

Journal of Medical Sciences

ISSN 1682-4474

Review Article

J. Med. Sci., 13 (4): 236-243 15th May, 2013 DOI: 10.3923/jms.2013.236.243

Pharmacological Activities and Chemical Constituents of Ferula szowitsiana DC

¹Mohammadjavad Paydar, ¹Yi Li Wong, ¹Bushra Abdulkarim Moharam, ²Elaheh Movahed, ²Won Fen Wong and ¹Chung Yeng Looi

Ferula is a genus of endemic plants in Mediterranean area and central Asia which many species have been traditionally used in folk medicine. Ferula szowitsiana is one of the ethnomedicinal plants in the genus that is mostly used in Azerbaijan and neighbouring countries such as Iran, Turkey and Afghanistan. Many scientific studies have been carried out and a wide range of pharmacological effects of the plant have been reported, including anti-cancer, anti-oxidant, anti-inflammation to anti-microbial and anti-biotic modulation activities. Notably, more than 200 compounds consisting of essential oils, coumarins, phenylpropanoid derivative and steroidal compounds have been identified from different parts of the plant and have been evaluated for a variety of biological activities. Despite this, a comprehensive review for this plant is still lacking. The aim of this review is to cover and summarize the biological activities of the active compounds derived from F. szowitsiana.

Key words: Ferula szowitsiana, chemical constituents, biological activities

JMS (ISSN 1682-4474) is an International, peer-reviewed scientific journal that publishes original article in experimental & clinical medicine and related disciplines such as molecular biology, biochemistry, genetics, biophysics, bio-and medical technology. JMS is issued eight times per year on paper and in electronic format.

For further information about this article or if you need reprints, please contact:

Chung Yeng Looi Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603 Malaysia

Tel: +60 3 79674711 Fax: +60 3 79674791

¹Department of Pharmacology,

²Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603 Malaysia

INTRODUCTION

Ferula (means "rod" in Latin) is a genus of about 170 different species that belongs to the Umbelliferae (Apiaceae) family. The plants grow mostly in arid climate such as the Mediterranean area and central Asia. Ferula species are 1-4 m tall herbaceous plants, with tripinnate leaves and yellow flowers on large umbels. Many species of this genus are used to produce essential oils or aromatic resins which have unique therapeutic values in traditional medicine (Chen et al., 2000). Around 15 species are indigenous in Iran and the Persian name for most of these species is known as "Koma" (Mozaffarian, 1966, 1983).

The chemical constituents derived from *Ferula* sp. (aerial parts and roots) have been extensively investigated by a few research groups (Diab *et al.*, 2001; Iranshahi *et al.*, 2004a; Abd El-Razek *et al.*, 2003). Phytochemical studies revealed that the plant is a potential source of sesquiterpene derivatives especially sesquiterpene coumarins (Shahverdi *et al.*, 2006; Iranshahi *et al.*, 2004b, 2007a, b, 2008; Ahmed, 1999; Abd El-Razek *et al.*, 2001) humulanes, daucanes, guainanes, germacranes, eudesmanes and himachalanes (Gonzalez and Barrera, 1995; Appendino *et al.*, 1997; Kojima *et al.*, 1999; Su *et al.*, 2000a, b).

Ferula szowitsiana DC is an ethnomedicinal plant found in Iran, Turkey and Afghanistan. This plant is widely used as anti-helminthics and anti-septic in traditional medicine of these countries. A vast variety of biological activities and pharmacological effects of the extracts or pure

compounds isolated from *F. szowitsiana* have been reported by many investigators, including anti-cancer (Barthomeuf *et al.*, 2008; Hanafi-Bojd *et al.*, 2011; Soltanzad *et al.*, 2012), anti-oxidant (Soltani *et al.*, 2010), anti-genotoxicity (Gooshchi *et al.*, 2012), anti-inflammation (Kohno *et al.*, 2011), anti-microbial (Iranshahi *et al.*, 2007a; Ozek *et al.*, 2008) and antibiotic activities (Shahverdi *et al.*, 2007; Bazzazz *et al.*, 2010) (Fig. 1). In this review, we will discuss about the chemical contents and the medicinal properties of *F. szowitsiana*.

Chemical Constituents of F. szowitsiana DC: Over the years, many groups have isolated an array of bioactive compounds from different species of Ferula. The plant is known to be rich in coumarins, particularly sesquiterpene coumarins (Abd El-Razek et al., 2003). The phytochemical investigations of F. szowitsiana DC have resulted in isolation and identification of various types of compounds including monoterpene coumarins. sesquiterpene coumarins, phenylpropanoid derivatives and steroidal compounds (Table 1). The isolation of the compounds was obtained by column chromatographic techniques while identification of compounds was done by spectroscopic methods including ¹H and ¹³C-NMR, mass experiments. Essential oils of the aerial, leaves and stems of F. szowitsiana DC were also extracted by hydrodistillation and analyzed by GC and GC/MS methods.

Anti-cancer property: Malignant melanoma is the most common form of fatal skin cancer and the eighth most

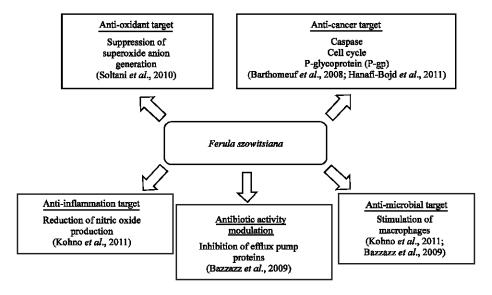


Fig. 1: Overview of biological effects and targeted signaling pathways by F. szwotsiana

Table 1: Essential oils and compounds isolated from F. szowitsiana

Table 1: Essential oils and compounds isolate Compounds	ed from <i>F. szowitsiana</i> Parts	Isolated by	Compounds	Parts	Isolated by
Umbelliferon-7-apiosyl (16) glucoside	Roots	Gooshchi et al. (2012)	αterpinene	Parts	Isolated by
Ñ-hydroxy phenylethanoid glucoside	Roots	Gooshem et at. (2012)	Heptanal		
Galbanic acid			dehydro-1,8-cineole		
Umbelliferon β-D [6' (ferolyle)-glucoside]			Limonene		
Umbelliferon			1,8-cineole		
Essential oil	Aerial	Habibi et al. (2006)	β-phellandrene		
α-pinene			(Z)-3-hexenal		
Germacrene D			2-penty lfuran		
β-pinene			(Z)-β-ocimene		
Epi-α-cadinol			y-terpinene		
Myrcene			(E)-β-ocimene		
Bicyclogermacrene			P-cymene		
β-phellandrene			Terpinolene		
Sabinene			Octanal		
(E)-β-ocimene			Tridecane		
α-copaene			2-hexylfuran		
β-cubebene			6-methyl-5-hepten-2-one		
β- elemene			Hexyl isobutyrate		
β-caryophyllene			Hexanol		
γ-elemene			α-pinene oxide		
α -humulene			(Z)-3-hexenol		
δ-cadinene			Nonanal		
(E)-γ-bisabolene			Rose furan		
Occidentalol			1-octen-2-one		
Germacrene B			Hexyl 2-methylbutyrate		
Spathulenol			α-campholene aldehyde		
β-copaene-4 -ol			2,5-dimethy lstyrene		
1-epi-cubenol			1-octen-3-ol		
Epi-α-cadinol			Hexyl isovalerate		
α-muurolol	_		Heptanol		
Sesquiterpene coumarins	Roots	Iranshahi <i>et al</i> . (2007a)	α-cubebene		
Szowitsiacoumarin A			Trans-sabinene hydrate		
Szowitsiacoumarin B			4,8-epoxyterpinolene		
Auraptene			Longipinene		
Umbelliprenin			Octyl acetate		
Galbanic acid			α-ylangene		
Methyl galbanate			α-copaene		
Farnesiferol B Farnesiferol C			α-campholene aldehyde		
Persicasulfide A			Decanal (E,E)-2,4-heptadienal		
Phenylpropanoid derivative			α-bourbonene		
2-epihelmanticine			β-bourbonene		
Steroidal compounds			Camphor		
B-sitosterol			Benzaldehyde		
Stigmasterol			Dihydroachillene		
Coumarins		Kohno et al. (2011)	(E)-2-nonenal		
Farnesiferol A		101110 01 (2011)	Linalool		
Badrakemone			Cis-sabinene hydrate		
Umbelliprenin			Octanol		
Aurapten			Trans-p-menth-2-en-1-ol		
Methyl galbanate			a-bergamotene		
Galbanic acid			aristolene		
Galbanic Acid	Roots	Hanafi-Bojd et al. (2011)	β-y langene		
Galbanic Acid		Bazzaz et al. (2010)	Pinocarvone		
Auraptene	Roots	Soltani et al. (2010)	Bornyl acetate		
Tricyclene	Leaves and stem	Ozek et al. (2008)	Trans-β-bergamotene		
α-pinene		` '	β-elemene		
α-thujene			β-copaene		
Camphene			Calarene (b-gurjunene)		
Hexanal			Terpinen-4-ol		
Undecane			β-caryophyllene		
β-pinene			Guaia-6,9-diene		
Sabinene			Myrtenal		
Thuja-2,4(10)-diene			γ-elemene		
δ-3-carene			Octyl 3-methylbutyrate (octyl	isovalerate)	
Myrcene			(E)-2-decenal		
p-mentha-1,7(8)-diene (pseudolimonene)			Cis-verbenol		

Table 1: Continue

Compounds	Parts	Isolated by	Compounds	Parts	Isolated by
Trans-pinocarveol			1,5-epoxy-salvial(4)14-ene		_
Sesquisabinene B			Cubebol		
(Z)-β-farnesene			(E)-b-ionone		
α-humulene			Dodecanol		
Trans-verbenol			y-calacorene		
Selina-4,11-diene (=4,11-eudesmadiene)			Isocaryophyllene oxide		
(E)-β-farnesene			Caryophyllene oxide		
p-mentha-1,8-dien-4-ol (= limonen-4-ol)			Salvial-4(14)-en-1-one		
Myrtenyl acetate			Humulene epoxide-I		
y-muurolene			(E)-nerolidol		
α-terpineol			Humulene epoxide-II		
Guaioxide			Humulene epoxide-III		
Borneol			1-epi-cubenol		
Dodecanal			Elemol		
Verbenone			Guaiol		
Germacrene D			10-epi-γ-eudesmol		
Zingiberene			Hexahydrofarnesyl acetone		
δ-guaiene (= ?bulnesene)			Rosifoliol		
β-bisabolene			Spathulenol		
α-selinene			y-eudesmol		
Cis-piperitol t -			Eremoligenol		
y-bisabolene			T-muurolol		
δ-cadinene			α-guaiol		
y-cadinene			α-bisabolol		
β-sesquiphellandrene			Bulnesol		
Kessane			α-eudesmol		
Ar-curcumene			β-eudesmol		
Selina-3,7(11)-diene			Alismol (guaia-6,10(4)-dien-4	-ol)	
Myrtenol			Myristicin	,	
Nerol			Tricosane		
(E)-2-decenol			Caryophylla-2(12),6(13)-dien-:	5 -ol (caryopl	nylladienol I)
β-damascone			Caryophylla-2(12),6-dien-5 -ol	(cary ophy lle	nol I)
(E)-β-damascenone			Eudesma-4(15),7-dien-1 -ol		ŕ
2,6-dimethyl-3(E),5(E),7-octatriene-2-ol			10-hydroxycalamenene		
(E)-anethole			Caryophylla-2(12),6-dien-5 -ol	(cary ophy lle	nol II)
Cuparene			Aristolone		,
Geraniol			Pentac osane		
p-cymen-8-ol			Apiole		
(E)-geranyl acetone			Dodecanoic acid		
Undecanol			Phytol		
geranyl isovalerate			Heptacosane		
1,5-epoxy-1(10)-cadinene			Tetradecanoic acid (myristic ac	cid)	
Epi-cubebol			Epoxy-trans-pseudoisoeugenyl		
Tetradec anal			Hexadecanoic acid (palmitic a	_	
α-calacorene			•		

common cancer in the United States (Parker et al., 1996; Landis et al., 1999). Its incidence among Caucasian population is in a rise in the past 20 years (Rigel et al., 1996; Greenlee et al., 2001). Barthomeuf et al. (2008) studied the anti-cancer property of F. szowitsiana on malignant melanoma. They reported high inhibitory activity of umbelliprenin isolated from F. szowitsiana roots against human M4Beu metastatic pigmented malignant melanoma cell line. They purified umbelliprenin $(C_{24}H_{30}O_3, MW: 366)$ and auraptene $(C_{19}H_{22}O_3, MW: 298.4)$ to test against a number of melanoma cells using Resazurin Reduction Test (RRT). Umbelliprenin $(IC_{50} = 12.4 \pm 0.5 \mu M)$ significantly inhibited the growth of M4Beu cells at a lower dose, compared to auraptene (IC₅₀ = 17.2 \pm 0.7 μ M) and the standard drug, cisplatin (IC₅₀ = 23.1 \pm 0.8 μ M). They also showed the ability of umbelliprenin to reduce the serum-induced proliferation of M4Beu at 25 mM through cell cycle blockade in G1 and induction of dose-dependent apoptosis (Barthomeuf *et al.*, 2008).

In addition to M4Beu, they tested the activity of umbelliprenin and auraptene in human primary fibroblasts to evaluate the selectivity index of the compounds and also in other cancer cells including PA1 (ovary teratocarcinoma), MCF7 (breast adenocarcinoma), PC3 (androgen-resistant prostate carcinoma), DLD1 (colon adenocarcinoma) and A549 (non-small cell lung carcinoma). Both compounds exhibited high inhibitory activity against all carcinoma cell lines. At concentration of 25 mM, minimal cytotoxic effect of umbelliprenin was observed in primary fibroblasts, suggesting its significant selectivity between normal

and malignant cells. However, some cytostatic effects were observed at that concentration (Barthomeuf *et al.*, 2008).

Multi-Drug Resistance (MDR) is a phenomenon of tumor cells exhibiting resistance to different anti-cancer drugs (Liscovitch and Lavie, 2002). One of the major cellular mechanisms that mediate MDR is the over-expression of a 170 kDa plasma membrane protein, named ABCB1 or P-gp (Ambudkar et al., 1999). In the study by Hanafi-Bojd et al. (2011), P-gp-over-expressing cell line MCF7/Adr was used to evaluate the inhibitory activity of galbanic acid isolated from F. szowitsiana roots and farnesiferol A isolated from F. Persica roots, against P-gp for two exposure times (15 and 30 min). Galbanic acid exhibited high potential to serve as a proper MDR inverting candidate, due to its significant inhibitory effect for both exposure times (Hanafi-Bojd et al., 2011). Meanwhile, farnesiferol A at 0.5 µg mL⁻¹ inhibits P-gp transporter at 15 min after treatment. At this exposure time, it demonstrated higher activity compared to standard drug, verapamil. Of note, Farnesiferol A has been successfully isolated from F. szowitsiana (Kohno et al., 2011).

Cytotoxicity and anti-cancer activity of methanolic fraction of *F. szowitsiana* was also examined on lung cancer (Soltanzad *et al.*, 2012). Lung cancer is the most frequent cancer in the world, which ranked as the major cause of world-wide cancer death (Haugen, 2008; Skarda *et al.*, 2008). Malignant lung cancer may spread into nearby tissue and other parts of the body through metastasis. The major difficulty faced in treating lung cancer is the resistance of lung cancer to chemotherapeutic drugs. Thus, discovery of novel drug with new targets will ease drug resistance problem in lung cancer (Shanker *et al.*, 2010).

Soltanzad et al. (2012) showed that the *F. szowitsiana* methanolic extract inhibited the proliferation of A549 cells in a dose-dependent manner using MTT assay. They also studied the expression of apoptosis related genes such as Bcl-2, Bcl-XL, Bax and p53 in comparison to 18s housekeeping gene using reverse transcriptase-qPCR. The results from the qPCR confirmed the significant cytotoxicity and growth inhibitory activity of the methanolic extract of *F. szowitsiana*. This suggests its high potential for further clinical evaluations (Soltanzad et al., 2012).

Anti-inflammation property: Inflammation is a biological response initiated by innate immune response in an individual against harmful stimuli such as pathogen. It is also common condition present in many diseases such as

cardiovascular diseases and diabetes mellitus (Mueller et al., 2010). It can be related to the excessive production of Nitric Oxide (NO) which initiates leucocytes recruitment (Laroux et al., 2001). Study by Kohno et al. (2011) proved that one of the terpenoid coumarins isolated from F. szowitsiana, methyl galbanate, demonstrated marked reduction of NO production in lipopolysaccharide (LPS)- or interferon-v (IFN-v)stimulated RAW264.7 macrophage cells. From their findings, methyl galbanate treated RAW264.7 cells exhibited decreased level of LPS/IFN-y-induced iNOS mRNA expression. Besides, methyl galbanate was capable of preventing NO-induced apoptosis in neuronally differentiated tsAM5NE cells (Kohno et al., 2011).

Antioxidant and anti-genotoxicity property: Reactive Oxygen Species (ROS) had been recognized to enhance the effects of inflammation via activation of inflammatory cascades (Conner and Grisham, 1996). Thus, discovery of the capability of F. szowitsiana in reducing ROS supports its anti-inflammation property as well. Soltani et al. (2010). demonstrated antioxidant capacity in auraptene isolated from F. szowitsiana. Auraptene was proved to decrease genotoxicity of H₂O₂ and its activity was higher than ascorbic acid. They suggest that auraptene suppress the generation of superoxide anion due to the presence of prenyl moiety (Soltani et al., 2010). The antioxidant property of F. szowitsiana was further supported by Gooshchi et al. (2012). In their study, antioxidant activity of the methanol extract of F. szowitsiana was proved by using DPPH (1,1-diphenyl-2-picryl-hydrazyl) assay where it demonstrated remarkable radical scavenging activity (8.85×10⁻² mg mL⁻¹) comparable with rutin $(5.12\times10^{-2} \text{ mg mL}^{-1})$ (Gooshchi et al., 2012).

Anti-microbial property: Human leishmaniasis is a severe parasitic infection, caused by different species of Leishmania, a genus of trypanosomatid protozoa, with high mortality and morbidity rates in Asia, Africa and Latin. These intracellular pathogens can accumulate in dogs, rodents and other small mammals and are normally transmitted via mosquitoes from Lutzomia Phlebotomus genera. Although leishmaniasis is difficult to treat due to the intramacrophagic location of the infectious form, many natural products have been reported to show anti-leishmanial activity. Due to the side effects of the alternative drugs used for leishmaniasis treatment, they have been replaced over the last few years, by plant extract and plant-derived compounds such as lignans, chalcones, naphthoquinones, alkaloids, triterpenoids and neolignans (Sauvain et al., 1996;

Balana-Fouce et al., 1998; Torres-Santos et al., 1999; Kayser et al., 2000; Barata et al., 2000; Camacho et al., 2000; Delorenzi et al., 2001; De Carvalho and Ferreira, 2001).

Iranshahi et al. (2008) isolated a number of compounds, as shown in Table 1 and evaluated the inhibitory activity of the acetone extract of F. szowitsiana roots, prenylated coumarins, szowitsiacoumarin A and szowitsia coumarin B, auraptene, umbelliprenin and galbanic acid against promastigotes of L. major compared with amphotericin B, as the positive control (Iranshahi et al., 2008). They employed stationary-phase promastigotes to evaluate the anti-leishmanial activity of the compounds via in vitro leishmanicidal assay (Jaafari et al., 2006). The acetone extract and all of the evaluated compounds indicated inhibitory activity against L. major promastigotes, especially umbelliprenin and auraptene which efficiently inhibited the parasite at IC₅₀ values of 13.3 μM and 17.1 μM, respectively (Iranshahi et al., 2008). Coumarins and auraptene had been previously reported to show anti-leishmanial and growth inhibitory activities against the tropical parasite, L. major (Oketch-Rabah et al., 1997; Bravo et al., 1999; Napolitano et al., 2004).

Modulation of antibiotic activity: Antibiotics include a substantial portion of medications, frequently used in modern medicine. The most significant problem associated with application of antibiotics is the ability of some important community and hospital-acquired pathogens, to acquire resistance to these therapeutic agents. The upward trend in the existence of resistant Gram-positive bacteria affirms the urgent need for development of new drugs and/or a combination of different therapies to control the resistant pathogens (Bazzazz et al., 2009). During the recent decades, many investigations on combinations of plant extracts and antibiotics have been conducted in order to find a solution for the problem of emerging resistance in clinical isolates.

Shahverdi et al. (2007) showed that the combination of cephalexin or penicillin G with galbanic acid isolated from from the acetone extract of F. szwotsiana roots demonstrated marked decrease in the MIC of the two antibiotics against S. aureus (Shahverdi et al., 2007). Later, Bazzazz et al. (2009), also demonstrated a reduction of MIC by antibiotics ciprofloxacin, methicillin and tetracycline against resistant isolates of S. aureus with galbanic acid from F. szwotsiana. Meanwhile, no inhibitory effect was observed on high concentration of galbanic acid. This suggests that the positive

inhibitory effects demonstrated could be due to the combination of antibiotics and galbanic acid (Bazzazz *et al.*, 2009).

CONCLUSION

Different medicinal potentials of *F. szwotsiana* in various diseases have been reported by many investigators. However, there is a definite requirement of more detailed mechanistic and clinical studies on the mechanisms of these properties. The current state of research on *F. szwotsiana* implicates great potential of the isolated bioactive compounds in treating diseases. With the advancement in medicinal chemistry and bioinformatics, the ethnomedicinal usage of *F. szwotsiana* can be scientifically explained and proved through *in vitro* or *in vivo* studies and may consequently be developed as potential plant-based drugs.

ACKNOWLEDGMENT

This study was supported by UM Research grant (RG434-12HTM) from University of Malaya.

REFERENCES

- Abd El-Razek, M.H., S. Ohta, A.A. Ahmed and T. Hirata, 2001. Sesquiterpene coumarins from the roots of *Ferula asafoetida*. Phytochemistry, 58: 1289-1295.
- Abd El-Razek, M.H., S. Ohta and T. Hirata, 2003. Terpenoid coumarins of the genus *Ferula*. Heterocycles, 60: 689-716.
- Ahmed, A.A., 1999. Sesquiterpene coumarins and sesquiterpenes from *Ferula sinaica*. Phytochemistry, 50: 109-112.
- Ambudkar, S.V., S. Dey, C.A. Hrycyna, M. Ramachandra, I. Pastan and M.M. Gottesman, 1999. Biochemical, cellular and pharmacological aspects of the multidrug transporter. Annu. Rev. Pharmacol. Toxicol., 39: 361-398.
- Appendino, G., J. Jakupovic, S. Alloatti and M. Ballero, 1997. Daucane esters from *Ferula arrigonii*. Phytochemistry, 45: 1639-1643.
- Balana-Fouce, R., R.M. Reguera, J.C. Cubria and D. Ordonez, 1998. The pharmacology of leishmaniasis. Gen. Pharmacol.: Vasc. Syst., 30: 435-443.
- Barata, L.E., L.S. Santos, P.H. Ferri, J.D. Phillipson, A. Paine and S.L. Croft, 2000. Antileishmanial activity of neolignans from *Virola* species and synthetic analogues. Phytochemistry, 55: 589-595.

- Barthomeuf, C., S. Lim, M. Iranshahi and P. Chollet, 2008.

 Umbelliprenin from Ferula szowitsiana inhibits the growth of human M4Beu metastatic pigmented malignant melanoma cells through cell-cycle arrest in G1 and induction of caspase-dependent apoptosis. Phytomedicine, 15: 103-111.
- Bazzaz, B.S.F., Z. Memariani, Z. Khashiarmanesh, M. Iranshahi and M. Naderinasab, 2010. Effect of galbanic acid, a sesquiterpene coumarin from *Ferula Szowitsiana*, as an inhibitor of efflux mechanism in resistant clinical isolates of *Staphylococcus Aureus*. Braz. J. Microbiol., 41: 574-580.
- Bazzazz, B.S.F., A.R. Du, M. Iranshahi, M. Naderinasab and M.K. Karamodin, 2009. Evaluating the potentiating effect of galbanic acid from *Ferula* szowitsiana on three common antibiotics against resistant hospital isolates of *Staphylococcus aureus*. Iran. J. Pharm. Res., 8: 217-221.
- Bravo, J.A., M. Sauvain, A. Gimenez, V. Munoz and J. Callapa *et al.*, 1999. Bioactive phenolic glycosides from *Amburana cearensis*. Phytochemistry, 50: 71-74.
- Camacho, M.R., R. Mata, P. Castaneda, G.C. Kirby and D.C. Warhurst et al., 2000. Bioactive compounds from Celaenodendron mexicanum. Planta Med., 66: 463-468.
- Chen, B., R. Teranishi, K. Kawazoe, Y. Takaishi and G. Honda eta l., 2000. Sesquiterpenoids from Ferula kuhistanica. Phytochemistry, 54: 717-722.
- Conner, E.M. and M.B. Grisham, 1996. Inflammation, free radicals and antioxidants. Nutrition, 12: 274-277.
- De Carvalho, P.B. and E.I. Ferreira, 2001. Leishmaniosis phytotherapy. Natiures leadership against an ancient disease. Fitoterapia, 72: 599-618.
- Delorenzi, J.C., M. Attias, C.R. Gattass, M. Andrade and C. Rezende et al., 2001. Antileishmanial activity of an indole alkaloid from Peschiera australis. Antimicrob. Agents Chemother., 45: 1349-1354.
- Diab, Y., R. Dolmazon and J.M. Bessiere, 2001. Daucane aryl esters composition from the Lebanese *Ferula hermonis* Boiss. (zallooh root). Flavour Frag. J., 16: 120-122.
- Gonzalez, A.G. and J.B. Barrera, 1995. Chemistry and Sources of Mono-and Bicyclic Sesquiterpenes from Ferula species. In: Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products, Herz, W., G.W. Kirby, R.E. Moore, W. Steglich and Ch. Tamm (Eds.). Springer, USA., pp: 1-92.
- Gooshchi, S.T., H. Nazemiyeh, M. Dalirrad and M. Bahmani, 2012. Study on chemical constituents of the roots of *Ferula szow itsiana* DC and evaluation of their antioxidant activity. Res. Pharm. Sci., Vol. 7.

- Greenlee, R.T., M.B. Hill-Harmon, T. Murray and M. Thun, 2001. Cancer statistics. Cancer J. Clin., 51: 15-36.
- Habibi, Z., H.R. Aghaie, R. Ghahremanzadeh, S. Masoudi and A. Rustaiyan, 2006. Composition of the essential oils of *Ferula szowitsiana* DC., *Artedia squamata* L. and *Rhabdosciadium petiolare* Boiss. And Hausskn.ex Boiss. three umbelliferae herbs growing wild in Iran. J. Essent. Oil Res., 18: 503-505.
- Hanafi-Bojd, M.Y., M. Iranshahi, F. Mosaffa, S.O. Tehrani, F. Kalalinia and J. Behravan, 2011. Farnesiferol A from *Ferula persica* and galbanic acid from *Ferula szowitsiana* inhibit P-glycoproteinmediated rhodamine efflux in breast cancer cell lines. Planta Med., 77: 1590-1593.
- Haugen, H., 2008. Etiology of Lung Cancer. In: Textbook of Lung Cancer, Hansen, H.H. (Ed.). Martin Dunitz, London, UK., pp. 1-12.
- Iranshahi, M., A.R. Shahverdi, R. Mirjani, G.R. Amin and A. Shafiee, 2004a. Umbelliprenin from *Ferula persica* roots inhibits the red pigment production in Serratia marcescens. Z Naturforsch C, 59: 506-508.
- Iranshahi, M., G. Amin and A. Shafiee, 2004b A new coumarin from *Ferula persica*. Pharm. Biol., 42: 440-442.
- Iranshahi, M., F. Shaki, A. Mashlab, A. Porzel and L.A. Wessjohan, 2007a. Kopetdaghins A-E, sesquiterpene derivatives from the aerial parts and the roots of Dorema kopetdaghense. J. Nat. Prod., 70: 1240-1243.
- Iranshahi, M., P. Arfa, M. Ramezani, M.R. Jaafari and H. Sadeghian *et al.*, 2007b. Sesquiterpene coumarins from *Ferula szowitsiana* and *in vitro* antileishmanial activity of 7-prenyloxycoumarins against promastigotes. Phytochemistry, 68: 554-561.
- Iranshahi, M., F. Kalategi, R. Rezaee, A.R. Shahverdi and C. Ito et al., 2008. Cancer chemopreventive activity of terpenoid coumarins from *Ferula* species. Planta Med., 74: 147-150.
- Jaafari, M.R., J. Behravan, J. Abde-Emami, Saghafi-Khadem and M. Ramezani, 2006. Evaluation of leishmanicidal effect Euphorbia bungei boiss extract by in vitro leishmanicidal assay using promastigotes Leishmania major. Int. J. Pharmacol., 2: 571-575.
- Kayser, O., A. F. Kiderlen, H. Laatsch and S.L. Croft, 2000.
 In vitro leishmanicidal activity of monomeric and dimeric naphthoquinones. Acta. Trop., 77: 307-314.
- Kohno, S., T. Murata, A. Sugiura, C. Ito, M. Iranshahi, K. Hikita and N. Kaneda, 2011. Methyl galbanate, a novel inhibitor of nitric oxide production in mouse macrophage RAW264. 7 cells. J. Nat. Med., 65: 353-359.

- Kojima, K., K. Isaka, P. Ondognii, O. Zevgeegiino, K. Davgiin, H. Mizukami and Y. Ogihara, 1999. Sesquiterpenoid derivatives from *Ferula ferulioids* III. Chem. Pharm. Bull., 47: 1145-1147.
- Landis, S.H., T. Murray, S. Bolden and P.A. Wingo, 1999.Cancer statistics, 1999. CA Cancer J. Clin., 49: 8-31.
- Laroux, F.S., K.P. Pavlick, I.N. Hines, S. Kawachi and H. Harada *et al.*, 2001. Role of nitric oxide in inflammation. Acta Physiol. Scand., 173: 113-118.
- Liscovitch, M. and Y. Lavie, 2002. Cancer multidrug resistance: A review of recent drug discovery research. Drugs, 5: 349-355.
- Mozaffarian V., 1966. A Dictionary of Iranian Plant Names: Latin-English-Persian. Farhange Moaser, Tehran, Iran.
- Mozaffarian, V., 1983. The Family of Umbelliferae in Iran: Keys and Distribution. Research Institute of Forests and Rangelands Press, Tehran, Iran, pp. 114-116.
- Mueller, M., S. Hobiger and A. Jungbauer, 2010. Antiinflammatory activity of extracts from fruits, herbs and spices. Food Chem., 122: 987-996.
- Napolitano, H.B., M. Silva, J. Ellena, B.D.G. Rodrigues and A.L. Almeida *eta l.*, 2004. Aurapten, a coumarin with growth inhibition against *Leishmania major* promastigotes. Braz. J. Med. Biol. Res., 37: 1847-1852.
- Oketch-Rabah, H.A., E. Lemmich, S.F. Dossaji, T.G. Theander and C.E. Olsen *et al.*, 1997. Two new antiprotozoal 5-methylcoumarins from *Vernonia brachycalyx*. J. Nat. Prod., 60: 458-461.
- Ozek, G., T. Ozek, G. Iscan, K.H.C. Baser, A. Duran and E. Hamzaoglu, 2008. Composition and antimicrobial activity of the oils of *Ferula szowitsiana* DC. from Turkey. J. Essent Oil. Res., 20: 186-190.
- Parker, S.L., T. Tong, S. Bolden and P.A. Wingo, 1996. Cancer statistics, 1996. CA Cancer J. Clin., 46: 5-27.
- Rigel, D.S., R.J. Friedman and A.W. Kopf, 1996. The incidence of malignant melanoma in the United States: Issues as we approach the 21st century. J. Am. Acad. Dermatol., 34: 839-847.
- Sauvain, M., N. Kunesch, J. Poisson, J. Gantier, P. Gayral and J. Dedet, 1996. Isolation of leishmanicidal triterpenes and lignans from the amazonian liana *Doliocarpus dentatus* (Delleniaceae). Phytother. Res., 10: 1-4.

- Shahverdi, A.R., F. Saadat, M.R. Khorramizadeh, M. Iranshahi and M.R. Khoshayand, 2006. Two matrix metalloproteinases inhibitors from *Ferula* persica var. persica. Phytomedecine, 13: 712-717.
- Shahverdi, A.R., A. Fakhimi, G. Zarrini, G. Dehghan and M. Iranshahi, 2007. Galbanic acid from Ferula szowitsiana enhanced the antibacterial activity of penicillin G and cephalexin against Staphylococcus aureus. Biol. Pharm. Bull., 30: 1805-1807.
- Shanker, M., D. Willcutts, J.A. Roth and R. Ramesh, 2010.
 Drug resistance in lung cancer. Lung Cancer Targets
 Ther., 2010: 23-26.
- Skarda, J., M. Hajduch and V. Kolek, 2008. Drug resistance in lung cancer. Cancer Ther., 6: 377-388.
- Soltani, F., F. Mosaffa, M. Irashahi, G. Karimi, M. Malekaneh, F. Haghighi and J. Behravan, 2010. Auraptene from *Ferula szowitsiana* protects human peripheral lymphocytes against oxidative stress. Phytother. Res., 24: 85-89.
- Soltanzad, F., S. Samadishams, J. Barar, H. Nazemyieh and Y. Omidi, 2012. Evaluation of cytotoxicity and anticancer effect of *Ferula szowitsiana* methanolic extract on lung cancer A549 cell-lines. Res. Pharm. Sci., Vol. 7.
- Su, B.N., Y. Takaishi, G. Honda, M. Itoh and Y. Takeda *et al.*, 2000a. Sesquiterpene coumarins and related derivatives from *Ferula pallid*. J. Nat. Prod., 63: 436-440.
- Su, B.N., Y. Takaishi, G. Honda, M. Itoh and Y. Takeda et al., 2000b. Sesquiterpene phenylpropanoid and sesquiterpene chromone derivatives from Ferula pallid. J. Nat. Prod., 63: 520-522.
- Torres-Santos, E.C., D.L. Moreia, M.A.C. Kaplan, M.N. Meirelles and B. Rossi-Bergmann, 1999. Selective effect of 2',6'-dihydroxy-4'-methoxychalcone isolated from *Piper aduncum* on *Leishmania amazonensis*. Antimicrob. Agents Chemother., 43: 1234-1241.