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This study surveys deformable curves (active contours) with the aim of
wdentifying a suitable type of deformable curve for the task of chromosome image
segmentation. Deformable curves offer a unique and powerful approach to
in electronic format. segmentation. They are capable of accommodating variability of biological
structures. Deformable curves also support interactive mechanisms that permit
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INTRODUCTION

Medical imaging allows scientists to view anatomical
structures within the human body n a non-invasive way.
The technological advances within medical mmaging and
medical image analysis had a great impact on medicine,
both climcal and research applications. It has expanded
beyond simple visualization of anatomic structures and
become a tool in surgical planming and simulation, intra-
operative navigation, diagnosis, tracking the progress of
a disease, etc. The problem of extracting meaningful
information from images is one of the most important and
challenging problem n image analysis.

Segmentation is thus a fundamental problem in
human and computer vision. Low-level segmentation by
the human visual system has been explained by numerous
theories, most remarkably by Marr and Hildreth!"!. There
are many theories in computer vision based on edge
detection, that have led to the development of mmage
segmentation algorithms, like the canny edge detector™.
These image segmentation algorithms consider only local
information around each pixel and though they perform
well, they are unable to provide descriptions of image
features that are required by high-level processes and
human users of interactive systems. Even if they are able
to provide descriptions of image features to high-level
processes, mistakes and errors are propagated without
any facility for correction. A better strategy to avoid error
propagation is to provide several interpretations of image
data, from which a high-level process or human user can
choose.  Deformable models provide one way of
generating these altematives and model-based vision 1s
now firmly established as a robust method for automatic
segmentation even in challenging situations.

Deformable models generally make some assumption
about the shape of the features being modeled™. One of
the key issues in the formulation of deformable models is
the model specificity - a deformable model should be able
to accommodate the range of variation found in the
objects that it will represent, but at the same time, it
should not be too flexible or too constrained. Deformable
models interact with images m a dynamic manner. An
energy functional is defined to give a measure of fit
between the model and image. The model 1s given some
mitial parameters, which are then updated by an energy
minimization algorithm. This process drives the model
toward salient image features. Almost all deformable
models perform some kind of edge detection initially. In
this study, a review of deformable models was done from
the perspective chromosome  image
segmentation.

of human
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DEFORMABLE MODELS

This review is constrained to chromosome image
segmentation and hence concentration 1s applied to
2D  deformable models called deformable curves or
Active Contours or Snakes. Montanari™ and Martelli”
ploneered the idea of edge detection by optimizing
models of curve contrast and smoothness. A major
breakthrough was developed active contour models or
Snakes!™.

An active contour or snake is an elastic curve driven
by energy generated from an image. A potential field is
generated by processing the image and the deformable
model is constrained to lie in this potential field. The
gradient of this image energy generates a spatially
varying force which makes the model active. Mimima in
the edge energy correspond to features such as lines or
terminations, although most active contour models use
some measure of edge energy. Active contours also
incorporate additional regularizing constraints™®, which
ensure that the models remain smooth and contimuous,
with limitations to the amount of bending. However, the
models incorporate no shape knowledge and hence are
free to take on any shape.

Figure 1 shows the movement of an active contour
from the initial position, through an intermediate position,
to the boundary or edge of the object by minimizing the
energy function govermng the formulation of the active
contour.

MATHEMATICAL FOUNDATIONS

The mathematical foundations of deformable models
represent the confluence o f geometry, physics and

Current snake s
H Minimuym
New snake Movement
—_—)

Fig. 1. Movement of deformable curve (or active contour
or snake) from initial position to boundary
(Courtesy: Ivins, JP.M)



J. Med. Sci., 5 (4): 363-370, 2005

approximation theory”. (Geometry serves to represent
object shape, physics imposes constraints on how the
shape may vary over space and time and optimal
approximation theory provides for the mechamsms for
fitting the models to measured data.

Deformable model geometry employ geometric
representations that mvolve many degrees of freedom,
such as splines. The degrees of freedom are governed by
physical principles that bestow meaningful behaviour
upon the geometric substrate and are not allowed to
evolve mdependently. Deformable models are viewed as
elastic bodies, which respond naturally to applied forces
and constraints. The name “Deformable models™ arises
from the use of elasticity theory at the physical level,
generally within a lagrangian dynamics setting. The
energy grows monotomcally as the model deforms away
from a specified rest shape, including terms that constrain
the smoothness or symmetry of the model. TIn the
lagrangian setting, the deformation energy gives rise to
elastic forces internal to the model.

Taking a physics-based approach of classical optimal
approximation, external potential energy functions are
defined in terms of the data of interest to which the model
15 to be fitted. These potential energies give rise to
external forces which deform the model such that it fits the
data.

The partial differential equation governing the active
contour model, has been implemented using implicit finite
difference method™, dynamic programming!?, finite
element method"'? and Fourier spectral method"”.
DEFORMABLE CURVE (ACTIVE

CONTOUR) FORMULATION

A deformable curve or active contour 1s a curved defined
within the domain of an image. The properties of the
active contour and its behaviour are specified by the
energy functional. A partial differential equation
controlling the snake causes it to evolve so as to reduce
the energy. The physical analogy can be extended and
the motion of the active contour can be viewed as an
influence of the simulated forces acting on it.

The edge map of the image can be viewed as a
landscape on which the active contour can slither. The
force acting on the active contour drives it across the
landscape attempting to reach the energy equilibrium.
The force has two components: one govermng the
behaviour of the active contour (preserving the original
shape and developing corners) and the other governing
the movement of the active contour. The curve should
approximate the boundary of the object of interest in the
image. The boundary can be recognized as low values of
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the negative edge map. Therefore, the equilibrium
equation should be formulated such that the curve tends
to mimmize the term mvolving the negative edge map, 1e.,
the potential energy of the dynamic system.

An active contour model can be represented by a
curve ¢, as a function of its arc length T,

(1) = [ X(T)J

y(T
with T =[0...1]. To define a closed curve ¢(0) is set to
equal c(1). A discrete model can be expressed as an
ordered set of nvertices v, = (x,y;)" with v=(v,,...,v,). The
large number of vertices required to achieve accuracy
could lead to high computational complexity and
numerical instability™. Mathematically, an active contour

(1)

model can be defined in discrete form as a curve
x=(s)=[x(s8), y(s), se[0,1] that moves through the spatial
domain of an image to minimize the energy functional:

1

1

E IE(G|X'(S)\2 +Bx"E) )+ E_, (x(s))ds 2
o

where, ¢ and P are weighting parameters that control the
active contour’s tension and rigidity, respectively!”. The
first order derivative discourages stretching and the
second order derivative discourages bending. The
weighting parameters of tension and rigidity, viz., ¢ and
B govern the effect of the derivatives on the snake. The
external energy function E.. 1s derived from the image so
that it takes on its smaller values at the features of interest
such as boundaries and guides the active contour
towards the boundaries. The external energy 1s defined
by :

E,. =k|G,(xy)*1(x.y)]| &
where, G,(x,y) 18 a two-dimensional Gaussian function
with standard deviation o, I(x,y) represents the inage and
K is the external force weight. This external energy is
specified for a line drawing (black on white) and positive
K 1s used. A motivation for applying some Gaussian
filtering to the underlying image 1s to reduce noise.

An active contour that minimizes E must satisfy the
Euler Eq.:

ax” (s)- Px" (5) - VE= O ()
where, F, = ax”(s) - px"7’(s) and F, = -VE,, comprise the
components of a force balance equation such that

F,

nt

+F.=0 (5)

The nternal force F,, discourages stretching and bending
while the external potential force F, drives the active
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contour towards the desired image boundary. Equation 4
is solved by making the active contour dynamic by
treating x as a function of time t as well as 5. Then the
partial derivative of x with respect to t 1s then set equal to
the left hand side of Eq. 4 as follows:

X (s.) = ax’ (5,0 - Bx" (5,00 - VE,, (6)
A solution to Eq. 6 can be obtamed by discretizing the
equation and solving the discrete system iteratively!'".
When the solution x(s,t) stabilizes, the term xs,t)
vanishes and a solution of Eq. 4 is achieved.

CLASSIFICATION OF ACTIVE CONTOURS

Active contour models can be classified according to
several criteria. They can be classified as free form and
limited form active contour models. In free form active
contour models!"'*'**! there is no global structure of the
contour, 1t 1s constramed only by continuty and
smoothness constraints. These models do not use aprion
information about the shape in a direct manner but use it
to adjust the model parameters so that the contour
possesses properties like elasticity and rigidness that
enable it to converge to the boundary of the object of
interest.

The limited form active contour models use apriori
mformation about the geometrical shape directly. This
information 1s available in the form of a sketch or a
parameter vector that encodes the shape of mnterest. The
geometric shape of the contour 1s adjusted by varying the
parameters. Limited form active contour models™ "
cannot take any arbitrary shape. The variability of the
shape is limited by the prototype template.

Active contour models can also be classified
according to the utilization of image information to align
the active contour with the object of interest. They can be
classified as region-based models and boundary-based
models. Region-based models derive a contour
representation from the segmentation of the image into
well-defined regions. Each pixel is examined to determme
whether the pixel is inside an object, outside the object, or
at the object boundary. A pixel belongs to the boundary
if 1t 13 1 the object region and has neighboring pixels in
the background. This segmentation is then used to
produce an image force field which aligns the active
contour with the object of interest.

Edge-based methods use a continuous approximation
of the original image intensity function so that the
boundary can be characterized by a differential property.
A pixel belongs to the boundary if it is a local maximum of
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the image gradient. Tn this boundary detection process,
the fact that these boundary points constitute a closed
geometric contour is not taken into account. Image force
field for the edge based methods 1s easily computed from
a potential energy function. In region based methods,
computation for the image force field 1s complicated as the
potential energy function cannot be used as it defines
orly boundaries and 1s therefore not a function m the
mmage plane which 1s required for the 1mage segmentation.
Hence, the scope of region based methods is limited.

Active contour models can also be classified as
parametric active contours and non-parametric active
contours. This classification can be ambiguous in some
cases. A parametric active contour is a contour that is
represented by a small number of parameters that capture
the shape of the object. If the parameterization 15 achieved
by expressing the curve in terms of a basis, where the
discrete function representing the curve 1s expressed as
a weighted sum of a set of known functions, distinction
between parametric and non-parametric contours 1s clear.

First, there 1s a parameter space different from the
physical space where the curve is initially defined.
Second, different bases give parameter spaces with
different properties and third, some of the operations that
are performed on the contour are can be defined in the
parameter space. Examples of such parameterizations are
fourier, B-spline and wavelet representation.

If on the other hand, the parameters are some
characteristic points on the contour 1 the physical space,
as it is the case in the point distribution model!™
no distinet parameter space. In addition, the parameter
vector 1s just a set of pomnts of the contour which are
sufficient do describe the shape of the curve. This set can

! there s

be extended to contain all contain all contour points
available if the shape is very complex. In this case, there
is no clear distinction between the parametric and non-
parametric representation.

Another classification can be made based on the
model definition framework as physical active contours
and statistical active contours. These two classes are
actually equivalent and they differ in mnterpretation of the
terms in the model!".

CHROMOSOME SPREAD IMAGES

Figure 2 shows a metaphase chromosome spread
image. The chromosome spread images were obtained
using the following general procedure. About 5 ml. of
blood was removed from the patient. Tf a fetus was being
karyotyped, ammictic fluid was removed from the amniotic
sac which surrounds the fetus during development. This
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Fig. 2: Metaphase chromosome spread image Fig. 5: Chromosome spread image sample
{Courtesy:http://aspin.asu.edu/geneinfo/genes. {(Courtesy: Dr. Ekaterina Detcheva)
htm)
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-— Fig. 6: Chromosome spread image sample (Courtesy:
- Wiscongin State Laboratory of Hygiene)
Fig. 3: Chromosome spread image sample was done with the aid of a large syringe and ultrasound
{Courtesy: Dr. Michael Difilippantonio) picturing. There were cells which have come off the fetus
in this fluid. The white blood cells were removed from the
blood or the living cells were removed from the amniotic
fluid. These cells are then cultured in a medium in which
‘\) they undergo mitosis. Mitosis iz stopped at metaphase
:‘.z - ‘\ uging colchicine (prevents mitotic spindle
—— ;'JP forming)™. Cells are centrifuged and lysed to release
— b J—"‘l"l-‘ " chromosomes. Chromosomes were then stained and
F " ‘- ....-:"..'% photographed. Figure 3-6 viewed under a microscope
f - "’..,"" s which was specially adapted with a camera to take a
‘ ,,/ {-f picture of the chromosomes from one of the cells™,
P
‘ CHARACTERISTICS OF CHROMOSOME SPREAD
IMAGES
Fig. 4: Chromosome spread image sample
{(Courtesy: Prof. Ken Castleman and Prof. The banding pattern present in the chromosomes
Qiang Wu) gives rize to higher conirast compared to the outer edges.
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This characteristic causes the segmentation technique to
misclassify the banding as a boundary.

The chromosome mmages in the chromosome spread
image have variability m shape and size due to the nature
of the spread image. Also, the spatial distribution of the
chromosomes is random accompanied by uneven spacing
between adjacent chromosomes. Hence, each
chromosome in a chromosome spread image becomes a
unique sample demanding unique values of the
parameters governing the segmentation scheme.

The small object size of the chromosomes causes
stringent requirements in the formulation of the
segmentation scheme for chromosome spread images.

The chromosomes in the spread image (at 72 pixels
per inch resolution) can have a minor axis length varying
between 13 and 50 pixels approximately and major axis
length varying between 23 and 130 pixels approximately.
This data specified for the axis length range is with
specific reference to the datasets made available for thus
study.

GRADIENT VECTOR FLOW ACTIVE CONTOURS

The characteristics of the chromosome spread images
when studied in conjunction with the different classes of
active contour models, suggest that parametric active
contour models would be a better choice as a suitable
segmentation tool for chromosome spread images.

Parametric active contours synthesize parametric
curves within an image domain and allow them to move
toward desired features, usually edges. Typically, the
curves are drawn toward the edges by potential forces,
which are defined to be the negative gradient of a
potential function. Additional forces, such as pressure
forces!'™, together with the potential forces comprise the
external forces. There are also internal forces designed to
hold the curve together (elasticity forces) and to keep it
from bending too much (bending forces).

There are two key difficulties with parametric active
contour algorithms. First, the mitial contour must in
general, be close to the true boundary or else it will likely
converge to the wrong result. Several methods have been
proposed to address tlus problem  mcluding
multiresolution methods, pressure forces and distance
potentials. The basic idea is to increase the capture range
of the external force fields and to guide the contour
toward the desired boundary. The second problem 1s that
active contours have difficulties progressing into
boundary concavities. There is no satisfactory solution to
this problem, although pressure forces, control points,
domain-adaptivity, directional attractions and the use of
solenoidal fields have been proposed. However, most of
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the methods proposed to address these problems solve
only one problem while creating new difficulties. For
example, multiresolution methods have addressed the
1ssue of capture range, but specifying how the snake
should move across different resolutions remains
problematic. Another example is that of pressure forces,
which can push an active contour ito boundary
concavities, but cammot be too strong or weak edges will
be overwhelmed. Pressure forces must also be initialized
to push out or push in, a condition that mandates careful
initialization™.

Gradient Vector Flow (GVF) active contours were
formulated to utilize the benefit of parametric active
contour formulation while at the same time to overcome
the difficulties posed by parametric active contour
formulationt™',

Gradient Vector Flow (GVF) active contours use
Gradient Vector Flow fields obtained by solving a vector
diffusion equation that diffuses the gradient vectors of a
gray-level edge map computed from the image. The GVF
active contour model cannot be written as the negative
gradient of a potential function. Hence it is directly
specified from a dynamic force equation, instead of the
standard energy mimimization network.

The external forces arising out of GVF fields are non-
congervative forces as they cannot be written as
gradients of scalar potential functions. The usage of non-
conservative forces as external forces show mnproved
performance of Gradient Vector Flow field active contours
compared to traditional energy-minimizing
contours!*'%,

The GVF field pomts towards the object boundary
when very near to the boundary, but varies smoothly
over homogeneous image regions extending to the image
border. Hence the GVF field can capture an active contour
from long range from either side of the object boundary
and can force it into the object boundary. The gradient
vectors are normal to the boundary surface but by
combining laplacian and gradient the result is not the
normal vectors to the boundary surface. As a result of
this, the GVF field yields vectors that point into boundary
concavities so that the active contour is driven through
the concavities. Hence, the GVF active contour model 1s
msensitive to the imtialization of the contour and it 1s able
to move into boundary concavities.

Information regarding whether the initial contour
should expand or contract need not be given to the GVF
active contour model. The GVF active contour model has
a large capture range. The GVF is very useful when there
are boundary gaps, because it preserves the perceptual
edge property of active comtours'™?. Also, the GVF
provides for flexible imtialization of the mitial contour.

active
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The GVF field is defined as the equilibrium sclution™"”
to the following vector diffusion equation,

u, = g(VF )V - h(|VF [)(u-VE)
u(x,0) =Vi(x)

(7a)
(7b)

where, u, denoctes the partial derivative of u(x,t) with
respect to t,V* is the laplacian operator (applied to each
spatial component of u separately) and f is an edge map
that has a higher value at the desired object boundary.
The functions in g and h control the amount of diffusion
in GVFE. InEq. 7, g([V{ |)Vu produces a smoocthly varying
vector field and hence called as the “smoocthing term”,
while h(|Vf [)(u-Vf) encourages the vector field u to be
close toV f computed from the image data and hence
called as the data term. The weighting functions g(+) and
h(+) apply to the smoothing and data terms, respectively
and they are chosen as!"” g(|Vf |)=iand h{|Vf )=[VE . g(+) is
constant here and smoothing occurs everywhere, while
h(*) grows larger near strong edges and dominates at
boundaries. Hence, the Gradient Vector Flow field 1s
defined as the vector field v(x,y)=[u(x.y),v(x,y)] that
mimmizes the energy functional

e = [ [l v} +vie Vi | VEf|v-VE[ dedy (g

The effect of this variational formulation 1s that the
result is made smooth when there is no data.

When the gradient of the edge map is large, it keeps
the external field nearly equal to the gradient, but keeps
field to be slowly varying in homogeneous regions where
the gradient of the edge map 1s small, i.e., the gradient of
an edge map VI has vectors pomt toward the edges,
which are normal to the edges at the edges and have
magnitudes only in the immediate vicinity of the edges
and m homogeneous regions f 18 nearly zero. p 15 a
regularization parameter that governs the tradeoft between
the first and the second term 1n the mtegrand in Eq. 8. The
solution of Eq. 8 can be done usmng the Calculus of
Variations and further by treating uand v as functions of
time, solving them as generalized diffusion equations!".

The GVF Active contour 1s governed by the following
parameters, namely, o, |, «, P and k. o determines the
Gaussian filtering that 1s applied to the image to generate
the external field Larger value of ¢ will cause the
boundaries to become blurry and distorted and can also
cause a shift in the boundary location. However, large
values of 0 are necessary to increase the capture range of
the active contour. | is a regularization parameter in Eq. 8
and requires a lugher value m the presence of noise mn the
mage. ¢ determines the tension of the active contour and
B determines the rigidity of the contour. The tension
keeps the active contour contracted and the rigidity keeps
it smooth. ¢ and P may also take on value zero implying
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that the influence of the respective tension and rigidity
terms m the diffusion equation 1s low. ¥ 1s the external
force weight that determines the strength of the external
field that is applied.

CONCLUSIONS

The ever increasing role of medical imaging
automated processing of patient image data has opened
up an array of challenging problems centered on the
computation of accurate models of anatomical structures.
With specific reference to the task of segmentation n
chromosome spread images, Gradient vector flow active
contours show much promise for efficient segmentation
which can be attributed to the strengths of deformable
curves 1n segmentation and to the inherent strengths that
arise out of the Gradient vector flow active contour
formulation. Tnvestigations on the segmentation of
chromosome spread images using Gradient vector flow
active contours will yield valuable insight into their
performance and will also shed light on possible
improvement of this segmentation technique
application to chromosome spread umages.

for
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