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The immune system is our major defense against viruses, tumors and other
“foreign nvaders’. The i1ssue of humans’ defense against viral mfections and the
reaction of mmune system to these infections are the main problems in practical
immunology. To understand the integrated behaviour of the immune system, there
is no alternative to Mathematical modeling. This current study seeks to extend the
one system of two differential equations originally developed by a system of three
differential equations. The system was used to model the behaviour of lymphoid
cells in the absence of viruses. The steady states and the stability for this
differential model were deduced. The model permitted the existence of two types
of stationary states. These are a stable state and an unstable state. It was found
from the study that a stable state represents the pre-programmed state of the
matured lymphoid cells to attack pathogens which may invade the organism. The
unstable state represents immuno-deficiency as a result of one or more cells
within the immune system not operating properly or the cells are absent
altogether.
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INTRODUCTION

The immune system is composed of two major
subdivisions, the innate or nonspecific which i1 our
first line of defense against invading pathogens right
from birth and function without requiring prior exposure
to microorganism or its antigens. The adaptive immume
system acts as a second line of defense and is
triggered when an infection eludes or overwhelms the
innate defense mechanisms and generates a threshold
dose of antigens. When the adaptive 1immune
response is activated, it culminates in the production
of antibodies and effector T cells. T cells, B cells and
natural killer cells play important roles m immunity
against viral infections. The functions of these cells
mclude the uptake and killing of intracellular pathogens,
lysis of infected host cells and presentation of antigens to
T cells and release of cytokines. Natural killer cells are
capable of klling virus infected or virus transformed
cells. For example, NK cells play an important role in the
nonspecific immune response against cytomegalovirus
infection and play an initial role in controlling viral
replication in altered self target cells particularly, mn
the fields of anti: HIV, HBV and HCV infections
(Dominik, 2004).

In the absence of viral infections, the cells of the
immune system grow and get ready to attack should a
pathogen gets into the system. It 15 therefore important to
study the dynamics of these cells in the absence of
infection.

The construction of mathematical models to enhance
our understanding of the dynamics of chronic viral
infections has proved fruitful (Perelson, 2002;
Nowak et al., 1996; Hews et al., 2010). Using mathematical
models to mterpret experimental and clinical results has
made a significant contribution to the fields of anti-, HT'V,
HBYVY and or HCV infections (Perelson et al, 1996,
Lau et al., 2000, Smith and Leenheer, 2003).

Most of these researches have looked at the immune
responses to particular viral infection but have not
studied the
absence of wviruses. The original model discussed
by Anderson and May (1992) of the
behaviour of two effector cells (T and B lymphocytes) in

behavior of these effector cells in the
consisted

the absence of viruses. These two effector cells were
representative of the generic lymphocytes which do not
provide first line of defense mn viral infections. Thus mn
this study, we couple the two equations from Anderson
and May (1992) representing the two lymphocytes that do
not provide the first line of defense with a third equation
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that represents the NK cells which provide the first line of
defense to give us a set of equations of mixed lymphocyte
types.

Vaccines against most viral mfections are not
currently available. This makes it very important for
researchers to focus on preventive measures through
information and education on the effect of viral infections
and measures that will help fight viral infections.

The mathematical techmiques which help us to
understand, forecast and control the spread of infectious
diseases like viral infections are diverse and growing
rapidly (Dimitrov and Nedialko, 2010). Some techniques
have been newly developed, whereas others build upon
existing methods fields mcluding
dynamical systems (Alfio, 2002), stochastic processes
(Arakaki ef al., 2012), statistical physics (Anderson ef al.,
1993), graph theory (Chudnovsky and Plumettaz, 2013),
statistics (Le Palud, 2007), operations research (Lee, 2005),
mathematical modeling and high-performance computing.
There are several population growth models which have

from diverse

been used for modeling disease progress curves.

The logistic growth model was chosen because
of its siumplicity and the many real world applications it
has. Tt can be applied in biology, ecology, statistics,
neural networks, reaction models (chemistry) and in
medicine.

MATERIALS AND METHODS

A logistic growth model was used to represent the
behaviour of three lymphoid cells (T, B and NK cells) in
the absence of viral infections. These cells were
considered since they are very effective in fighting most
viral infections. The growth rates of these lymphoid cells
were assumed to be the same. The constants reproduction
rates, the self-reproduction rate, death rates and the rate
at which they interact to saturate were considered in the
models, the equilibrium points and their stability for the
system of the extended differential equations were
analyzed and the stability of the linearized equations was
determined. Time histories of this system of differential
equations were also used to analyze the system.
MATLAB code solver ‘ode45’ was written to evaluate the
of this
equations. Parameter values which had been estimated by
Anderson and May (1992) were extended based on the
assumptions made for the current study.

nmumerical  solutions system of differential

The model: The model described the behaviour of
lymphocytes in the absence of viruses. Anderson and
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May (1992) first discussed this model by considering
two effector cells (T and B cells). Research has
shown the important role that Natural Killer cells play
m fighting viral infections but this effector cell was
not considered in the model of Anderson and May
(1992). Data indicate that there are two important
components of Nk cell response (Damels et af., 2001,
Busa et al., 2001). First, many of the NK cells which
exist before the mfection can kill virus-infected cells
because the virus cells are recognized by a number of
different receptors on the NK cells. Second, NK cells
bearing specific receptors can expand in response to
antigenic stimulation. This study has included the
dynamics of this third effector cell (Natural Killer
Cells). Therefore, the parameters involved in this
model are the three lymphoid populations denoted by
T(t), B(t) and N(t). There exist three lymphoid populations
T(t), B(t) and N(t). In the absence of the virus, there 1s a
limited number of each of these population types and
these populations are regulated by the interactions
between them. The following assumptions were made
as an extension of the work of Anderson and
May (1992):

New lymphoid cells of type T, B and NK cells are
produced by the bone marrow at constant rates of A,
A, and A, respectively

Lymphoid cells of type T, B and NK cells die at a per
capita rate of u, y, and p,, respectively

Lymphoid cells of the three types proliferate due to
contact with one another at a rate that saturates for
large values of T, B and NK

The assumptions lead to this system of differential

equations:

T=A, -pT+_BN 1)

(1 +b,TBN)
B‘:Ab_“b]g +ﬂ (2)

{1+ b, TBN)

a, TBN 3

N=A —_

T e BN (3)

A m Eq. 1 comresponds to the constant production
rate of T cells; T represents self-reproduction of T cells
and a, TBN/1+b,TBN corresponds to the logistic growth
rate of these effector cells. The interaction between the
three populations of lymphoid cells saturates, that is,
approaches a/b, as TBN -
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Tt is assumed that the production rates of the three
effector cells are equal which implies:

T=B=NK

Existence of steady states: By system of Eq. 1-3, we
obtained steady states by putting derivatives to zero. We
obtained (T* B* N*) = (0 0 0) as a trivial steady state of
the system. We obtamed the characteristics equation of
the system (1-3).

a,TBN 3, TEN 2, TEN a,TBN
1+blTBNA‘ et (+b,TEN) A B 1+ b, TBID A i (+b,TBI)
(4
ButT =B =N also:
a=4a, =4 —a,
b=b =b =b, (3
W=p, =, =p,
= A—puT+ ia =0 (6)
(1+bT?)
=buT*-(Ab+a)T’+uT-A = 0) (7)
The linearized matrix of system (1-3) is:
_ a,BN a, TN a,TB
' (1+b,IBN) {1+ b, TBNY {1+ b,TBN)’
a, BN a, TB a, TB
NTBN)=| ——— -, + b - > -
(1 +b,TBN) (1 + b, TBN) (1+ b, TBN)
a, BN a, TN ~ a, TB
(1+b, TBN) {1+ b, TBN)® * {1+ b, TBN)
(8)
T*-26T+125T-100=0 (9

RESULTS

The results of the study and the numerical methods
used to study the mathematical model are presented. We
present the time histories of this system of differential
equations and analyze the system qualitatively. MATLAB
codes were written to find the equlibrium pomts,
Jacobian matrices and eigenvalues in order to ascertain
the behavior of these effector cells and determine the
immune state. MATLAB ordinary differential equation
solver ‘ode45’ 1s used to compute the numerical solution
of the system of differential equations.

Data is from (Anderson and May, 1992) and by
assumption, we have added the third row.
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Table 1: Parameters values supplied by Anderson and May (1992)

Table 2: Classification of the equilibritm p oints

Lymphoid  Tnitial

cells Production  Rate of increase  Rate of decrease  Death rate
T AF1 a~=0.252 b= 0.008 p=1.25

B A=1 a,= 0.252 b,= 0.008 m=1.25

N A=1 a,— 0.252 b,= 0.008 =125

Table 1 shows the parameter values used m the
models.

Parameter values m row 2 and row 3 are due to
Anderson and May (1992). We chose for row 4 same
parameter values as Anderson and May (1992) so as to
have comparative results.

The data were substituted in Eq. 8 toget a 3 by 3
matrix. MATLAB codes were written to find the
equilibrium points and their corresponding eigenvalues.
The eigenvalues were then classified mto either a stable
point or an unstable point.

Behaviour of steady states in the absence of viruses: We
substitute parameter values mto (8) which yields:
T'-26T*+125T-100=10 (10)

The roots of this quartic equation were found using
MATLAB codes written by the authors and the roots are:

25.8183, -2.4193, 1.6010, 1.0000

It has already been shown that T = B = N, it then
shows that there exits four equilibrium points at:

T (25.82%(24% (16 1 (11)
B" |=|25.82 |, 2.4 |,/ 1.6 |and|1
N" 25.82 )| 24|16 1

Substituting the parameters of Table 1, into Eq. 8, we
get:

154 025N 0 252TH 0.292TH
(1+ 0.008TB I 1+ 0 008TBI? (1+ 0.008TB )
HTE)= 0.232B B 0.252TH 0.252TE
- 1+ 0.008TEN? 1+ 0.008TEN? (14 0. D08TBI)?
0 252B1 0 252TH 0.252TB
£1+0.008TBM? 1+ 0 008TBI? (1+0.008TBNY
(12)
At(T*B*N*)=(11 1), we obtain:
10 0.252B1 0.252TH 0.252TE
{1+ 0.008TBIT)* (1 +0.008TBI) (1+0.008T B
D= 0 252BN i 154 0252TN i 0.252TB i
(1+0.008TEL) {1+ 0. 00ST B (1+0 00T BT
0 252BN 0.252TH 1g5._ 0252TE
(1+0.008TEN)* (1+0.008TB ) (1+ 0.008TENY
(13
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Equilibrium point Figenvalues Classification

(1,1,1) A=~ 1.25, A;=-1.25, Agymptatically stable
As=-1.25

(1.6, 1.6, 1.6) Ar=-1.25, 4= 0.50, .:—4.25  Unstable Point

(25.8,25.8,25.8) A)=-1.25 A,=-1.25, Unstable Point

A= 4312642.00

(-24,-24-2.0  A=-1.25 A=-1.25, ,,=4.25 Unstable Point

—1.00198 0.248017 0.248017
J(1.1,1)=| 0.248017 -1.00198 0.248017
0.248017 0.248017 -1.00198

(14)

The eigenvalues were obtained to be A, =-1.2300,

A, =-1.2500 and A, = -0.5059.
At{T*, B* N*)=(1.6,1.6,1.6) we obtain:

—-0.645168 0.604832 0.604832
J1.61616)=| 0604832 —0.64568 0.604832 (15)
0.604832  0.604832 -0.645168

The eigenvalues were found to be; A, = -1.2500,
A;=-1.2500 and A, = 0.5645.
AL(T*, B*, N*)=(-2.4, -2.4, -2.4) we obtain:
0.584935 1.83491  1.83494
J(—2.4,-24,-24)=| 1.83494 0.584935 1.83494
1.83494  1.83494 0.584935
The eigenvalues were found to be A, = -1.2500,

4o =-1.2500 and A, = 4.2548.
At(T*, B* N*) = (25.8, 25.8, 25.8) we obtain:

112.9214 1141714 114.1714
J(25.8,25.8,25.8)=|114.1714 1129214 114.1714
114.1714 1141714 112.9214

The eigenvalues were found to be; A, = -1.2300,
-1.2500 and A, = 431.2642.
Table 2 the equilibrium points, their
corresponding  eigenvalues and the classifications of
these equilibrium points as indicated m Eq. 11.

The classification of the equilibrium points allows us
to qualitatively describe the behaviour of the system for

As

shows

all mitial values. There is one stable point (nodal sink) that
will attract solution curves that begin near it and that
around this point are three saddle points that will “bend”
solution curves that begin near them. We can therefore
predict that there will be one basin of attraction, for this
nodal sink which 13 bounded by three unstable solution
curves that pass through the nodal sink.

Tt is observed that all the eigen values corresponding
to the equilibrium pomt:
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T 1
B 1
N |1

Are the same and are negative as well. That is:

hy=-1.25 A, =-1.25and A, =-1.25

We say that this pomt 15 asymptotically stable. This
means that all solution curves will tend towards this point
for all initial conditions in its neighborhood. This
equilibrium point 18 also called a sink since all of the
eigenvalues have negative real part. This is the point
where the system 1s stable.

The eigenvalues corresponding to the equilibrium
point:

T} [16
B |=[16
N'| |16

Are A, =-1.25,4,=0.50and A, =4.25

Since the eigenvalues are real with mixed signs (one
negative and the other two positive), we say that this
equilibrium point is unstable and it is also called a saddle
point for the same reason of at least having one of its
eigenvalues as negative real part and one as a positive
real part.

The eigenvalues corresponding to the equilibrium
point:

T | [258
B" |=[258
N'| [258

Are A, =-1.25,A,=-1.25and A, =4.25

This equilibrium point is alse unstable since its
eigenvalues are of opposite signs.

The eigenvalues corresponding to the equilibrium
point:

T |24
B |=|-24
N | |24

Are A, =-1.25,A,=-1.25and A, =4.25

which 1s also an unstable point for the same reason
given above.

Figure 1 Hlustrates the behaviour of lymphocytes
the absence of the virus cells. The growth rates of T, B
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Fig. 1: Growth nature of lymphoid cells in the absence of

viruses (equal growth rates)
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Fig. 2: Growth nature of lymphoid cells in the absence of
viruses (equal but higher growth rates)

and Natural Killer cells were considered to be the same.
The cwrve shows that all the lymphocyte population
types mncrease with time when viruses have not invaded
the human body. We observe that the cells (T, B and Nk)
grow exponentially and reach a constant endemic
value of 25 which represent the carrying capacity. This
confirms the logistic growth nature of the lymphocytes
population.

Figure 2 illustrates the behaviour or growth nature of
the three Iymphoid cells (T, B and Nk) in the absence of
viruses. It 18 observed that there 1s exponential growth
rate at the initial stage and reaches a certain endemic
constant value which represents the carrying capacity of
the population types.

Figure 3 illustrates the growth nature of T, B and Nk
cells in the absence of viral infections. With equal growth
rates of T and B cells and different growth rate of NK
cells, 1t 15 observed that the growth nature still follows the
logistic pattern.

Figure 4 illustrates the behaviour of lymphoid cells in
the absence of viral infections. We observed that as time
increases all the lymphoid cells increase but at different
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Fig. 3: Growth nature of lymphoid cells in the absence of
viruses (equal growth rates of T and B but
different growth rate of kn cells)
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Fig. 4: Growth nature of lymphoid cells in the absence of
viruses (different growth rates)

growth rates. All the three cells increase exponentially at
the mmitial stages to reach a saturation point where there 1s
no sharp increase. This constant endemic value
(saturation point) represents the carrying capacity of the
population types.

DISCUSSION

The characteristics of the NK cells is to provide the
first line of defense to viral mfections. However, it 1s
observed from the study that their growth pattern is
similar to those lymphocytes that do not provide the first
line of defense. The results of this study are in conformity
with the study of Anderson and May (1992) who
considered the behaviour of two lymphocytes population
types (T and B). The growth nature of (T and B)
lymphocytes in the absence of viral infections which
was considered by Anderson and May (1992) 1s
similar to the third lymphoid cell (NK) which was
considered as an extension to the work of these previous
authors. Tt could be predicted that there would be
differences in the growth nature of these three
lymphoid cells as soon viruses mvade the human
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system. This is because the (NK) cells will provide the
first line of defense as (T and B) cells get ready to attack.

Thus until there is viral mnfection, their growth
activity cannot be separated. We observed from all the
figures that as time increases, there is always the
production of lymphoid cells. The lymphoid cells grow
exponentially i the imtial stages and they approach a
certamn constant value which represent the carrying
capacity of their population. This is the state where the
interaction between the lymphoid cells types saturate in
the mmmune state. At this pomt, the lymphoid cells are
said to be pre-programmed to react with any mvading
organism for that matter viruses that get into the immune
system. Tt was found from the study that the stable state
corresponded to the equilibrium point:

T
B
N

The other three equilibrium points corresponded to
unstable states. Tt was found from the study that NK cells
should be given priority if any immunotherapy is to be
made since 1t provides the first line of defence and these
cells do not also require more days to react with invading
viruses. The model, therefore, displays all of the major
macroscopic characteristics of the human immune
response to viral infections.

CONCLUSION

By numerical simulation analysis, the cells (T, B and
NK) grow exponentially and reach a carrying capacity as
time (t) increases. We were expecting that the NK cells’
growth pattern in the absence of viral infection would be
different from the lymphocyte types used by
Anderson and May (1992). However, we determined
otherwise. Thus before the inception of viral infection the
growth dynamics of the three types of cells are the same.
The growth nature of the Natural killer cells will be
different as viruses enter the human body. The model
permits the existence of two types of stationary states.
There i1s a stable state in the immune system and an
unstable state. The stable state represents the
pre-programmed state of the lymphoid cells to afttack
invaders should they enter the system.

The unstable state represents immuno-deficiency as
a result of one or more cells within the immune system not
operating properly or the cells are absent altogether.

Tt can be concluded that the lymphoid cells in a
persons’ immune state should be ready to fight invaders
if there are no deformities of the mmmune cells. It 1s
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recommended that further research be carried out on
variable sensitivity analysis and bifurcation to determine
which of the immune cells is so critical to be
pre-programmed to fight viral mfections when viruses
invade the human body. Tt is also recommended that this
study applied to a specific viral infection i1 the near
future.

APPENDIX

MATLAR codes for numerical solutions and simulations

p=[1,-26, 125,-100];

r=roots (p)

p=[1,-26, 125,-100];

r=roots (p)
A=[-1.25,0.05,0,0,0;0,-0.08,0,0,0;0,0,-1.0505,0.1996,0.04;0,0,0.1996,-
1.0505,0,0,0,0,0,-0.9];

Lambda—eig (A)
B=[-1.21,0.05,0,0,0;-0.008,-1.24,0,0,0;0,0,-1.25,0,0.04;0,0,0,-
1.25,0,0,0,0,0,0.99];

Lambda—eig (B)
C=[-1.21,0.05,0,0,0;-0.008,-6.25,0,0,0;0,0,-1.25,0,0.25;0,0,0,-
1.25,0,0,0,0,0,0.05];

Lambda—=eig(C)
D=[-1.21,1,0,0,0;-0.008,-24.99,0,0,0,0,0,-1.25,0,1;0,0,0,-1.25,0;0,0,0,0,-
0.1];

Lambda—=eig (D)

function yprit =ypritty)

yprit(1) =1-1.25%y(1)+0.252*y (1)*y (2)*y G)(1+0.008*y (1) *y (2)*y (3));
yprit(2) =1-1.25%5(2)+0.252%y (1)*y (2 *y (3)/(1+0.008*y (1) *y (2)*y (3));
yprit(3) =1-1.25%y(3)+0.252*y (1)*y (2)*y G)(1+0.008*y (1) *y (2)*y (3));
yprft = [yprit(1) yprit(2) yprit(3)];

function nk =nk(t,y)

nk(1) =1-1.25%y(1)+0.252% (1) *y )"y G)(1+0.008* (1) *y(2)*y (3));
nk(2) =1-1.25%y(2)+0.252%y (1) *y )"y G)(1+0.008* (1) *y(2)*v (3));
nk(3) =1.5-1.875*y(3-0.378*y(1)*¥(2)*y(3)A1.5+0.01 2%y (1) *v(2)*v(3));
nk = [nk(1) nk(2) nk(3)]';

function paper =paper(t,y)
p a p e r ( 1 = 1 . 5
1.875%y(1)+0.378*y(L)*y (2)*y G (1.5+0.01 2%y (1)*v(2)*v(3));
p a e T 20 = 1 . 5
1.875%y(2)+0.378*y (L)*y (2)* ¥y B (1.5+0.01 2%y (1)*v(2)*v(3));

e T 3 = 1 5

p a p ( = .
1.875%y (300,378 *y (1 )y (2 3y (3V(1.5+0.01 2%y (1 )y (2)*y(3));

paper = [paper(1) paper(2) paper(3)]’;

function var =varit,y)

var(1) =1-1.25%y(1H0.252%5(1)*y(2)*v(3)/(1+0.008"y(1) *y (2 *y(3));
var(2) =1.5-1.875*y(2-0.378*y(1)*¥(2)*y(3)A1.5+0.01 2%y (1) *y(2)*v(3));
var(3) =2-2.5%y (3)+0.504 *y(1)*y(2) *y(3)/(2+0.016*y(1)*y (2)*y(3));

var =[var(1) var(2) var(3)]"
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