

Journal of Medical Sciences

ISSN 1682-4474

Research Paper

J. Med. Sci., 10 (1): 1-11 1st January, 2010

Serum Nitric Oxide Metabolite Levels in Groups of Patients with Various Diseases in Comparison of Healthy Control Subjects

^{1,2}H. Higashino, ¹M. Tabuchi, ³S. Yamagata, ¹T. Kurita, ²H. Miya, ²H. Mukai and ²Y. Miya

Since Nitric Oxide (NO) is produced by three types of Nitric Oxide Synthases (NOSs), rapid changes in stable oxidized metabolites (nitrite and nitrate, NOx) in the tissues and blood should be represented by the amount of stable forms in serum and may reflect vascular activities and circulatory or inflammatory changes in the body. Therefore, serum NOx levels in patients with various diseases were measured and compared to healthy controls. Four hundred and sixty five in- and outpatients aged 14 to 96 years were included in this study and 49 healthy hospital workers were included in the control group. The NOx levels of both groups were measured at rest in the morning using an ozone chemiluminescence method. When compared with the control group, serum NOx levels were higher in patients consist of around 40 or more in numbers diagnosed with cardiovascular diseases including myocardial infarction, hyperlipaemia, gastrointestinal diseases including acute enteritis, chronic liver diseases including viral B and C type hepatitis and liver cirrhosis, diabetes in males, hypertension with comorbid diseases. In addition, patient groups with renal disorders, hyperuricemia, osteoporosis, untreated cancers, autoimmune diseases such as Rheumatoid Arthritis (RA) and Systemic Lupus Erythematosus (SLE) were also higher, although the each number might be not enough to compare between the groups. Patient groups with acute and chronic inflammation had significantly higher serum NOx levels. Therefore, measurement of serum NOx in patients may be useful for understanding the status and pathophysiology of inflammatory diseases and those in which inflammation is a component.

Key words: Nitric oxide metabolites (NOx), serum, patients, inflammatory diseases, pathophysiology

JMS (ISSN 1682-4474) is an International, peer-reviewed

scientific journal that publishes

original article in experimental

& clinical medicine and related disciplines such as molecular

biology, biochemistry, genetics,

biophysics, bio-and medical technology. JMS is issued eight

times per year on paper and

For further information about

this article or if you need

Department of Pharmacology,

Kinki University School of

372-2, Ohno-Higashi,

Osaka 589-8511, Japan

Osaka-Sayama,

reprints, please contact:

Hideaki Higashino

Medicine,

in electronic format.

¹Department of Pharmacology, Kinki University School of Medicine, Osaka, Japan ²Department of Internal Medicine, Higashi-Yodogawa Hospital, Osaka, Japan ³Department of Respiratory and Allergic Medicine, Kinki University School of Medicine, Osaka, Japan

INTRODUCTION

Since Nitric Oxide (NO) is produced by three types of Nitric Oxide Synthases (NOSs), rapid changes in stable oxidized metabolites (nitrite and nitrate, NOx) in the tissues and blood should be represented by the amount of stable forms in serum and may reflect vascular activities and circulatory or inflammatory changes in the body (Van den Hove et al., 2002). NO is produced in all tissues and organs by constitutive NOS (cNOS), which includes endothelial NOS (eNOS; isoform III) and neuronal NOS (nNOS; isoform I) and inducible NOS (iNOS; isoform II) (Förstermann et al., 1994). Therefore, pathophysiological changes such as atherosclerosis with coronary artery diseases (Matsubara et al., 2003; Ekmekçi et al., 2006), endothelial dysfunction (Akarasereenont et al., 2001), pro-inflammation and inflammation seen in various diseases (Kawashima et al., 2004; Oekonomaki et al., 2004; Kamiya et al., 2005; Loukovaara et al., 2005) may be to some extent studied by measuring NO metabolites in the peripheral blood (Chou et al., 1998; ter Steege et al., 1998a, b; Choi, 2003). Our previous findings from hypertensive patients (Higashino et al., 2006) showed that high blood pressure does not directly affect the serum NOx levels and that serum NOx levels may be linked to the developmental stages of hypertensive patients with co-morbidities. We have now done a more extensive study that includes patients with many different types of understand diseases to more about pathophysiological changes such as atherosclerosis, endothelial dysfunction and diseases involving inflammation that might be reflected in NOx levels, compared with those of the healthy control.

MATERIALS AND METHODS

Study design: In brief, serum NOx levels were obtained from 465 (207 males aged 14-88 years and 258 females aged 18-96 years) in and outpatients from whom blood samples were collected. To avoid adverse effects on patients, those receiving various drug treatments were not eliminated from the study to survey the involvement of NO in the diseases as the first step of study, even though some drugs may affect NO producing or eliminating processes and could change the pathophysiological status of some patients. The hospital was a common private one with 200 beds in size which mainly treated internal diseases such as cardiovascular, digestive, metabolic, inflammatory and immune ones at urban Osaka in Japan Serum NOx levels were also obtained from 49 healthy hospital workers during their regular legal health check. No pregnant female was included in this study. This experiment to measure NOx levels in the serum of

patients was started at March 12, 1998 and ended at July 17, 2005. Measurements were made at rest for both groups with an ozone chemiluminescence method using a Nitric Oxide Analyser (FES-450; Scholartec, Osaka, Japan). Permission to use blood samples for our experimental use was obtained from all subjects. Consent was obtained from the subjects after explanation of the non-therapeutic use and their signatures were placed on the agreement form by their own will. Furthermore, permission to conduct this study was granted by the ethics committee review board in the hospital as a third-party organization.

The healthy control group: Forty-nine volunteer hospital workers (8 males and 41 females, average age: 37.1±1.8 years, range: 21-61 years) without any clinical abnormalities were included in the control group after their authorized health checks. Clinically normal values are: blood pressure (<140/90 mmHg), serum total cholesterol (T-cholesterol; <220 mg dL⁻¹), serum glucose (<126 mg dL⁻¹), serum triglyceride (<150 mg dL⁻¹), serum creatinine (<1.0 mg dL⁻¹), serum uric acid (<6.5 mg dL⁻¹) and serum alanine aminotransferase (ALT; <50 I.U. L⁻¹).

Disease group criteria: Each patient with given diseases was assigned to one or two patient groups (Table 1).

Analysis of NOx concentration in serum: Blood was drawn from the median vein of the upper limb into a vacuum collecting tube at early morning before medication and smoking after overnight fasting of at least 10-12 h to avoid the influence of drugs, smoking and nitro-compounds from food. The concentrations of NOx (nitrite and nitrate) in the serum were measured as described in our previous report (Higashino et al., 2006). Briefly, the serum was ultrafiltered using Ultrafree-MC: Biomax-10 filters (Millipore, Bedford, MA, USA) and then, NO₃⁻ in the filtrate was reduced to NO₂⁻ with nitrate reductase (Dojindo, Kumamoto, Japan). NO2- in the 50-100 µL solution was converted into NO gas with a saturated-ascorbic acid solution and finally NO gas was placed into a Nitric Oxide Analyzer FES-450 (Scholartec, Osaka, Japan) and measured using the ozone chemiluminescence method. All glass and plastic tubes and containers used for sample preparation were carefully washed out with enough volume of deionized water to avoid contamination.

Analytical methods: Data expressed as the mean (SEM were compared with an Analysis of Variance (ANOVA) test (Girden, 1992) of the various diseases, followed by Fisher's Protected Least Significant Difference (PLSD) method (Agresti, 1992) as a post-hoc test. Correlation and

Table 1: Criteria of disease groups

Disease groups	Criteria ages (No. of patients; Male: Female)
1: Cardiovascular diseases	Experienced or recovered from myocardialinfarction, angina pectoris, heart failure, or aortic aneurysm
	75.6±1.7 years (n=39; 21:18)
2: Hyperlipaemia	Serum T-cholesterol level >240 mg dL ⁻¹ , serum triglyceride level >150 mg dL ⁻¹ , or LDL
	>140 mg dL ⁻¹ , 68.2±1.7 years (113; 46:67)
3: Gastrointestinal diseases	1: Gastritis with symptoms such as gastric pain, nausea, or uncomfortable epigastric sensation
	2: Acute enteritis with symptoms such as abdominal pain, diarrhea, with or without positiveendoscopic
	and/or abnormal X-ray findings, and/or leukocyte count >10,000 mm ⁻³ , CRP >1 mg dL ⁻¹ in the
	peripheral blood, 54.3±2.7 years (41; 15:26)
4: Hepatitis and cirrhosis	Serum alanine aminotransferase (ALT) >100 IU L ⁻¹ , HBs-Ag(+), HCV-Ab(+), or findings of liver
	cirrhosis 68.0±1.4 years (91; 62:29)
5: Diabetes	Serum glucose level >126 mg dL ⁻¹ at fasting or >200 mg dL ⁻¹ at any time, and/or hemoglobin A1c level
	> 6.5%, 66.1±1.3 years (62; 35:27)
6: Hypertension	Blood pressure >140/90 mmHg at rest/sitting position, 70.7±0.8 years (175; 79:96)
7: Immune diseases	Autoimmune diseases and allergies, 64.8±2.6 years (44; 8:36)
8: Respiratory diseases	Any respiratory system dysfunction including asthma, bronchitis and COPD, 62.5±3.6 years (48; 25:23)
9: Disease groups seemed to consist of insufficient	
numbers to compare accurately between the group	
Renal disorders	Serum creatinine level \geq 2.0 mg dL $^{-1}$ with symptoms such as hyperazotemia, edema, proteinuria, anuria,
	hypertension, anaemia and pericarditis, 74.5 ± 2.7 years (n = 15; 9:6)
Hyperuricemia	Serum uric acid level $> 7.5 \text{ mg dL}^{-1}$, 64.2±3.2 years (10; 7:3)
Osteoporosis	Calcium levels < 0.5 g cm ⁻² in the radius by a DXA exam, or bone fractures in the vertebrae without any
	trauma, 76.0±1.9 years (26; 2:24)
Cancers	Having any cancer or experienced cancer, 74.3±1.6 years (15; 11:4)
Thyroiditis	Acute or chronic thyroiditis including Basedow's and Hashimoto's diseases, 67.5±3.4 years (22; 4:18)
Stroke	History of stroke such as hemorrhages, thrombosis, or embolism, 80.0±1.6 years (20; 4:16)
Miscellaneous diseases	Other cases such as common cold, headache and fatigue, 47.7±6.2 years (9; 2:7)

Total 730 diseases or disease combinations in 465 patients: 64.4±1.0 years (n = 207 in male) and 68.0±1.0 years (n = 258 in female). Abbreviations: CRP: C-reactive protein, HB: hepatitis B, HCV: hepatitis C virus, COPD: chronic obstructive pulmonary disease

regression analysis were performed to determine the relationship between the data in a group. The p<0.05 was considered statistically significant.

RESULTS

Healthy control group: The average NOx level in the serum of the 49 healthy controls was 55.0 ± 2.9 (Range: 23.3-110.5) µmol L⁻¹.

Disease groups: Serum NOx levels in the 465 patients were measured and compared among the different disease groups (Table 1) and were also compared to the healthy control group. As shown in Fig. 1, patients in the following groups consisted of enough numbers to compare between the groups (more than around 40) showed significantly higher serum NOx values than healthy control subjects: cardiovascular diseases (n = 39), hyperlipaemia (n = 113), gastrointestinal diseases (n = 41), hepatitis and liver cirrhosis (n = 91), diabetes (n = 62) and hypertension (n = 175). On the other hand, the patients with immune diseases, respiratory diseases showed no significant difference compared to the healthy control subjects.

Cardiovascular disease group: This group consisted of three subgroups that included recovery from myocardial infarction, angina pectoris and atherosclerosis-associated cardiovascular diseases such as heart failure (n = 3) and

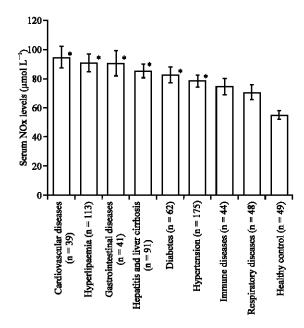


Fig. 1: Comparison of serum NOx levels in the disease groups consist of enough numbers to compare with healthy control volunteers. Numbers under each column represent the number of cases. *Significant differences of p<0.05 between the levels of each group and healthy control subjects

aortic aneurysm (n = 1) (Fig. 2). In patients with ischemic heart disease, myocardial infarction recovery patients

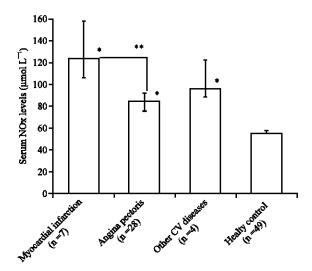


Fig. 2: Comparison of serum NOx levels in cardiovascular disease subgroups and healthy control volunteers. Numbers under each column represent the number of cases. * and **represent significant differences of p<0.05 between the levels of each group and the healthy control group and between myocardial infarction and angina pectoris, respectively

(123.0 \pm 34.7 μ mol L⁻¹, n = 7) showed much higher serum NOx levels (p<0.05) than those with angina pectoris (83.7 \pm 8.3 μ mol L⁻¹, n = 28). There was no significant difference in serum NOx levels between users of nitro-vasodilators (2/7 in myocardial infarction recovery and 9/28 in angina pectoris, 101.2 \pm 14.4 μ mol L⁻¹) and non-users (resting, n = 24, 87.0 \pm 12.6 μ mol L⁻¹). The other atherosclerosis-associated cardiovascular disease group (n = 4) also showed a higher value (p<0.05) than the healthy control subjects.

Hyperlipaemia group: This group showed a significantly higher serum NOx level (Mean: 90.7 ± 6.1 , Range: $21.8-406.0 \mu mol L^{-1}$, p<0.05, n = 113) compared to healthy control subjects. No significant correlation of NOx levels with triglycerides, T-cholesterol, or blood pressure was found.

Gastrointestinal disease group: This group consist of the diseases having chronic gastritis symptoms such as gastritis (n = 18), gastric ulcers (n = 8), duodenal ulcers (n = 2) and esophagitis (n = 1) and acute enteritis (n = 12) showed a higher serum NOx level (90.2 \pm 8.7 μ mol L⁻¹, n = 41, p<0.05) than control subjects. The patients with acute enteritis caused by various bacterial infections in this group showed remarkably higher NOx levels (122.6 \pm 22.5 μ mol L⁻¹, n = 12, p<0.05)

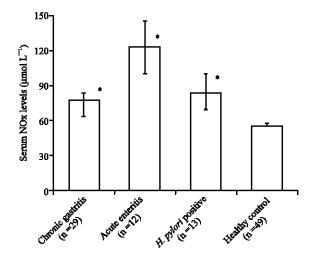


Fig. 3: Comparison of serum NOx levels in gastrointestinal disease subgroups and healthy control volunteers. Numbers under each column represent the number of cases. *Significant differences of p<0.05 between the levels of each group and healthy control subjects

than the chronic gastritis group. Using a serum screening test, Helicobacter (H.) pylori antibody-positive patients without any gastric symptoms (13 cases among 41 examined patients) exhibited higher serum NOx levels (83.4±16.2 μ mol L⁻¹, p<0.05) than control subjects (Fig. 3).

Hepatitis and liver cirrhosis group: Patients in this group had chronic hepatitis B (n = 10), C (n = 47), or liver cirrhosis (n = 18) and showed a higher serum NOx level (82.9 \pm 12.6, 92.5 \pm 7.4 and 78.0 \pm 7.8 μ mol L⁻¹, respectively, p<0.05) than controls (Fig. 4). In the patients with liver cirrhosis, the disease origin was HBV, HCV, or unknown (n = 2, 11.1%; n = 10, 55.6% and n = 6, 33.3% of the 18 total cases, respectively).

Diabetes group: The diabetes group had a higher serum NOx level (82.5 \pm 5.7 μ mol L⁻¹, n = 62, p<0.05) than the control group (Fig. 1). We examined 33 out of 62 cases in which HbA1c levels were available and observed a significant correlation between serum NOx and HbA1c levels in male patients (r = 0.513, p<0.05, n = 19 in Fig. 5), but not in female patients (r = 0.324, p>0.25, n = 14). However, there was no correlation between serum NOx and glucose levels.

Hypertension group: The hypertension group (n = 175) showed a significantly higher serum NOx level compared with healthy controls. However, hypertensive patients (n = 13) with no complications such as diabetes mellitus,

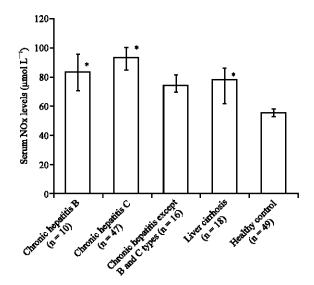


Fig. 4: Comparison of serum NOx levels in groups with hepatitis and liver cirrhosis and healthy control volunteers. Numbers under each column represent the number of cases. *Significant differences of p<0.05 between the levels of each group and the healthy control subjects

Fig. 5: Relationship between serum NOx and HbA1c levels in male (n = 19) patients with diabetes mellitus. The straight line is the regression line of the two variables. A significant correlation was observed between the two variables in the male group at p<0.05

hyperlipaemia, or renal disorder showed no difference in serum NOx levels when compared with the healthy group (Higashino *et al.*, 2006).

Immune disease group: Serum NOx levels in the immune disease group (n = 44) showed no significant difference compared with the healthy controls. Among the three

subgroups consisting of patients with rheumatoid arthritis and SLE (n = 22, Group A), bronchial asthma (n = 13, Group B) and skin or food allergies (n = 4, Group C), Group A showed significantly higher serum NOx levels compared with Groups B and C (85.9 \pm 9.7 vs. 65.6 \pm 6.9 and 55.7 \pm 14.4 μ mol L⁻¹, p<0.05, respectively).

Respiratory diseases: The respiratory disease group (n = 48), which consisted of patients with chronic bronchitis (n = 25) and bronchial asthma (n = 23), showed no difference in the serum NOx level $(70.5\pm5.0 \ \mu mol \ L^{-1})$ compared to the healthy group.

Other disease groups might consist of insufficient numbers to compare accurately between the groups: The groups consisted of below 40 cases might be not enough to compare statistically in accurate between the groups. But, those findings might offer useful information for understanding the role of NOx.

Renal disorder group: The renal disorder group showed significantly higher NOx level (Mean: 100.6 ± 13.6 , Range: $28.7\text{-}216.4~\mu\text{mol}~L^{-1}$, n=15, p<0.0001) than the healthy control subjects. Six patients with renal failure showed much higher values ($121.6\pm23.2~\mu\text{mol}~L^{-1}$) in this group.

Hyperuricemia group: The hyperuricemia group (n = 10) had a serum uric acid level over 7.5 mg dL⁻¹ upon diagnosis and showed a higher serum NOx level $(89.6\pm21.3 \,\mu\text{mol L}^{-1}, n = 10, p < 0.05)$ than healthy subjects.

Osteoporosis group: The osteoporosis group had calcium levels less than $0.5~g~cm^{-2}$ in the radius as shown by a DXA exam, or had experienced vertebral bone fractures without trauma. This group showed a significantly higher serum NOx level (89.2 \pm 11.9 μ mol L⁻¹, n = 26, p<0.05) compared with the healthy control group.

Cancer group: The cancer group (n = 15) as a whole showed a similar NOx level (81.6±17.1 μ mol L⁻¹) as the healthy controls. However, when comparing (a) the nonoperative, untreated cancer group (n = 8; colon (2), breast (1), lung (1), liver (1), gallbladder (1), pancreas (1) and prostate cancers (1)) with (b) the post-operative, treated cancer group (n = 7; colon (4), liver (1), gallbladder (1) and bladder cancers (1)), the former group (a) showed a significantly higher NOx level than the latter group (b) (113.4±27.4 vs. 45.3±7.3 μ mol L⁻¹, respectively). In particular, a patient with progressive breast cancer showed the highest value (287 μ mol L⁻¹) in the cancer group.

Thyroiditis group: This group (n = 22) showed no significant difference in the serum NOx level compared with healthy controls.

Stroke group: The brain stroke group (n = 20), including patients with symptoms such as cerebral hemorrhage, thrombosis and embolism, showed no difference in the serum NOx level (74.3 \pm 13.4 μ mol L⁻¹) compared to the healthy group.

Miscellaneous diseases: Nine patients with mild symptoms such as the common cold, headache, or fatigue without any severe symptoms showed a serum NOx level of 62.9±9.0 µmol L⁻¹, which was almost the same as in the healthy control subjects.

DISCUSSION

Serum NOx levels were distributed widely from healthy normal to significantly higher levels depending on the disease groups in this study. In these differences, each reason why serum NOx elevate to higher levels should exist in each disease. From these above findings and related-references so far, therefore, the following speculations and presentations were introduced.

The role of serum NOx levels in patients with Coronary Artery Disease (CAD) is still controversial. The reports so far show: (1) In contrast to our data, there was no difference in the serum NOx levels between CAD subgroups (Ekmekçi et al., 2006), (2) the CAD group had a significantly lower NO/endothelin-1 (ET-1) ratio and (3) monitoring the state and severity of the disease could be informative since they found increased NOx levels in patients with CAD, compared to control subjects (Akarasereenont et al., 2001). Other types of heart disease such as myocardial ischemia (Node et al., 1996) and dilated cardiomyopathy (Orús et al., 2000) also showed higher serum NOx levels. In our findings, serum NOx levels in patients recovering from myocardial infarction were higher than in patients with angina pectoris, other cardiovascular diseases derived from heart failure, aortic aneurysm and healthy controls. In contrast to our data, when compared with the healthy controls, no difference or lower NOx levels in the CAD group overall were noted (Ekmekçi et al., 2006; Kurita et al., 2005). Thus, the NO release disorder may occur in the endothelium of patients with CAD. However, we obtained significantly higher values (over 70 μmol L⁻¹) from the angina pectoris group, compared with the healthy control subjects. Therefore, myocardial infarction recovery, treated angina pectoris and other cardiovascular diseases may exhibit increased iNOS activity as a result of vascular inflammation,

although recovery of the release of endothelial NO does not occur. Thus, measurement of serum NOx may provide valuable information about the state or severity of the disease.

The hyperlipaemia group showed a significantly higher level of serum NOx compared with that of the healthy subjects. The following observations have been reported about the relation between serum NOx levels and hyperlipaemia: (1) hypercholesterolemic patients showed a lower ratio of plasma guanosine 3',5'-monophosphate (cGMP) to NOx and the ratio was maintained with a 3-hydroxy-3-methyl-glutaryl-CoA treatment with (HMG-CoA) reductase inhibitor (Ungvari et al., 2004), (2) basal endothelium-derived NO synthesis may be decreased in patients with hypercholesterolemia with coronary artery diseases (Orlandi et al., 2004), (3) patients with coronary artery disease and multiple comorbid diseases such as hyperlipaemia have higher serum NOx levels (Wang and Fitch, 2004) and (4) patients with familial hypercholesterolemia type II showed higher serum NOx levels, which decreased after treatment with an HMG-CoA reductase inhibitor (Duric et al., 2003). findings are still incompletely However, these understood. In our previous report regarding hypertension and its complications (Higashino et al., 2006), we speculated that the inflammatory changes in the endothelium of arteries associated hypercholesterolemia or hyperlipaemia in middle-aged patients would elevate NO production via induction of iNOS, but not eNOS. Because of this observation, measuring serum NOx levels in hyperlipaemia patients with or without hypertension may assist in monitoring the state and severity of hyperlipaemia-induced coronary artery disease, which has been suggested by Akarasereenont et al. (2001).

Our results from patients with acute enteritis symptoms such as acute abdominal pain, diarrhea, fever, and/or pathological increases in leukocytes and C-reactive Protein (CRP) in the peripheral blood with or without pathogens in clinical tests are consistent with other reports also showing higher serum NOx levels in bacterial or non-bacterial enteritis (Kawashima et al., 2004; Rees et al., 1995; Parasher et al., 2001; ter Steege et al., 1998b; Ukawa et al., 1998; Ikeda et al., 1997). Thus, obtaining serum NOx levels from patients with abdominal symptoms due to acute enteritis would likely be informative. Slightly higher serum NOx levels than in healthy controls were observed in patients with chronic gastritis with frequent gastric symptoms such as gastric pain, nausea and an epigastric uncomfortable sensation, regardless of whether the patients were Helicobacter Pylori (H. pylori)-positive, negative, or unknown. Chronic gastritis is considered to be an inflammatory

disease, as reported by Yasuhiro *et al.* (1997) and Kamiya *et al.* (2005). Likewise, chronic *H. pylori* infection is known to be the most important factor causing stomach inflammation and our experiment showed higher serum NOx levels in *H. pylori*-positive patients (13 out of 41 cases of the group) even in the absence of any other gastric symptoms.

Patients with chronic viral hepatitis types B (n = 10) and C (n = 47) and liver cirrhosis caused by any types of hepatitis (n = 18) showed higher serum NOx levels compared with healthy controls. Several studies have reported that chronic hepatitis (Mihm *et al.*, 1997) and liver cirrhosis (Oekonomaki *et al.*, 2004; Mizumoto *et al.*, 1997) caused by Hepatitis C Virus (HCV) infection and lipopolysaccharide or drugs (acetoaminophen and carbon tetrachloride)(Kamanaka *et al.*, 2003) showed increases in both iNOS activity and serum NOx. In our study, chronic hepatitis other than HBV or HCV infection did not show higher serum NOx levels compared with healthy controls. Therefore, detection of serum NOx levels could be informative in determining the cause of chronic hepatitis.

Patients with diabetes showed higher serum NOx levels compared with healthy controls and a positive correlation between serum NOx and HbA1c levels in male patients was observed (Fig. 5). In our previous report (Higashino et al., 2006), we showed significantly higher NOx levels in male hypertensive patients over 40 years with diabetes mellitus or hyperlipaemia compared with normotensive control subjects. Thus, it is possible that the aging effects in the circulatory system that are associated with diabetes will occur faster and be more readily apparent in males than in females. Insulin deficiency in diabetes may be related to the overproduction of NO, as shown by increased serum NOx levels in type 1 and type 2 diabetes patients complicated by proliferative diabetic retinopathy (Loukovaara et al., 2005; Ozden et al., 2003). More investigation of this phenomenon is needed for further conclusions.

As described in our previous report (Higashino *et al.*, 2006), serum NOx levels were not related to blood pressure levels. When hypertensive patients had complications such as diabetes, hyperlipaemia, or renal disorder, their serum NOx levels were elevated, especially in the male hypertensive patients. In those patients, the hypertensive group showed higher levels of serum NOx when compared with healthy subjects.

The patients in the immune disease group (n = 44) have diverse diseases and symptoms and showed no difference in serum NOx levels compared with healthy controls. However, patients in the subgroup of rheumatoid arthritis and SLE showed significantly higher serum NOx levels compared to those with bronchial

asthma, skin and food allergies and healthy subjects. As reported previously (Choi, 2003; Akarasereenont *et al.*, 2001), typically severe autoimmune diseases such as rheumatoid arthritis and SLE showed higher serum NOx levels, which is probably due to iNOS induction accompanied by several types of inflammatory cytokines.

The respiratory disease group with chronic bronchitis and COPD showed no differences in serum NOx levels compared with healthy controls. Therefore, neither severe immunological nor inflammatory changes enough to influence to the serum NOx level might be linked to the course of this disease.

The following groups consisted of below 40 cases might be not enough to compare statistically in accurate between the groups. But, those findings may be useful for understanding the role of NOx as follows.

The higher NOx levels seen in the 14 disease groups studied were in patients with renal disorders such as chronic nephritis, nephrosis, renal sclerosis and renal failure. Our previous report (Higashino et al., 2006) indicated that male hypertensive patients with renal disorders showed significantly higher NOx levels compared with hypertensive patients without renal disorders. Although, patients with puromycin aminonucleotide-induced nephritic syndrome nephrectomized rats showed reduced iNOS, nNOS and eNOS protein and had reduced renal NOx excretion (Ni and Vaziri, 2003), the iNOS activity in glomeruli was increased in experimental glomerulonephritis (Datta et al., 2006), as well as in patients with active proliferative lupus nephritis (Oates et al., 1999). Cultured endothelial cells from the uremic plasma showed increased basal NO release (Thuraisingham and Yaqoob, 2003) and plasma NOx was increased in hepatorenal syndrome patients (Lluch et al., 2006) and in Heymann nephritis rats (Koroliczuk et al., 2001). A significant correlation between serum NOx and plasma creatinine levels was also reported (Mackenzie et al., 1996); however, we found no such correlation in our data (n = 15, r = 0.264, p = 0.362). Consequently, patients with nephropathy and chronic renal disease were shown to have increased levels of iNOS, eNOS, or nNOS protein, producing a large amount of NO that reduces sodium sensitivity and the occurrence of proteinuria and also interferes with the progress of the disease (Konishi et al., 2004; Matsuda et al., 2003).

The hyperuricemia group (n = 10) showed higher serum NOx levels than healthy subjects. Uric Acid (UA) induces CRP expression, but inhibits NO release (Kang *et al.*, 2005) in human umbilical vein endothelial cells. Hyperuricemic rats show a decrease in serum NOx. Allopurinol, which is a xanthine oxidase inhibitor, reversed the pathophysiological changes of

hyperuricemia in these animals (Khosla *et al.*, 2005). These observations are in contrast to ours. Hyperuricemia has been thought to be associated with hypertension, systemic inflammation and cardiovascular disease in relation to endothelial NO dysfunction. We considered patients with hypertension (n = 3), hepatitis or fatty liver (n = 3), hyperlipaemia (n = 2), or gastritis (n = 2) as having complications, which may contribute to higher NOx levels through iNOS activation. More cases must be studied to provide more definite conclusions regarding this idea.

The osteoporosis group showed a significantly higher serum NOx level compared with the healthy control group. A few studies have reported serum NOx levels in osteoporosis, but they are controversial. The NO donors isosorbide mononitrate (Nabhan, 2006) and nitroglycerine (McFarlane et al., 2004) may be useful for prevention of post-menopausal osteoporosis and the NO donor L-arginine appears to prevent glucocorticoid-induced osteoporosis in rats (Pennisi et al., 2005). On the other hand, a negative correlation was observed between serum NOx and lumbar bone mineral densities and serum NOx levels were also not correlated with axial bone mineral densities (Sahin et al., 2006). Most of the female patients in the osteoporosis group (24 females aged 75.2±2.2 years) had post-menopausal osteoporosis. Thus, it is likely that NO is overproduced through iNOS induction caused by inflammation occurring during the course of osteoporosis. Therefore, over-production of NO by iNOS as measured by serum NOx levels may reflect the degree of inflammation occurring during the course of osteoporosis.

The cancer patient group did not show higher serum NOx levels compared with healthy controls. However, when comparing the non-operative or untreated patient subgroup with the post-operative or treated patient subgroup, the former showed significantly higher NOx levels than the latter. It has been reported that patients with secondary pleural metastases (Timoshenko *et al.*, 2002), hepatocellular carcinoma (Moriyama *et al.*, 2000; Moussa *et al.*, 2000) and colorectal carcinoma (Szaleczky *et al.*, 2000) showed higher serum NOx levels and inter-individual differences in serum NOx levels were noted (Timoshenko *et al.*, 2002). Therefore, measuring serum NOx levels may to some extent be informative for the diagnosis and prognosis of cancer.

Neither Basedow's disease, hyperthyroiditis, nor Hashimoto's thyroiditis (n = 18, primarily hypothyroiditis), showed significantly different serum NOx levels compared with healthy controls. This finding is consistent with results showing that eNOS and iNOS levels do not change in thyroid disorders, even though NO is important

for the function and growth of thyroid epithelial cells (Kayser *et al.*, 2000; Colin *et al.*, 1997).

The stroke and other miscellaneous groups with different etiologies showed no differences in serum NOx levels compared with healthy controls. Therefore, neither severe immunological nor inflammatory changes enough to influence to the serum NOx level will be linked to the course of these diseases.

CONCLUSIONS

An increase in NO production during the course of diseases such as cardiovascular diseases, hyperlipaemia, gastrointestinal diseases, chronic viral hepatitis and liver cirrhosis, diabetes in male and hypertension may be accelerated through iNOS induction, probably due to a variety of cytokines, as described in several reports (Chou et al., 1998; ter Steege et al., 1998a, b; Van den Hove et al., 2002). In addition, patient groups with renal disorders, hyperuricemia, osteoporosis, untreated cancers, autoimmune diseases such as Rheumatoid Arthritis (RA) and Systemic Lupus Erythematosus (SLE) were also higher, although the each number might be not enough to compare in accurate between the groups. Therefore, measuring serum NOx levels in patients with these particular diseases may be informative in understanding the causes, status and prognosis of the diseases.

ACKNOWLEDGMENT

This study was supported by the Japanese Grant-in-Aid for Scientific Research No.12672257 and Kinki University School of Medicine.

REFERENCES

Agresti, A., 1992. A survey of exact inference for contegency tables. Stat. Sci., 7: 131-153.

Akarasereenont, P., T. Nuamchit, A. Thaworn, W. Leowattana, S. Chotewuttakorn and P. Khunawat, 2001. Serum nitric oxide levels in patients with coronary artery disease. J. Med. Assoc. Thai., 84: S730-S739.

Choi, J.W., 2003. Nitric oxide production is increased in patients with rheumatoid arthritis but does not correlate with laboratory parameters of disease activity. Clin. Chim. Acta, 336: 83-87.

Chou, T.C., M.H. Yen, C.Y. Li and Y.A. Ding, 1998. Alterations of nitric oxide synthase expression with aging and hypertension in rats. Hypertension, 31: 643-648.

- Colin, I.M., P. Kopp, J. Zbaren, A. Haberli, W.E. Grizzle and J.L. Jameson, 1997. Expression of nitric oxide synthase III in human thyroid follicular cells: Evidence for increased expression in hyperthyroidism. Eur. J. Endocrinol., 136: 649-655.
- Datta, P.K., S. Dhupar and E.A. Lianos, 2006. Regulatory effects of inducible nitric oxide synthase on cyclooxygenase-2 and heme oxygenase-1 expression in experimental glomerulonephritis. Nephrol. Dial. Transplant., 21: 51-57.
- Duric, D., V. Jakovljevic, M. Stojkovic, A. Duric and B. Petrovic, 2003. Clinical assessment of major artery vasomotor endothelial function: Methodology and importance for evaluating aging as a cardiovascular risk factor. Med. Pregl., 56: 9-12.
- Ekmekçi, H., I. Iler, H. Sönmez, C. Gürel, O. Ciftçi and T. Ulutin, 2006. Comparison of platelet fibronectin, ADP-induced platelet aggregation and serum total nitric oxide (NOx) levels in angiographically determined coronary artery disease. Thromb. Res., 117: 249-254.
- Förstermann, U., E.I. Closs, J.S. Pollock, M. Nakane, P. Schwarz, I. Gath and H. Kleinert, 1994. Nitric oxide synthase isozymes. Characterization, purification, molecular cloning and functions. Hypertension, 23: 1121-1131.
- Girden, E.R., 1992. ANOVA: Repeated Measures. In: Quantitative Applications in the Social Sciences, Sage University Paper (Eds.). Sage Publications, Inc., CA., USA., pp. 1.
- Higashino, H., H. Miya, H. Mukai and Y. Miya, 2006. The serum nitric oxide metabolite (NOx) concentrations of hypertensive patients at rest in relation to age, sex, blood pressure and complications with healthy controls. Clin. Exp. Pharmacol. Physiol., 34: 725-731.
- Ikeda, I., T. Kasajima, S. Ishiyama, T. Shimojo and Y. Takeo et al., 1997. Distribution of inducible nitric oxide synthase in ulcerative colitis. Am. J. Gastroenterol., 92: 1339-1341.
- Kamanaka, Y., A. Kawabata, H. Matsuya, C. Taga, F. Sekiguchi and N. Kawao, 2003. Effect of a potent iNOS inhibitor (ONO-1714) on acetaminopheninduced hepatotoxicity in the rats. Life Sci., 74: 793-802.
- Kamiya, T., Y. Ohta, Y. Imai, T. Arisawa and H. Nakano, 2005. A critical role of gastric mucosal ascorbic acid in the progression of acute gastric mucosal lesions induced by compound 48/80 in rats. World J. Gastroenterol., 11: 1324-1332.

- Kang, D.H., S.K. Park, I.K. Lee and R.J. Johnson, 2005. Uric acid-induced C-reactive protein expression: implication on cell proliferation and nitric oxide production of human vascular cells. J. Am. Soc. Nephrol., 16: 3553-3562.
- Kawashima, H., Y. Inage, M. Ogihara, Y. Kashiwagi and K. Takekuma *et al.*, 2004. Serum and cerebrospinal fluid nitrite/nitrate levels in patients with rotavirus gastroenteritis induced convulsion. Life Sci., 74: 1397-1405.
- Kayser, L., D. Francis and H. Broholm, 2000. Immunohistochemical localization of inducible and endothelial constitutive nitric oxide synthase in neoplastic and autoimmune thyroid disorders. APMIS., 108: 785-791.
- Khosla, U.M., S. Zharikov, J.L. Finch, T. Nakagawa and C. Roncal *et al.*, 2005. Hyperuricemia induces endothelial dysfunction. Kidney Int., 67: 1739-1742.
- Konishi, Y., T. Morikawa, T. Yasu, K. Teramoto and N. Okada *et al.*, 2004. Blunted response of the renin-angiotensin system and nitric oxide synthesis related to sodium sensitivity in immunoglobulin a nephropathy. Hypertens. Res., 27: 7-13.
- Koroliczuk, A., D. Chibowski, J. Beltowski and G. Wojcicka, 2001. Selected markers of oxidative stress in rats with active *Heymann nephritis*. Med. Sci. Monit., 7: 369-376.
- Kurita, A., T. Matsui, T. Ishizuka, B. Takase and K. Satomura, 2005. Significance of plasma nitric oxide/endothelial-1 ratio for prediction of coronary artery disease. Angiology, 56: 259-264.
- Lluch, P., M.D. Mauricio, J.M. Vila, G. Segarra and P. Medina *et al.*, 2006. Accumulation of symmetric dimethylarginine in hepatorenal syndrome. Exp. Biol. Med. (Maywood), 231: 70-75.
- Loukovaara, M.J., S. Loukovaara, P.J. Leinonen, K.A. Teramo and S.H. Andersson, 2005. Endothelium-derived nitric oxide metabolites and soluble intercellular adhesion molecule-1 in diabetic and normal pregnancies. Eur. J. Obstet. Gynencol. Reprod. Biol., 118: 160-165.
- Mackenzie, I.M., A. Ekangaki, J.D. Young and C.S. Garrard, 1996. Effect of renal function on serum nitrogen oxide concentrations. Clin. Chem., 42: 440-444.
- Matsubara, T., T. Ishibashi, T. Hori, K. Ozaki and T. Mezaki, *et al.*, 2003. Association between coronary endothelial dysfunction and local inflammation of atherosclerotic coronary arteries. Mol. Cell Biochem., 249: 67-73.

- Matsuda, H., K. Hayashi, K. Homma, K. Yoshioka and T. Kanda *et al.*, 2003. Differing anti-proteinuric action of candesartan and losartan in chronic renal disease. Hypertens. Res., 26: 875-880.
- McFarlane, S.I., R. Muniyappa, J.J. Shin, G. Bahtiyar and J.R. Sowers, 2004. Osteoporosis and cardiovascular disease: Brittle bones and boned arteries, is there a link? Endocrine, 23: 1-10.
- Mihm, S., A. Fayyazi and G. Ramadori, 1997. Hepatic expression of inducible nitric oxide synthase transcripts in chronic hepatitis C virus infection: Relation to hepatic viral load and liver injury. Hepatology, 26: 451-458.
- Mizumoto, M., S. Arii, M. Furutani, T. Nakamura and S. Ishigami *et al.*, 1997. NO as an indicator of portal hemodynamics and the role of iNOS in increased NO production in CCl₄-induced liver cirrhosis. J. Sug. Res., 70: 124-133.
- Moriyama, A., A. Tabaru, H. Unoki, S. Abe, T. Masumoto and M. Otsuki, 2000. Plasma nitrite/nitrate concentrations as a tumor marker for hepatocellular carcinoma. Clin. Chim. Acta, 296: 181-191.
- Moussa, Y.I., J.N. Plevris and P.C. Hayes, 2000. Plasma nitrites/nitrates in HCV infection and hepatocelluar carcinoma. Eur. J. Gastroenterol. Hepatol., 12: 159-163.
- Nabhan, A.F., 2006. A randomized clinical trial of the effects of isosorbide mononitrate on bone formation and resorption in post-menopausal women: A pilot study. Hum. Reprod., 21: 1320-1324.
- Ni, Z. and N.D. Vaziri, 2003. Downregulation of nitric oxide synthase in nephritic syndrome: Role of proteinuria. Biochim. Biophys. Acta, 1638: 129-137.
- Node, K., M. Kitakaze, H. Kosaka, K. Komamura and T. Minamino et al., 1996. Increased release of NO during ischemia reduces myocardial contractility and improves metabolic dysfunction. Circulation, 93: 356-364.
- Oates, J.C., E.F. Christensen, C.M. Reilly, S.E. Self and G.S. Gilkeson, 1999. Prospective measure of serum 3nitrotyrosine levels in systemic lupus erythematosus: Correlation with disease activity. Proc. Assoc. Am. Physicians, 111: 611-621.
- Oekonomaki, E., G. Notas, I.A. Mouzas, V. Valatas, P. Skordilis, C. Xidakis and E.A. Kouroumalis, 2004. Binge drinking and nitric oxide metabolites in chronic liver disease. Alcohol Alcoholism, 39: 106-109.
- Orlandi, A., A. Francesconi, M. Marcellini, A. Ferlosio and L.G. Spagnoli, 2004. Role of ageing and coronary atherosclerosis in the development of cardiac fibrosis in the rabbit. Cardiovasc. Res., 64: 544-552.

- Orús, J., M. Heras, M. Morales-Ruiz, A. Leivas and E. Roig et al., 2000. Nitric oxide synthase II mRNA expression in cardiac tissue of patients with heart failure undergoing cardiac transplantation. J. Heart Lung Transplant., 19: 139-144.
- Ozden, S., S. Tatlipinar, N. Biçer, V. Yaylali, C. Yildirim, D. Ozbay and G. Güner, 2003. Basal serum nitric oxide levels in patients with type 2 diabetes mellitus and different stages of retinopathy. Can. J. Ophthalmol., 38: 393-396.
- Parasher, G., L. Frenklakh, D.R. Goodman, T. Siddiqui, J. Nandi and R.A. Levine, 2001. Nitric oxide inhibitors ameriolate indomethacin-induced enteropathy in rats. Dig. Dis. Sci., 46: 2536-2541.
- Pennisi, P., M.A. D'Alcamo, C. Leonetti, A. Clementi and V.M. Cutuli *et al.*, 2005. Supplementation of L-arginine prevents glucocorticoid-induced reduction of bone growth and bone turnover abnormalities in a growing rat model. J. Bone Miner. Metab., 23: 134-139.
- Rees, D.C., J. Satsangi, P.L. Cornelissen, S.P. Travis, J. White and D.P. Jewell, 1995. Are serum concentrations of nitric oxide metabolites useful for predicting the clinical outcome of severe ulcerative colitis? Eur. J. Gastroenterol. Hepatol., 7: 227-230.
- Sahin, G., H. Guler, M. Sezgin, N.A. Incel and G. Polat, 2006. The effect of circulating nitric oxide level on axial bone mineral density in postmenopausal Turkish women with rheumatoid arthritis: A preliminary report. Rheumatol. Int., 26: 805-809.
- Szaleczky, E., L. Pronai, H. Nakazawa and Z. Tulassay, 2000. Evidence of *in vivo* peroxynitrite formation in patients with colorectal carcinoma, higher plasma nitrate/nitrite levels and lower protection against oxygen free radicals. J. Clin. Gastroenterol., 30: 47-51.
- ter Steege, J.C., L. Koster-Kamphuis, E.A. van Straaten, P.P. Forget and W.A. Buurman, 1998a. Nitrotyrosine in plasma of celiac disease patients as detected by a new sandwich ELISA. Free Radic. Biol. Med., 25: 953-963.
- ter Steege, J.C., M.W. van de Ven, P.P. Forget, P. Brouckaert and W.A. Buurman, 1998b. The role of endogenous IFN-gamma, TNF-alpha and IL-10 in LPS-induced nitric oxide release in a mouse model. Cytokine, 10: 115-123.
- Thuraisingham, R.C. and M.M. Yaqoob, 2003. Oxidative consumption of nitric oxide: A potential mediator of uremic vascular disease. Kidney Int., 84: S29-S32.
- Timoshenko, A.V., O.V. Maslakova, B. Werle, V.A. Bezmen, V.Y. Rebeko and K. Kayser, 2002. Presentation of NO-metabolites (nitrate/nitrite) in blood serum and pleural effusions from cancer patients with pleurisy. Cancer Lett., 182: 93-99.

- Ukawa, H., H. Yamakuni, S. Kato and K. Takeuchi, 1998. Effects of cyclooxygenase-2 selective and nitric oxide-releasing nonsteroidal anti-inflammatory drugs on mucosal ulcerogenic and healing responses of the stomach. Dig. Dis. Sci., 43: 2003-2011.
- Ungvari, Z., A. Csiszar and G. Kaley, 2004. Vascular inflammation in aging. Herz, 29: 733-740.
- van den Hove, M.F., M.S. Stoenoiu, K. Croizet, M. Couvreur, P.J. Courtoy, O. Devuyst and I.M. Colin, 2002. Nitric oxide is involved in interleukin-1-induced cytotoxicity in polarized human thyrocytes. J. Endocrinol., 173: 177-185.
- Wang, Y.X. and R.M. Fitch, 2004. Vascular stiffness: Measurements, mechanisms and implications. Curr. Vasc. Pharmacol., 2: 379-384.
- Yasuhiro, T., R.P. Korolkiewicz, S. Kato and K. Takeuchi, 1997. Role of nitric oxide in pathogenesis of serotonine-induced gastric lesions in rats. Pharmacol. Res., 36: 333-338.