condense was recorded as the CP. About 5 cm³ of the oil was placed in a container with a thermometer kept inside and heated until the first bubble was observed. The temperature at this time gives the measurement of the boiling point (BP). Cetane number (CN) and peroxide values (PV) were evaluated according to Otamiri (Unpublished data) while sulphur content (SC) was analyzed using sulphur analyzer (Model: Asooma T 2000), following American Society for Testing and Material (ASTM) method 4294. The instrument was calibrated in the range of 0.001-1.00 wt % by using commercially available standards. The method by Ejim and Kamen⁸ was used in the determination of the moisture content (MC) of the extracted microalgae oil.

Statistical analysis: During cultivation, an experimental design in Completely Randomized Design (CRD) with a total of 30 observations (5 levels of microalgae species ×2 levels of mode of nutrition $\times 3$ replications) was conducted. During oil extraction a $5 \times 7 \times 5$ factorial in CRD with a total of 175 observations (5 levels of extraction temperature \times 7 levels of extraction time ×5 microalgae species) was carried out. During oil characterization a $5 \times 18 \times 5 \times 3$ factorial in CRD with a total of 1350 observations (5 levels of extraction temperature \times 8 levels of oil properties \times 5 microalgae species ×3 replications) was also conducted. Data was analyzed using descriptive and inferential statistics with SPSS, version 21, Excel package, Windows 10, Prism Graph 6 and Minitab 16. ANOVA, F-test, Duncan multiple range test and LSD.

RESULTS

Growth rate (GR) and specific growth rate (SGR): Table 1 presented the dry weight and absorbance readings of Desmodesmus armatus, Desmodesmus subspicatus, Chlorella lewinii, Dictyosphaerium spp. and Cosmarium spp. at various dilutions while Table 2 summarized the results of Fig. 1

Table 1: Dry weight and absorbance reading of microalgae cells	weight an	ıd absorbaı	nce readir	ng of micr	oalgae celi		at different dilutions	SI												
	Initial w	Initial weight of filter paper	ter paper			Weight	of filter pa	per with n	Weight of filter paper with microalgae residue	residue	Weight	of micro	Weight of microalgae residue	que		Absorba	nce readi	Absorbance reading at $(\lambda = 680 \text{ nm})$	580 nm)	
N/S	A1	A7	A9	A5	ISO	A1	A7	A9	A5	ISO	A1	A7	A9	A5	ISO	A1	A7	A9	A5	120
Control	0.781	0.781	0.781	0.781	0.781	0.781	0.781	0.781	0.781	0.781	0.00	00.00	00.00	0.00	0.00	0.000	0.00	0.00	0.00	0.00
1	0.781	0.781	0.781	0.781	0.781	0.901	1.081	0.891	0.871	1.071	0.12	0.30	0.11	60.0	0.29	0.101	0.25	0.20	0.15	0.31
2	0.781	0.781	0.781	0.781	0.781	1.001	1.231	1.191	1.071	1.231	0.22	0.45	0.41	0.20	0.45	0.199	0.41	0.39	0.22	0.42
3	0.781	0.781	0.781	0.781	0.781	1.131	1.401	1.321	1.171	1.291	0.35	0.62	0.54	0.39	0.51	0.305	0.59	0.52	0.34	0.50
4	0.781	0.781	0.781	0.781	0.781	1.171	1.511	1.491	1.301	1.371	0.39	0.73	0.71	0.52	0.59	0.409	0.70	89.0	0.49	0.64
5	0.781	0.781	0.781	0.781	0.781	1.281	1.561	1.591	1.451	1.571	0.50	0.78	0.81	0.68	0.79	0.499	0.82	0.75	0.70	0.75
9	0.781	0.781	0.781	0.781	0.781	1.461	1.691	1.701	1.711	1.701	0.68	0.91	0.92	0.93	0.92	0.651	0.99	0.97	0.87	0.89
A1: Desmodesmus armatus, A7: Desmodesmus subspicatus, A9: Chlorella lewinii, A5: Dictyosphaerium sp., ISO: Cosmarium sp.	esmus an	natus, A7: ,	Desmode.	smus sub.	spicatus, A	.9: Chlorella	ı lewinii, A	5: <i>Dictyos</i> ,	ohaerium	sp., ISO: <i>C</i> ε	osmarium	sb.								
Table 2: Summary of cell concentration of the various microalga	mary of c	ell concent	ration of:	the varior	us microalg	gae species														
Species						S	Symbol					Absorba	Absorbance vs dry specie residue	y specie r	esidue				R	2
Desmodesmus armatus	us armatı	Sr.					A1						Y = 0.9662x	662x					0	0.66.0
Desmodesmus subspicatus	dsqns sn	icatus					A7						Y = 1.0115x	115x					0	086
Chlorella lewinii	iinii						A9						Y = 0.9867x	867x					0	926.0
Dictyosphaerium sp.	<i>rium</i> sp.						A5						Y = 0.9622x	622x					0	.984
Cosmarium sp.	sb.						150						Y = 0.9822x	822x					0	0.989

showing the relationship between absorbance and cell concentration of the various microalgae species with very perfect fit (R²). The GR values (g cm⁻³/day) and SGR (/day) of the cultivated microalgae species for autotrophic (without glucose) and mixotrophic (with glucose) cultivations are shown in Table 3 and 4, respectively. It was obvious that the GR and SGR for the mixotrophic cultivation (i.e., with glucose) were higher than the other (i.e., without glucose) for the species of microalgae cultivated.

Effects of temperature and time on oil yield (OY) of microalgae species: Table 5 presented the ANOVA for the growth rate of microalgae species. Oil yield of microalgae species at various temperatures and time are presented in Table 6 while 7 Summarized the effects of temperature and time on oil yield from microalgae. Glucose and microalgae species have significant effect (p<0.05) on growth rate, with glucose having more effect than microalgae species (Table 5). The grand mean, OY values for *Desmodesmus armatus* (37.82%), Desmodesmus subspicatus (35.29%), Chlorella lewinii (37.43%) and Dictyosphaerium sp. (34.37%) are higher than the average grand mean values for all the microalgae species, except for Cosmarium sp. (23.17%) which had relatively lower values than the average grand mean (Table 6). Extraction temperature, time and microalgae species have significant effects on oil yield with temperature having the most effects (Table 7).

Effects of extraction temperature and microalgae species on oil properties: The mean values of the effect of extraction temperature on microalgae oil properties for (Desmodesmus armatus, Desmidesmus subspicatus, $Chlorella\ lewinii$, Dictyospoerium sp. and Cosmarium sp. in Duncan Multiple Range Test (DMRT) format is presented in Table 8. Temperature and microalgae species had significant effects ($p \le 0.05$) on oil properties (Table 8). All the oil properties investigated were affected by extraction temperature.

DISCUSSION

The SGR for all the individual microalgae species were higher than the GR (Table 3 and 4). All the microalgae species had growth phases. The lag phase lasted 2-6 days. Exponential phase took 6th-8th days. Thereafter the stationary growth phase and the death phase which was due to depletion in nutrient and the presence of some harmful secondary metabolites. Similar trend had earlier been reported by Asoiro and Okonkwo²⁶.

	Desmodesm	Desmodesmus armatus (A1)	Dictyosphaerium sp. (A5)	<i>'um</i> sp. (A5)	Desmodesmus	Desmodesmus subspicatus (A7)	Chlorella lewinii (A9)	ii(A9)	Cosmarium sp. (ISO)	. (ISO)
Days of										
cultivation	Glucose	Non glucose	Glucose	Non glucose	Glucose	Non glucose	Glucose	Non glucose	Glucose	Non glucose
2nd-4th	0.16715	0.03570	0.03689	0.070671	0.182674	0.005175	0.087159	0.006081	0.022912	0.146130
4th-6th	0.01656	0.05174	0.14134	0.111723	0.024840	0.021217	0.006081	0.028377	0.004582	0.176171
6th-8th	0.00155	0.02432	0.03949	0.045729	0.013972	0.019665	0.048140	0.030404	0.010692	0.013747
8th-10th	0.01190	0.04605	0.04832	0.022864	0.004140	0.053819	0.000507	0.104388	0.122200	0.028513
10th-12th	0.00517	0.13247	0.00155	0.104968	0.085904	0.004140	0.010135	0.025844	0.360489	0.116599
12th-14th	0.50093	0.44038	0.109125	0.334650	0.253053	0.615815	0.050167	0.452518	0.055499	0.323829
Table 4: Specific g	rowth rate for di	Table 4: Specific growth rate for different cultivated microalgae species (/day) $Desmodesmus \ armatus$ (\text{(A1)} $Desmodesmus \ armatus$	icroalgae species (/day) Dictosphaerium sp. (A5)	s (/day) um sp. (A5)	Desmodesmus	Desmodesmus subspicatus (A7)	Chlorella lewinii (A9)	./(A9)	Cosmarium sp. (ISO)	(SO)
Davs of				()						
cultivation	Glucose	Non glucose	Glucose	Non glucose	Glucose	Non glucose	Glucose	Non glucose	Glucose	Non glucose
2nd-4th	0.219877	0.09732	0.031968	0.126866	0.17536	0.00947	0.059147	0.015152	0.031142	0.373212
4t-6th	0.017544	0.113895	0.106084	0.151089	0.019884	0.037037	0.003881	0.065116	0.006004	0.24679
6th-8th	0.001614	0.045854	0.026099	0.050985	0.010848	0.03204	0.029697	0.061475	0.013734	0.015211
8th-10th	0.012202	0.076658	0.030185	0.023681	0.00317	0.078313	0.000303	0.165862	0.134078	0.03014
10th-12th	0.005214	0.169987	0.000944	0.096008	0.061527	0.005556	0.006031	0.034023	0.258583	0.10686
12th-14th	0.334254	0.325679	0.061947	0.218305	0.14584	0.451099	0.028821	0.365534	0.030661	0.211436

Table 3: Growth rate for the five different cultivated microalgae species (g cm⁻³/day)

Parameters	will late of the Hillstonigat	colores.	Source of variation	ation	JO	SS	MS	F	F _{tab}
Effect of microalgae species on growth rate	owth rate		Microalgae species (A)	ecies (A)	4 4	0.002	0.005	2.349	2.565
Effect of glucose on growth rate Frror			Glucose-fed (B) Fror	3)	t	0.023	0.0023	10.962	4.040
Effect of the interaction microalgae species and glucose on growth rate	e species and glucose on g	rowth rate	Microalgae sp	Microalgae species×glucose-fed	- 4		0.002	0.098	2.565
Error Total			Error Total		50 64) 1.063 t 1.112	0.021		
Table 6: Oil yield of microalgae species at various extraction temperatures and times	cies at various extraction t	emperatures and tir	nes						
		Time (min)							
	Temperature (°C)	30	09	06	120	150	180	210	Mean
Desmodesmus armatus (A1)	40	0.92ª	1.2ª	2.06⁵	2.16 ^b	6.3€	29.6 ^d	0.73ª	6.14
	09	49.36bc	49.59°	49.59⁵	49.118 ^b	49.768€	50.196 ^d	1.38ª	42.72
	80	26.66⁴	54.984 ^b	55.43bc	55.89€	57.152 ^d	57.824 ^e	1.466ª	48.49
	100	52.66 ^b	53.17€	53.1bc	55.252 ^d	55.39 ^d	55.27 ^d	2.48ª	46.76
	120	52.31€	52.43⁵	52.77⁵	50.12 ^b	52.65€	53.49 ^d	1.2586ª	45.00
	Mean	42.38	42.27	42.59	42.51	44.25	49.28	1.46	37.82
Desmodesmus subspicatus (A7)	40	0.62ª	1.50 ^b	1.76 ^b	1.86 ^b	3.06⁵	26.42⁴	0.81ª	5.15
	09	46.116 ^{bc}	46.346 ^{bc}	46.286 ^{bc}	45.933 ^b	46.524°	46.952 ^d].la	39.89
	80	53.422 ^e	51.686 ^b	52.132°	52.592 ^d	53.914	54.5269	0.36	45.52
	100	49.348°	49.918	49.848	52.00d	52.078 ^d	52.018 ^d	0.316	43.65
	120	48.984°	49.104€	49.444°	46.794°	49.324°	50.904 ^d	1.267ª	42.26
	Mean	39.70	39.710	39.890	39.84	40.98	46.16	0.77	35.29
Cnioreila lewinii (A9)	40	0.96°	1./44° 18 50b	2.198°° 49.576°	2.36° 49.118b	6.320° 47.568°	25.98° 50.014b	0./4ª 1.43&ª	5.76
	00 &	56.748cd	54 004 ^b	55.03bc	55.89cd	56.032 ^{cd}	57.03	1.306ª	48.01
	100	52.66 ^b	53.17bc	53.1bc	54.652 ^{cd}	55.59 ^d	52.67 ^b	2.52ª	46.34
	120	51.71€	52.43cd	52.77 ^d	50.12 ^b	52.45 ^{cd}	52.49cd	1.60ª	44.80
	Mean	42.29	41.99	42.54	42.43	43.59	47.64	1.52	37.43
Dictyosphaerium sp. (A5)	40	0.20ª	0.746^{ab}	1.47 ^{bc}	1.69°	5.614⁴	26.1€	0.127a	5.14
	09	44.646 ^{bc}	44.876bc	44.876bc	44.404 ^b	45.054 ^{cd}	45.482 ^d	0.84ª	38.60
	80	51.944°	50.268°	50.726 ^{bc}	51.174°	52.436°	53.108 ^e	1.486ª	44.45
	100	47.946 ^b	48.456°	48.386°	50.538°	50.676°	50.556	1.92ª	42.64
	120	47.666 [€]	47.782°	48.122°	45.472°	48.002°	48.842ª	1.46ª	41.05
(OSI) as minimen	Mean	38.48 0.76ª	38.43 1.00ª	38./2 1 70ª	38.65 1 82ª	40.360 4 820b	9702	1.1/ 0.57a	24.37 2.84
	09	28.702bc	29.012 ^{bcd}	28.924bc	28.527 ^b	7.020 29.11 ^{cd}	29.538 ^d	0.256ª	24.87
	80	36.142 ^e	34.398⁵	34.912°	35.372 ^d	36.674 ^f	37.3069	0.206^{a}	30.72
	100	32.056 ^b	32.566€	32.496€	34.598 ^d	34.786 ^d	34.666⁴	0.212ª	28.77
	120	31.734°	31.854 ^{cd}	32.194⁴	39.544 ^b	32.074 ^{cd}	32.914 ^e	0.135^{a}	28.63
	Mean	25.880	25.770	26.040	27.970	27.490	28.730	0.280	23.17

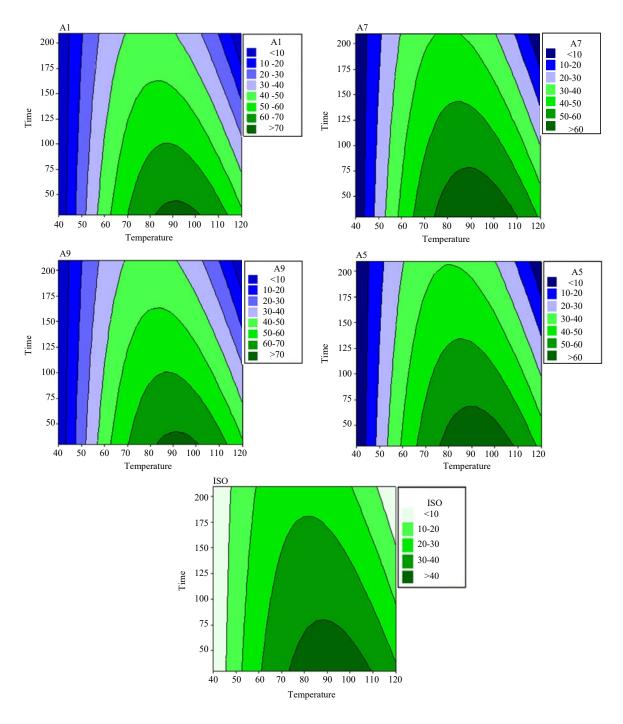


Fig. 2: Contour plots of oil yield, extraction temperature and time for *Desmodesmus armatus* (A1), *Desmodesmus subspicatus* (A7), *Chlorella lewinii* (A9), *Dictyosphaerium* sp. (A5) and *Cosmarium* sp. (ISO)

Extraction temperature and time significantly affected microalgae oil yield and oil properties. *Desmodesmus armatus* gave an optimum oil yield of 72.62% at 92.53°C, whereas *Cosmarium* sp. produced the least oil yield of 45.53% at 91.72°C, after optimization (Fig. 2). The mean oil yield values for all the species were higher than their average mean,

except for *Cosmarium* sp. that had relatively lower value (Fig. 3).

The OY of *Desmodesmus armatus* was higher than that of 56.31% from *Chrysophy*, 45.6% from *Chlorella protothecoides* earlier reported by Wang *et al.*²⁷ and 63.78% from *Chrysophy* and *Chlorella* sp. reported by

٠.
Ψ
<u>a</u>
O
æ
Õ
Ξ.
O
:=
┶
_
⊱
\overline{c}
\simeq
Ŧ
\overline{a}
~
Φ
:=
\sim
≔
0
\subseteq
≍
0
Φ
č
nd time on oi
Ή.
_
∇
⊏
a
real
Æ
=
≠
æ
_
Φ
α
9
m
emp
Ŧ
Ŧ
Ŧ
of t
ts of t
cts of t
ts of t
ffects of t
cts of t
effects of t
ffects of t
ne effects of to
the effects of to
f the effects of to
the effects of to
f the effects of to
ry of the effects of to
f the effects of to
ry of the effects of to
ry of the effects of to
ry of the effects of to
mmary of the effects of t
ry of the effects of to
mmary of the effects of t
: Summary of the effects of t
7: Summary of the effects of t
: Summary of the effects of t
le 7: Summary of the effects of t
ble 7: Summary of the effects of t
le 7: Summary of the effects of t

Parameters	Source of variation	Dξ	SS	WS	F _{cal}	F _{tab}
Effect of extraction time on oil yield	Time	9	157296.216	26216.036	30600.000	5.09
Effect of extraction temperature on oil yield	Temperature	4	181517.249	45379.312	52970.000	2.37
Effect of microalgae on oil yield	Microalgae	4	26398.366	6599.591	77040.000	2.37
Effect of interaction of extraction time and temperature on oil yield	Time×Temperature	24	36485.635	1520.235	17750.000	1.52
Effect of interaction of extraction time and microalgae on oil yield	Time×Microalgae	24	3985.592	166.066	193.861	1.52
Effect of interaction of extraction temperature and microalgae on oil yield	Temperature $ imes$ Microalgae	16	4158.129	259.883	303.380	1.68
Effect of interaction of extraction time, temperature and microalgae on oil yield	$Time\! ime\!XTemperature\! ime\!XMicroalgae$	96	1519.204	15.825	18.474	1.00
Error	Error	700	599.638	0.859		
Total	Total	874	411960.027			

Table 8: Mean values of the effect of extraction temperature (°C) on oil properties for Desmodesmus armatus (A1)

	Microal	Microalgae species/Oi		extraction temperature (°C)	rature (°C)										
	Desmo	Desmodesmus armatus (A1)	ətus (A1)			Desmoc	Desmodesmus subspicatus (A7)	picatus (A7	(Chlorella l.	Chlorella lewinii (A9)			
	Oil extra	Oil extraction temperature (°C)	erature (°C	(Oil extra	Oil extraction temperature (°C	erature (°C)			Oil extract.	Oil extraction temperature (°C)	ature (°C)		
Oil properties	40	09	80	100	120	40	09	80	100	120	40	09	80	100	120
Density (g cm $^{-3}$)	0.92ª	0.918ª	0.9174ª	0.92ª	0.924ª	0.92ª	0.922ª	0.921ª	0.924ª	0.918ª	0.922a	0.918ª	0.918ª	0.922ª	0.918 _a
Kinematic viscosity (Cst)	27.56^{a}	28.254	28.306 ^a	27.421ª	27.96ª	27.56^{a}	, ,		27.821ª	30.661 ^b	27.58a	28.274ª	28.326a	27.441ª	30.083
Acid value (mg KOH g^{-1})	0.561	0.561	0.673 ^b	0.900€	0.565a	0.561ª		0.677 ^b	0.899€	0.899€	0.563	0.563	0.675 ^b	0.897⁵	0.897 _c
Oleic acid value (mg KOH $\rm g^{-1}$)	0.281	0.281ª	0.337 ^b	0.449€	0.285ª	0.281ª	0.285^{a}		0.453€	0.453€	0.301ª	0.301	0.357a	0.469^{b}	$0.469_{\rm b}$
Ash content (%)	0.0054	0.0062^{ab}	0.0065 ^b	0.0064^{b}	0.0058^{a}	0.0054			0.0068ab	0.0080⁰	0.0056	0.0064ª	0.0067ª	0.0066^{a}	0.0078 _a
lodine value (g/100 g)	119.7€		119.5bc	118.68^{a}	119.74⁵	119.7€			118.72ª	118.64ª	119.72 ^{bc}	119.34b	119.52 ^b	118.7a	118.62 _a
Hydroxyl value (g/mole)	0.21⁴	$0.162^{\rm bc}$	0.18 ^{cd}	0.13^{ab}	0.214 ^b	0.21⁴			0.13ª	0.15a	0.212⁴	0.164bc	0.182 ^{cd}	0.13 ^{ab}	0.112 _a
Saponification value (mg KOH g ⁻¹)	178.58 ^d		173.91€	170.16^{b}	178.78 ^d	178.58 ^d			170.36 ^b	166.63ª	178.604⁴	173.93⁵	173.93⁵	170.18 ^b	166.65 _a
Flash point (°C)	221ª	220ª	220ª	221ª	221.4ª	221ª			221.4ª	226 ^b	221.2ª	220.2ª	220.2ª	221.2ª	$225.8_{\rm b}$
Pour point (°C)	-2a	-2ª	-2a	-2ª	-2.04ª	-2 _a			-2.04ª	-2.04ª	-2.02ª	-2.02ª	-2.02ª	-2.02ª	-2.02 _a
Cloud point (°C)	_e &	-6a	_e ~	-8 _a	-8.4ª	_e &			-8.4₃	-8.52ª	-8.2ª	-9.2ª	-8.2ª	-8.2ª	-8.32 _a
Fire point (°C)	241.6 ^b	239.74ª	241 ^{ab}	240ab	241.64ª	241.6 ^b			240.4ª	240.4ª	241.8 ^b	239.94ª	241 ^{ab}	240.2 _{ab}	240.2_{ab}
Boiling point (°C)	24ª	36 _b	54€	52€	24.04ª	24ª			52.04€	68.04⁴	24.2ª	36.2 ^b	54.2€	52.2€	68.2 _d
Heating/calorific value (33300) (kJ kg ⁻¹)	1.001 ^a	1.002⁴	1.003€	1.002 ^b	1.002ª	1.001ª			1.002 ^b	1.002€	1.002ª	1.002 ^d	1.003€	1.002 ^b	$1.002_{\scriptscriptstyle c}$
Cetane number	49.73ª	50.82 ^b	50.78 ^b	51.67€	50.13ª	49.73ª			52.07bc	53.06€	49.93ª	51.02 ^b	20.98₺	51.87€	52.66 _d
Sulfur content (mg kg ⁻¹)	1.397 ^a	1.44ª	1.385ª	1.318 ^a	1.437ª	1.397a			1.318ª	1.327a	1.399⁴	1.46ª	1.387ª	1.318ª	1.327 _a
Peroxide value (mg kg $^{-1}$)	2.863 ^e	2.783€	2.766 ^b	2.806⁴	2.903 ^b	2.863°			2.826 ^b	2.458a	2.865⁴	2.787bc	2.768 ^b	2.808€	2.438a
Moisture content (% wet basis)	0.513 ^d	0.449€	0.368ª	0.427 ^b	0.553 ^b	0.513 ^d	0.489^{ab}		0.467^{ab}	0.457^{ab}	0.515 ^d	0.451⁴	0.37a	0.429 ^b	0.419♭

Table 8: Continue

	Microalgae s	Microalgae species/Oil extraction temperature (°C)	ion temperature	(o _c)						
	Dictyosphaerium	erium sp. (A5)				Cosmarium sp. (ISO)	, sp. (ISO)			
	Oil extractio	Oil extraction temperature (°C)	(Oil extractic	Oil extraction temperature (°C)	(),		
Oil properties	40	09	80	100	120	40	09	80	100	120
Density (g cm $^{-3}$)	0.926ª	0.919ª	0.918ª	0.924ª	0.919ª	0.928ª	0.919ª	0.918ª	0.928°	0.919ª
Kinematic viscosity (Cst)	28.16ª	28.854ª	28.906ª	28.021ª	30.663ª	28.36ª	29.054ª	29.106ª	28.221ª	30.863
Acid value (mg KOH g^{-1})	0.567ª	0.567a	0.674 ^b	0.903⁵	0.903€	0.569ª	0.569ª	0.681 ^b	0.905€	0.905€
Oleic acid value (mg KOH g^{-1})	0.287 ^a	0.287^{a}	0.343 ^b	0.455€	0.455€	0.361	0.361ª	0.417 ^a	0.529ª	0.529ª
Ash content (%)	0.0055^{a}	0.0063ab	0.0066 ^b	0.0065 ^b	0.0077	0.0055	0.0063ab	0.0066 ^b	0.0065 ^b	0.0077
lodine value (g/100 g)	119.76^{a}	119.52ª	119.7ª	119.28ª	119.2ª	119.78	119.4 ^b	119.58 ^{bc}	118.76ª	118.68^{a}
Hydroxyl value (g/mole)	0.216^{a}	0.168	0.186^{a}	0.13 ^a	0.17 ^a	0.29ª	0.242ª	0.26ª	0.13ª	0.19ª
Saponification value (mg KOH g ⁻¹)	178.664⁴	173.97€	173.97€	170.22 ^b	166.49ª	178.66 ^d	173.99⁵	173.33⁵	170.24 ^b	166.51a
Flash point (°C)	221.60ª	220.6^{a}	220.6ª	221.6^{a}	226.6 ^b	221.8ª	220.8ª	220.8ª	221.8ª	226.4 ^b
Pour point (°C)	-2.06a	-2.06^{a}	-2.06^{a}	-2.2ª	-2.06^{a}	-2.08^{a}	-2.08a	-2.08a	-2.08a	-2.08ª
Cloud point (°C)	-8.06ª	-9.06ª	-8.06^{a}	-8.06⁴	-8.18ª	-8.8 _a	-9.8 _a	-8.8 _a	-8.8 _a	-8.92ª
Fire point (°C)	241.66^{a}	239.8	241.06^{a}	240.06ª	240.06^{a}	242.4ª	240.54ª	241.8ª	240.8ª	240.8ª
Boiling point (°C)	24.60⁴	36.6 ^b	54.6⁵	52.6⁵	68.6 ^d	24.8ª	36.8 ^b	54.8⁵	52.8 ^c	68.8 _d
Heating/calorific value (33300) (kJ kg ⁻¹)	1.002ª	1.002⁵	1.003⁴	1.002 ^b	1.002 ^b	1.002ª	1.002⁵	1.003⁴	1.002 ^b	1.002 ^b
Cetane number	50.33^{a}	51.42bc	51.38bc	52.27bc	53.06°	49.81	50.9⁵	50.86 ^b	51.75€	52.54€
Sulfur content (mg kg ⁻¹)	1.398ª	1.446ª	1.386^{a}	1.318ª	1.33^{a}	1.398ª	1.448ª	1.386^{a}	1.318ª	1.327ª
Peroxide value (mg kg $^{-1}$)	2.923 ^b	2.843 ^b	2.826^{b}	2.866 ^b	2.478ª	2.943 ^b	2.863 ^b	2.846⁵	2.886 ^b	2.498⁴
Moisture content (wet basis (%))	0.513 ^e	0.450 ^d	0.369⁴	0.428€	0.418 ^b	0.514^{a}	0.450 ^b	0.369€	0.428⁴	0.418 ^e
		, , , , , , , , , , , , , , , , , , ,	and a state of the second			(L 14	£			

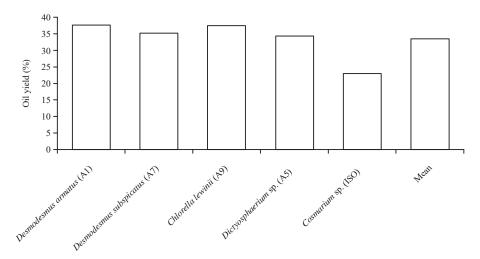


Fig. 3: Oil yield (grand mean) from the various microalgae species at different extraction temperatures and times

Zhou et al.²⁸. Oil yield of *Desmodesmus subspicatus* (54.5%) was slightly better than that Chlorella vulgariss (52.5%) reported by Araujo et al.²⁹. However, Desmodesmus subspicatus maximum OY was slightly lower than the value of 65.2% recorded for *Chlorella protothecoides*¹⁴. The maximum OY for Chlorella lewinii (57.03%) at 80°C after extraction time of 180 min was clearly within the range of values of total recovered oil (14-76%) for four different species of microalgae (Isochrysis galbana, Nannochloropsis gaditana, Nannochloropsis sp. and Phaeodactylum tricornutum) earlier reported by Ryckebosch et al. 30, depending on type of species and solvent used. Seo et al.³¹ had earlier reported a maximum OY of 30% for microalgae enhance with florescent-painted lighting source while Drira et al.32 reported a fourfold oil yield for microalgae cultivated in a PBR subjected to osmotic stress.

The maximum oil yield of 53.108% for *Dictyosphaerium* sp. at temperature of 80°C after extraction time of 180 min was very high, compared to Shankar *et al.*³³, who had earlier reported a 1.86 and 1.72 folds higher OY for *Chlorella* and *Chlorococcum* sp. respectively, using protic ionic liquid assisted cell disruption method as against the conventional (traditional) solvent extraction method. This value was also higher than the OY value of 33.9% for microalgae at 40° C and 35 Mpa reported by Tang *et al.*³⁴ using supercritical CO₂ extraction (SCCO₃).

Despite the generally low oil content of *Cosmarium* sp. compared to the four other species studied, maximum OY of 39.544% was obtained at 120°C after 120 min of extraction time. This value was clearly higher than the average oil yield of 5.8% reported by Pohndorf *et al.*³⁵ (2016) for *Spirulina* sp. and also higher than the value of 0.0346% reported for Nannochloropsis sp. by Pradana *et al.*³⁶.

The OD values from the results were in line with the value (0.92 g cm³) earlier reported by Kumar and Sharma¹⁷. The OD results also showed that microalgae oil was denser than the oil of fresh water microalgae specie isolated from Nike lake Enugu, Nigeria (0.892 g cm⁻³)8, less dense than the value of 1.305 g cm⁻³ earlier reported by Stanley et al.¹⁶ for marine microalgae. The KV values at 5 temperature levels for the microalgae ranged between 27.421-30.863 cSt at temperature range of 40-120°C. This range of values was lower than the values of 59.1, 62.3 and 52.7 cSt for M. aeruginosa, Trichormus sp. and Synechococcus sp., respectively reported by Da Ros et al.10, slightly lower than the value of 39 Centistoke (cSt) internationally accepted for biodiesel oil and less viscous (33.06 cSt) than the values reported by Kumar and Sharma¹⁷ and Chen et al.¹³ at an extraction temperature of 40°C. The KV values for the microalgae species were quite more than the ranges for the nonrenewable fossil fuel, which was 2-4.5 cSt at 40°C³⁷, higher than the values of 6.65 cSt reported for neem seed oil³⁸ and lower than the range of values of 41.52 to 47.83 cSt, at temperature range of 40-80°C, reported for Jatropha curcas L. by Asoiro and Akubuo³⁹. The KV of the oil of the microalgae species were found to be lower than those of rapeseed oil (45.01 cSt) as reported by Lang et al.40 and coconut oil at room temperature (43.30 cSt) as observed by Alamu et al.41. However, oil samples from some of the microalgae species were relatively greater than values reported by Kumar et al.42 for coconut oil (27.23 cSt) and linseed oil (22.4 cSt), documented by Belewu et al.43 and Lang *et al.*⁴⁰ respectively.

Very high KV creates injector and engine problems as a result of poor oil feeding and some deposit which could be ameliorated by transesterification and by blending. The low KV

values of microalgae revealed that it is quite suitable for biodiesel purposes, even without blend with other fuel types.

The AVs at the different temperatures were generally lower than that of coconut oil (9.537 mg KOH g $^{-1}$) and groundnut oil (3.82 mg KOH g $^{-1}$) as earlier documented by Opoku-Boahen *et al.*⁴⁴, lower than palm kernel seed oil (0.834 mg KOH g $^{-1}$) and almond oil (0.770 mg KOH g $^{-1}$) as reported by Afolabi⁴⁵. Similarly, the values were also lower than that reported by Kumar *et al.*⁴² for coconut oil (2.1 mg KOH g $^{-1}$) but slightly higher than that of castor seed oil (0.279 mg KOH g $^{-1}$) *Desmodesmus armatus* recorded the least AC (0.0054%) at 40°C. *Desmodesmus subspicatus* oil had the highest AC value of 0.0080% at 120°C.

The mean IV at all the 5 temperature levels for the microalgae species was the same as the value (119.1 g I₂/100 g) earlier presented by Kumar and Sharma¹⁷, slightly above the value of 112.2 g I₂/100 g reported for *Chlorella protothecoides* oil by Chen *et al.*¹³ and value range of 57-100 g I₂/100 g for Cyanobacteria earlier reported by Da Ros *et al.*¹⁰, However all the IVs were within the allowable international and European Standard limit, UNE-EN 14214 (100-200g/100g) for iodine in bio-oil products used for biodiesel purposes.

HV of the oil at 40 and 120°C extraction temperatures were not significant. Equally, 40 and 100°C were also not significant.

Virtually all the species of the microalgae at different temperatures had low SV (166.43-178.784 mg KOH g $^{-1}$) but slightly higher than the value of 152 mg KOH g $^{-1}$ reported by Kumar and Sharma 17 . This was clearly in conformity with the value (173.56 mg KOH g $^{-1}$) earlier reported by Stanley *et al.* 16 for marine microalgae. However, SV of microalgae investigated were relatively low compared to the slightly high value range (203-213 mg KOH g $^{-1}$) earlier reported by Da Ros *et al.* 10 for Cyanobacteria.

The FP values were found to be low, compared to values reported by Kumar *et al.*⁴² for coconut oil (266°C) and sunflower oil (274°C) as observed by Shereena and Thangaraj⁴⁶ but were higher than those of Babassu (150°C) as reported by Shereena and Thangaraj⁴⁶. The CP values were low, compared to that of peanut oil (12.8°C), palm oil (31°C) and safflower oil (18.3°C) as reported by Shereena and Thangaraj⁴⁶. PP values were much higher than those reported by Kumar *et al.*⁴² for coconut (-6°C) and soya bean (12.2°C).

Kumar and Sharma¹⁷ had earlier reported a CV of 41000 KJ kg^{-1} for microalgae oil, different from CV values for *Chlorella lewinii* oil of 33393.41 and 33363.27 at 80 and 40°C, respectively. The CV is an important property of the biodiesel

that determines the suitability of the fuel as an alternative diesel fuel⁴⁷.

The mean values of CN for the microalgae species were far better than the value (51) reported by Kumar and Shamar¹⁷. An appropriate cetane number is required for good engine performance. The higher the CN, the better the ignition property as it ensures good cold start properties and minimizes the formation of white smoke⁴⁸. The CN of the oil were generally higher than those of conventional diesel, animal fats and vegetable oils⁴⁹.

The PV of the five different species of microalgae oil at various temperatures and times, were generally low but slightly higher than the value of 1 ± 0.007 Meq kg $^{-1}$ reported by Kumar and Sharmar 17 . This low value of the oil shows that the oil is ideal for consumption, storage and other industrial purposes. Earlier, Garba *et al.*²² had reported a higher value of 7.2 meg g $^{-1}$ for *Jatropha curcal* L. oil.

The MC (%, wb) varied as extraction temperature increased from 40-120 °C. This pattern was so for all the microalgae species studied. It was glaring from the investigation that extraction temperature and time had significant effects on both oil yield and oil properties for the indigenous microalgae species studied. It is therefore recommended for future studies that effects of other process parameters on oil yield and properties, like pressure, moisture content, particle size, type of solvent and solvent/ biomass ratio on other microalgae species of indigenous locality should be investigated.

CONCLUSION

Growth rate and specific growth rate for the mixotrophic cultivation (i.e., with glucose) were higher than that of the autotrophic (i.e., without glucose) for the microalgae species investigated. Extraction temperature and time had significant effect on oil yield and properties with largely promising attributes that makes it a suitable 3rd Generation alternative feedstock for biodiesel purposes. *Desmodesmus armatus* gave an optimum oil yield of 72.62% at 92.53°C, whereas *Cosmarium* sp. produced the least oil yield of 45.53% at 91.72°C.

SIGNIFICANCE STATEMENT

This study discovered the potential of indigenous fresh water microalgae species isolated from pool of water in Nsukka, Nigeria, with high growth rate, oil yield and promising oil properties. The oil yield and properties could be optimized

by varying process parameters, which would be beneficial as 3rd generation alternative feedstock for the fast-emerging biodiesel industry. This study will help the researchers and industrialists to uncover the critical areas of some process parameters affecting microalgae growth rate, oil yield and oil properties, that many researchers were not able to explore. Thus, a new theory on greener energy may be arrived at.

ACKNOWLEDGMENT

The authors are greatly indebted to the authorities of the Department of Agricultural and Bioresources Engineering and the Department of Plant Science and Biotechnology, University of Nigeria, Nsukka for making their laboratory and facilities available for this research.

REFERENCES

- Abinandan, S. and S. Shanthakumar, 2015. Optimization of process parameters for CO₂ fixation from bicarbonate source by a microalgae. J. Environ. Sci. Technol., 8: 289-299.
- 2. Zhao, B. and Y. Su, 2014. Process effect of microalgal-carbon dioxide fixation and biomass production: A review. Renew. Sustain. Energy Rev., 31: 121-132.
- Pires, J.C.M., F.G. Martins, M.C.M. Alvim-Ferraz and M. Simoes, 2011. Recent developments on carbon capture and storage: An overview. Chem. Eng. Res. Des., 89: 1446-1460.
- 4. Wiyarno, B., R.M. Yunus and M. Mel, 2011. Extraction of algae oil from *Nannocloropsis* sp.: A study of soxhlet and ultrasonic-assisted extractions. J. Applied Sci., 11: 3607-3612.
- Wu, J., M.A. Alam, Y. Pan, D. Huang, Z. Wang and T. Wang, 2017. Enhanced extraction of lipids from microalgae with eco-friendly mixture of methanol and ethyl acetate for biodiesel production. J. Taiwan Inst. Chem. Eng., 71: 323-329.
- Islam, M.A., R.J. Brown, I. O'Hara, M. Kent and K. Heimann, 2014. Effect of temperature and moisture on high pressure lipid/oil extraction from microalgae. Energy Convers. Manage., 88: 307-316.
- 7. Liauw, M.Y., F.A. Natan, P. Widiyanti, D. Ikasari, N. Indraswati and F.E. Soetaredjo, 2008. Extraction of Neem oil (*Azadirachta indica* A. Juss) using n-hexane and ethanol: Studies of oil quality, kinetic and thermodynamic. ARPN J. Eng. Applied Sci., 3: 49-54.
- Ejim, I.F. and F.L. Kamen, 2013. Physiochemical characterization of algae oil from microalgae of Nike Lake Enugu. J. Eng. Applied Sci., 5: 181-187.
- Sanjay, K.R., P.M. Nagendra, S. Anupama, B.R. Yashaswi and B. Deepak, 2013. Isolation of diatom *Navicula cryptocephala* and characterization of oil extracted for biodiesel production. Afr. J. Environ. Sci. Technol., 7: 41-48.

- Da Ros, P.C.M., C.S.P. Silva, M.E. Silva-Stenico, M.F. Fiore and H.F. De Castro, 2013. Assessment of chemical and physico-chemical properties of cyanobacterial lipids for biodiesel production. Mar. Drugs, 11: 2365-2381.
- 11. Song, D., J. Fu and D. Shi, 2008. Exploitation of oil-bearing microalgae for biodiesel. Chin. J. Biotechnol., 24: 341-348.
- Bordoloi, N., R. Narzari, D. Sut, R. Saikia, R.S. Chutia and R. Kataki, 2016. Characterization of bio-oil and its sub-fractions from pyrolysis of *Scenedesmus dimorphus*. Renew. Energy, 98: 245-253.
- Chen, Y.H., B.Y. Huang, T.H. Chiang and T.C. Tang, 2012. Fuel properties of microalgae (*Chlorella protothecoides*) oil biodiesel and its blends with petroleum diesel. Fuel, 94: 270-273.
- 14. Zeb, H., J. Park, A. Riaz, C. Ryu and J. Kim, 2017. High-yield bio-oil production from macroalgae (*Saccharina japonica*) in supercritical ethanol and its combustion behavior. Chem. Eng. J., 327: 79-90.
- 15. Rahman, M.A. and K. Nahar, 2016. Production and characterization of algal biodiesel from *Spirulina maxima*. Global J. Res. Eng., 16: 34-39.
- Stanley, S.A., M.R.A. Padmanabhan and A.S. Anitha, 2010. Studies on the extraction and characterisation of microalgal oil. Natl. J. ChemBiosis, 1: 1-3.
- 17. Kumar, M. and M.P. Sharma, 2014. Potential assessment of microalgal oils for biodiesel production: A review. J. Mater. Environ. Sci., 5: 757-766.
- 18. Kanda, H., P. Li, T. Ikehara and M. Yasumoto-Hirose, 2012. Lipids extracted from several species of natural blue-green microalgae by dimethyl ether: Extraction yield and properties. Fuel, 95: 88-92.
- Ogbonna, J.C., 2013. Industrial Biotechnology: Fundamentals and Bioprocess Engineering for Biotechnological Production of Useful Metabolites. ISEBU Printing and Publishing Company Amakubo, Tsukuba, Japan, ISBN: 978-4-900626-12-6, Pages: 434.
- AOAC., 2006. AOAC Official Method 990.03, Protein (Crude) in Animal Feed, Combustion Method. In: Official Methods of Analysis of AOAC International, AOAC (Eds.). 18th Edn., Rev. 1, Chapter 4, ASA-SSA Inc., Gaithersburg, MD., USA., pp: 30-31.
- AOCS., 1998. Official Method Cd 8-53: Peroxide Value-Acetic Acid-Chloroform Method. In: Official Methods and Recommended Practices of the AOCS, Firestone, D. (Ed.). 5th Edn., American Oil Chemists' Society, Champaign, IL., USA., ISBN: 9780935315974.
- 22. Garba, Z.N., C.E. Gimba and P. Emmanuel, 2013. Production and characterisation of biobased transformer oil from *Jatropha curcas* seed. J. Phys. Sci., 24: 49-61.
- 23. El-Refaie, E.S.M.M., M.R. Salem and W.A. Ahmed, 2009. Prediction of the characteristics of transformer oil under different operation conditions. World Acad. Sci. Eng. Technol., 29: 758-762.

- Akbar, E., Z. Yaakob, S.K. Kamarudin, M. Ismail and J. Salimon, 2009. Characteristic and composition of *Jatropha curcas* oil seed from Malaysia and its potential as biodiesel feedstock. Eur. J. Scient. Res., 29: 396-403.
- 25. Dijkstra, A.J. and M. Van Opstal, 1987. Process for producing degummed vegetable oils and gums of high phosphatidic acid content. U.S. Patent No. 4,698,185, October 6, 1987. https://patents.google.com/patent/US4698185A/en
- 26. Asoiro, F.U. and V.C. Okonkwo, 2016. Effect of pH on oil extraction from *Chlorella* spp. Pac. J. Sci. Technol., 17: 229-240.
- 27. Wang, Y., B. He, Z. Sun and Y.F. Chen, 2016. Chemically enhanced lipid production from microalgae under low sub-optimal temperature. Algal Res., 16: 20-27.
- 28. Zhou, D., B. Qiao, G. Li, S. Xue and J. Yin, 2017. Continuous production of biodiesel from microalgae by extraction coupling with transesterification under supercritical conditions. Bioresour. Technol., 238: 609-615.
- Araujo, G.S., L.J.B.L. Matos, J.O. Fernandes, S.J.M. Cartaxo, L.R.B. Goncalves, F.A.N. Fernandes and W.R.L. Farias, 2013. Extraction of lipids from microalgae by ultrasound application: Prospection of the optimal extraction method. Ultrason. Sonochem., 20: 95-98.
- 30. Ryckebosch, E., C. Bruneel, R. Termote-Verhalle, K. Muylaert and I. Foubert, 2014. Influence of extraction solvent system on extractability of lipid components from different microalgae species. Algal Res., 3: 36-43.
- 31. Seo, Y.H., C. Cho, J.Y. Lee and J.I. Han, 2014. Enhancement of growth and lipid production from microalgae using fluorescent paint under the solar radiation. Bioresour. Technol., 173: 193-197.
- 32. Drira, N., N. Dhouibi, S. Hammami, A. Piras, A. Rosa, S. Porcedda and H. Dhaouadi, 2017. Fatty acids from high rate algal pond's microalgal biomass and osmotic stress effects. Bioresour. Technol., 244: 860-864.
- 33. Shankar, M., P.K. Chhotaray, A. Agrawal, R.L. Gardas, K. Tamilarasan and M. Rajesh, 2017. Proticionic liquid-assisted cell disruption and lipid extraction from fresh water *Chlorella* and *Chlorococcum* microalgae. Algal Res., 25: 228-236.
- 34. Tang, S., C. Qin, H. Wang, S. Li and S. Tian, 2011. Study on supercritical extraction of lipids and enrichment of DHA from oil-rich microalgae. J. Supercrit. Fluids, 57: 44-49.
- 35. Pohndorf, R.S., A.S. Camara, A.P.Q. Larrosa, C.P. Pinheiro, M.M. Strieder and L.A.A. Pinto, 2016. Production of lipids from microalgae *Spirulina* sp.: Influence of drying, cell disruption and extraction methods. Biomass Bioenergy, 93: 25-32.

- Pradana, Y.S., Y. Kusumastuti, F.N. Rahma and N. Effendy, 2017. Chitosan flocculation-sedimentation for harvesting selected microalgae species grown in monoculture and mixed cultures. Chem. Eng. Trans., 56: 1549-1554.
- 37. Mittelbach, M. and C. Remschmidt, 2004. Biodiesels-The Comprehensive Handbook. Martin Mittelbach Publisher, Graz, Austria.
- 38. Singh, V.K., A.B. Soni, S. Kumar and R.K. Singh, 2014. Pyrolysis of sal seed to liquid product. Bioresour. Technol., 151: 432-435.
- 39. Asoiro, F.U. and C.O. Akubuo, 2011. Effect of temperature on oil extraction of *Jatropha curcas* L. kernel. Pac. J. Sci. Technol., 12: 456-463.
- 40. Lang, X., A.K. Dalai, N.N. Bakhshi, M.J. Reaney and P.B. Hertz, 2001. Preparation and characterization of bio-diesels from various bio-oils. Bioresour. Technol., 80: 53-62.
- 41. Alamu, O.J., O. Dehinbo and A.M. Sulaiman, 2010. Production and testing of coconut oil biodiesel fuel and its blend. Leonardo J. Sci., 9: 95-104.
- 42. Kumar, G., D. Kumar, S. Singh, S. Kothari, S. Bhatt and C. Singh, 2010. Continuous low cost transesterification process for the production of coconut biodiesel. Energies, 3: 43-56.
- 43. Belewu, M., F. Adekola, G. Adebayo, O. Ameen and N. Muhammed *et al.*, 2010. Physico-chemical characteristics of oil and biodiesel from Nigerian and Indian *Jatropha curcas* seeds. Int. J. Biol. Chem. Sci., 4: 524-529.
- 44. Opoku-Boahen, Y., S. Azumah, S. Apanyin, B.D. Novick and D. Wubah, 2012. The quality and infrared determination of trans-fatty acid contents in some edible vegetable oils. Afr. J. Food Sci. Technol., 3: 142-148.
- 45. Afolabi, I.S., 2008. Chemical qualities of oils from some fresh and market vegetable crops within Kwara State of Nigeria. Biokemistri, 20: 71-75.
- 46. Shereena, K.M. and J. Thangaraj, 2009. Biodiesel: An alternative fuel produced from vegetable oils by transesterification. Electron. J. Biol., 5: 67-74.
- 47. Sokoto, M.A., L.G. Hassan, S.M. Dangoggo, H.G. Ahmad and A. Uba, 2011. Influence of fatty acid methyl esters on fuel properties of biodiesel produced from the seeds oil of *Curcubita pepo*. Niger. J. Basic Applied Sci., 19: 81-86.
- 48. Meher, L.C., D.V. Sagar and S.N. Naik, 2006. Technical aspects of biodiesel production by transesterification-A review. Renewable Sustainable Energy Rev., 10: 248-268.
- 49. Bala, B.K., 2005. Studies on biodiesels from transformation of vegetable oils for diesel engines. Energy Educ. Sci. Technol., 15: 1-43.