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The behaviour of lymphoid cells in the absence of viruses has already been published
in the year 2013. This study is a continuation of recent attempts to understand, via
mathematical modeling, the behavior of lymphoid cells in the absence and in the
presence of viruses. In this study, which is the behaviour of lymphoid cells in the
presence of viruseswill betreated in three respects. Firstly, theinnate immune response
stage, secondly, the overlap of innate and adaptive immune responses stage and finally,
the adaptive immune response stage of viral infections. The adaptive immune response
stage considerstheviremiaand cell-mediatedimmuneresponses stage. The steady states
and thestability for these differential model sare deduced. Each of the model spermit the
existence of two types of stationary states. There is the state of no infection, with no
virus cellswhile the other isthe state of co-existence where avirus cell persists against
the background of immune response. The state of no infection is asymptotically stable
and a state of infection is unstable. It is found from the study that the state of no
infection represents the preparedness of the immune state prior to the infection.
Numerical simulation analysis suggests that the cells (NK, T, T, and B) grow
exponentially asaresult of proliferation and saturation because of the contacts between
them and reach thereforereach plateau astime (t) increases. Theseimmunecellsareable
to reduce viral load to the barest minimum if not reducing it to zero.
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INTRODUCTION

Infectious diseases are the second leading cause of death
among humans worldwide, but number one cause of death in
developing countries (Heffernan et al., 2009). The practical
importance of understanding the dynamics and evolution of
infectious diseases and specifically vira infection is steadily
increasing inthe contemporary world (Iwasaet al., 2007). This
study isrich with epidemiol ogical models, which have greatly
added to our understanding of outbreaks, epidemics and
pandemics of diverse pathogens. Generaly, diseases
transmitted by viral agents, such as influenza, meades,
rubella (German measles) and chicken pox, confer immunity
against reinfection, while diseases transmitted by some
bacteria, such as tuberculosis, meningitis and gonorrhea,
confer only partial immunity against reinfection (Braver,
1984).

Resistance is better known as immunity. The immune
system is the body’s defense mechanism against infectious
diseases. The immune system includes the organs, tissues,
cells and molecules responsible for immunity. There are two
types of immunity. The first is innate (natural or native or
nonspecific) which refersto the basic resistance to disease that
an individua is born with. The second one is the specific or
acquired or adaptive immunity which requires the activity of
a functiona immune system involving cells called
lymphocytes and their products (Nirvanagrewal, 2012).

Innate defense mechanisms provide the first line of host
defense against invading pathogens until an acquired immune
response develops. The interaction between the pathogen and
the components of innate immunity triggers generation of an
adaptive immune response that usually consists of pathogen-
specific cytotoxic T cells (CTLs) and antibody molecules
produced by B cells (Heffernan et al., 2009).

Acquired or adaptive or specific immunity reflects the
presence of a functional immune system that is capable of
specifically recognizing and selectively eliminating foreign
microorganisms. T cells, B cellsand natural killer cellsplay an
important role in immunity against viral infections. T cells
have been divided into two major subsetsthat are functionally
and genetically different.

T helper cells (CD4" T cells) which function to mediate
responsesby the secretionsof lymphokinesthat stimulate other
cellsinvolvedintheimmuneresponses. The second subset are
cytotoxic T cells (CD8" cells) and these cells are directly
involved in the killing of certain tumor cells, virus infected
cells, transplant cellsand sometimes eukaryotic parasites. The
CD8' T cellsarea soimportant in down regulation of immune
responses. In this case, they are referred to as T suppressor
cells. Natural killer cellsare similar tothe CD8* T cells. They
function as effector cells that directly kill certain tumor cells
and virus infected cells. When the innate immune response
failsto control the infection, the adaptive immune response is
activated and thisinvolves the production of antibodies and
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primed T cells. The CD8" cytotoxic T lymphocytes (CTLSs)
kill target cells infected with viruses or bacteria. The CD4"
T-helper (Thl) cells provide help for B cells to develop into
antibody secreting plasma cells following stimulation by
foreign antigens such as bacteria antigen and tumor cells.
Antibodiesare specialized proteinsthat specifically recognize
and bind to specific antigens that call their stimulation.
Antibody production and binding to foreign antigen is often
critical as a means of signaling other cells to engulf, kill or
remove that substance from the body. Antibody production
and secretion of cytokines that play a role in immune-
regulatory functions or have a direct effect on invading
pathogens (Germain, 1994). Human immune responseto viral
infections is caused by a variety of cells in the innate and
adaptive mechanisms (Baron, 1996). Many different
population growth models have been used for modeling
disease progress curves. The logistic model has many real
world applications in biology, ecology, statistics, neural
networks, reaction models (chemistry), Fermi distribution
(physics) and in medicine. Logistic growth model has been
assumed in many epidemic models where population growth
islimited (Ackleh and Allen, 2003). The main point about the
logistic model is that it is a particularly convenient form to
take when seeking for qualitative dynamic behaviour in
populations (Murray, 2001).

Mathematical modeling using differential equations and
dynamical systems have been used in the studies of immune
response to various infections, most notably that of the HIV.
The question now is how does the human body develop
immunity or immune response to these infectious diseases
such as viruses? The mathematical biologists Anderson and
May (1992) proposed a theory and a mathematical model to
explain this phenomenon. Bittner and Wahl (2000) studied the
immune response against conserved and variable vird
epitopes. The main immune cell studied was cytotoxic T
lymphocytes. Waodarz (2004) reported on mathematical models
which have investigated the importance of lytic and non-lytic
immune responses for the control of viral infections. Lytic
immune responses fight the virus by killing infected cells,
while non-lyticimmune responsesfight thevirusby inhibiting
viral replication. All these researchers have not dealt with the
behavior of these lymphoid cells which fight the viruses.
Wodarz et al. (2007) published a study on the dynamics of
killer T cell inflation in viral infections in which authors
analyzed theimpact of innate and adaptive immune responses.
According to the study of these authors, a potentially
contributor to cytotoxic T Iymphocytes inflation is a
competition between the specific cytotoxic T lymphocytes
response and an innate Natural Killer (NK) cell response.
Hancioglu et al. (2007), presented a simplified dynamical
model of immune response to uncomplicated Influenza A
Virus (IAV) infection which focuses on the control of the
infection by the innate and adaptive immunity. Long et al.
(2008), a so worked on aM athematical M odeling of Cytotoxic
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Lymphocyte-Mediated |mmune Responseto HepatitisB Virus
Infection inwhich the Human Immunodeficiency Virus (HIV)
infection was successfully to simulate the interaction between
HIV and cytotoxic lymphocyte mediated immuneresponseand
also considered the indicator of the liver cell damage between
Hepatitis B and the cytotoxic mediated immune response and
the indicator of the liver cell damage. Wiah et al. (2011)
presented a mathematical model of immune response to
Hepatitis B Virus (HBV) infection which focuses on the
control of theinfection by theinterferons, innate and adaptive
immunity. Nakata (2011) published study on the global
dynamicsof acell mediatedimmunity inviral infectionmodels
with distributed delays which admitted three possible
equilibriastates. Pawel ek (2012), al so published astudy onthe
mathematical modeling of virus infections and immune
responsesin which HIV infection was considered. The author
of this study examined the relative roles of target cell
availability and innate and adaptive immune responses in
controlling the viruses. In addition, the study of Pawelek
(2012), provided aquantitative understanding of thebiol ogical
factors which could explain the viral and interferon kinetics
during a typica influenza virusinfection. Ben-Shachar and
Koelle (2014) aso published a study on Minimal within-host
dengue models which highlights the specific roles of the
immuneresponsein primary and secondary dengueinfections.
Tian and Wang (2015) published a study on the stability and
analysis for vira infections which focused on humoral
immunity.

These authors dealt with specific vira infections and
therefore do not seem to continue with the work of Anderson
and May (1992). This current study seeks to modify the work
of Anderson and May (1992) which consisted of the behaviour
of two effector cells (T and B lymphocytes) in the presence of
viruses. Anderson and May (1992) considered the adaptive
stage of virus clearance. This study seeks to extend it by
including the dynamics of two effector cells (Natura Killer
cellsand T helper cells) and also to consider the innate
immune response stage where these NK cells provide the first
line of defense to viral infections. The study also seeks to
consider an overlap of the innate and adaptive immune
responses of these effector cells to the viral infection and
finally consider the adaptive stage which also has two
sub-divisions thus viremia stage and cell-mediated immune
responses.

MATERIALSAND METHODS

The model is developed in four stages as the innate
immune response stage, the overlap of innate and adaptive
immune responses stage, the viremia stage of viral clearance
and finally the cell-mediated adaptive immune response stage.
The model of the study contains five variables and these are
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Natural killer cells (N), Cytotoxic T cells (T,) T helper cells
(T) and B lymphocytes (B). The assumptions of the
mathematical model as well as certain parameter values are
borrowed from the dynamics and data provided in the study of
Anderson and May (1992). The constants reproduction rates,
the self-reproduction rate, death ratesand the rate at which the
immune cells and the viruses interact to saturate are
considered in the models, the equilibrium points and their
stability for the system of the extended differential equations
are analyzed and the stability of the linearized equations is
determined. Time histories of these systems of differentia
equations are al so used to analyze the systems. Phase portrait
is drawn to show the interaction between the T cells and the
virus cells. Parameter values which had been estimated by
Anderson and May (1992) are extended based on the
assumptionsmadefor the construction of the modelsand these
are used in the study. The different phases used in the model
are presented.

The model describes the behaviour of lymphoid cellsin
the presence of viruses. This model described three main
stages. Thefirst stage is the innate immune response stage of
viral infection, the second isthe overlap of innate and adaptive
immune responses stage of viral infection and lastly the
adaptive immune response stage which was considered by
Anderson and May (1992), but with the difference that two
sub-stages are considered (viremiaand cell-mediated immune
adaptive immune responses to viral infections). The innate
immune response stage of viral infection model involves one
type of lymphoid population (Natural killer cells) denoted by
N and the virus population denoted by V. The overlap of
innate and the adaptive immune responses stage of viral
infection model also involves three types of lymphocyte
populations denoted by T, B and N respectively. The final
model which was considered by Anderson and May (1992)
and which is the fina stage is also considered with the
inclusion of two sub-stages.

Innate immune response: Innate immune response is
essential for the early detection of invading viruseswhich help
to trigger the activation of adaptive immune responses. The
rate of interaction betweentheviruscells(V(t)) and thenatural
killer cells (N(t)) occurson the 1st day of thevira infection as
they try to provide the first line of defense when the human
body is infected with virus. The rate of interaction between
these two cells has the following key properties:

New lymphoid cells of (NK cells) are produced by the
bone marrow at a constant rate of A,

NK cellsdie at a per capitarate of p,

NK cells kill virus cells in proportion to the number of
contacts between them

The virus cells have an intrinsic growth rate when they
enter aliving being
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Model of innateimmuneresponse: These assumptions lead
to the system of differential Eq. 1 and 2;

N= An'unN+yNV (1)
V = rV-kVN )

where, A, corresponds to new lymphoid cell of NK cells
produced. The p,N corresponds to the rate at which NK cells
die. The YNV corresponds to the rate of growth of NK cells
duetointeractionswith theviruscells. ThetermrV represents
the intrinsic growth of the virus cellswhile KNV corresponds
to the rate at which the virus cells die due to the interactions
with NK cells.

Existence of steady statesin the innate immune response
stage: In the presence of virus cells in the human body, we
considered three main stages. These were the innate immune
response stage, the overlap of innate and adaptive immune
responses stage and finally the adaptive immune response
stage.

By system of Eq. 1 and 2, the steady states are obtained:

A-pN+YNV =0 ©)
rV-pVN =0 4

where, N*, V* isatrivial steady state solution. The Jacobian
matrix of system of Eq. 1 and 2 isasfollows:

IN,V) =

{MHHV YN} )

—pV  y—KN

Overlap of innate and adaptive immune responses stage:
Thisstageiswherethe T cytotoxic, T helper and B cells have
just started to fight the virus cells. In this case, dl the four
lymphoid population types will still be in the human body
before the N cells become inactive. The interaction with the
virus cells has the following key properties:

» T cytotoxic cells directly kill virus cells in proportion to
the number of contacts between them and they proliferate
because of these contacts

e TheT helper cells aso activate the T cytotoxic cells to
kill the virus cells

» T Helper cellsdo not directly interact with theviruscells,
but they continue to regulate the B cells to produce
antibodiestokill theviruscellsand the cellsproliferate as
well

Model of overlap of the innate and adaptive immune
responses stage: The key propertiesof (N, B, T,and V) cells
lead to the system of Eq. 6-9 of differential equations:
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Z—T:An—unNﬂ(NV (6)
f:Ab—ubB+(l+a’LTb“TfB)+KVB 7)
dthc _a, _“IT+(1?t-)I:C'I'-I}I}])+pTCV 8)

(;—\tlzrV—KVB—yVN ©

where, A in Eq. 6 representsthe constant production rate of B,
M,B isthe self-reproduction of B cells at

" = a,T,B
° (1+b,T B)

representsthe proliferation and saturation nature of the growth
of thetwo lymphocytes (T, B) asthey interact. Theterm KVB
in Eq. 7 represents growth rate of B lymphocytesasaresult of
the interaction with the virus cells. The term AT,V in Eq. 8
represents the growth rate of T as a result of the interaction
between the T cytotoxic cellsand the virus cells. Theterm rV
in Eq. 9 represents the intrinsic growth rate of the virus cells.

Existence of steady states of the overlap of innate and
adaptive immune responses. By system of Eg. 6-9, we
obtained steady states by putting derivatives to zero. We
obtained (N*, B*, T*, V*) as atrivial steady state solution.
Similarly, we obtained the Jacobian matrix as.

-, +7V 0 0 YN
0 gty 0 KB
(1+b,T,8)
J(N,B,T,.V)= T
0 0 p— T
(1+bTT,)
—-pV —kv 0 r—kB-yN

(10)

Viremia stage of adaptive immune response: B cells, T
cytotoxic cellsand T helper cells have been recruited to take
full control in fighting the viral infection. This is because
Natural killer cellsare overwhelmed and have becomeinactive
by the virus cells. Here, T helper cells activate B cells to
produce more antibodiesto fight the virus. The T helper cells
stimulatethe T cytotoxic cellsto maturity to kill theviruscells
directly. The interaction between the lymphocytes and the
viral cells has the following key properties:

» Viruscells have anintrinsic growth rate as they arein a
living being



J. Med. i, 15 (4): 160-177, 2015

T helper cellsactivatethe T cytotoxic cells to maturity to
kill virus cells in proportion to the number of contacts
between them and they proliferate because of these
contacts

T helper cells do not directly interact with the virus, but
they continueto regulate the growth of B cellsto produce
more antibodies to kill the virus cells

Model of the viremia stage in the adaptive immune
response stage: Therate of interaction of the cells (B, T, T,
and V) results in the following system of Eq. 11-14 of
differential equations:

, a,T,B
B=A -uB+—2""—+KVB
> (b, T B) (1D)
, aTT
T =A, —pT, +—eh 4 ATV
Cc [} MC Cc (1+ bcTcTh) [ (12)
- a,T.B
T =A, - T, +—nh> 4 5VB
h h~Hnlh (1+b,T,B) p (13)
V' =1V -AVT,-pVB (14)

where, A, representsthe constant production rate of B, T, is
the self-reproduction of B cells at:

__aMB

Mo = (1+b,T B)

representsthe proliferation and saturation nature of thegrowth
of thetwo lymphocytes (T,B) asthey interact. Theterm KVB
in Eq. 11 represents growth rate of B lymphocytes as a result
of theinteraction with theviruscells. Theterm ATV in Eq. 12
represents the growth rate of T, as aresult of the interaction
between the T cytotoxic cellsand the virus cells. Theterm rv
in Eqg. 14 represents the intrinsic growth rate of the viruscells.

Existence of steady statesin the viremia stage of adaptive
immune response: By system of Eqg. 11-14 we obtained
steady states by putting derivatives to zero. We have the
corresponding Jacobian matrix as:

aT,
(1+b,T,B)°

aB

+KV >
(1+b,T,B)

0 KV

“Hy

0

—H+

PR Y AT,
(1+b.TT,)

aT,
JB,T,T,V)= "

3T,
(1+b,T,B)
,p\/

aB
N
o (1+b,T,B)
0

S+pV 0 B

Y r-AT, -pB

(15)
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Cell-mediated adaptive immune response stage: Cell-
mediated immune response is very important in the fight
against vira infections. Thisis especially with infections that
involve oncogenic viruses (that is: virusesthat spread directly
from cell to contiguous cell). Antibody in such situations
cannot reach thevirusbut rather virally induced antigen on the
surface of the infected cell can be recognized by different
effector cellssuch ascytotoxic T cells. Cell-mediated immune
response involves T cytotoxic cells (CD* 8 T cells) and T
helper cells (CD* 4 T cells).

The interaction between the lymphocytes and the viral
cells has the following key properties:
» Viruscells have an intrinsic growth rate asthey arein a
living being
Activated T helper cells produce a number of cytokines
that defend against viruses directly
The T cytotoxic cells have the ability of producing
cytokines to directly attack the virus cells
The interaction between T helper and T cytotoxic cells
lead to proliferation and saturation of the two effector
cells
The T helper and T cytotoxic cells are the main
components of cell-mediated antiviral defense

The interaction of these cells results in the following
system of differential equations:

' acTcTh
T, =A,—pu T +——+ ATV
c c I"I'C c (1+ bCTCTh) c (16)
' ahTth
T, =A,—p, T, +——=—+ETV
h h—Hnly (1+b,T,T.) ET, a7
V' =1V -AVTT, (18)

where, A, represents the constant production rate of T, YT,
represents the self-reproduction of T cytotoxic cells at:

'J — acTcTh
@A+ b.T.T )

represents the proliferation and saturation nature (plateau) of
the growth of thetwo lymphocytes (T.T,) asthey interact. The
termAT.V in EqQ. 16 representsgrowth rate of T, lymphocytes
as aresult of the interaction with the virus cells. The term rV
in Eq. 18 representstheintrinsic growth rate of theviruscells.
It should be noted that the dynamics of T, and T, cells are
similar which reflectsin Eq. 16-17:

Jacobian matrix of cell-mediated adaptive immune
response stage:
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Table 1: Parameters values supplied by Anderson and May (1992)

Table 2: Parameters values in the model estimated by the authors

Initial Rate of Rate of
Lymphocytes production increase decrease Death rate
T, A.=1 a8,.=0252 b=0008 =125
T, A,=1 8,=0252  b,=0008 =125
B A,=1 a,=0252  b,=0008 =125
N A,=1 8,=0252  b,=0008 p,=1.25
— +a“7T"2 +AV ati-r"z AT,
(1+bT,T.) (1+bT,T.)
aT, aT,
J(T.T,.V)= -~ Y Y
(Te V) (1+b,T,T,)? . (1+b,T,T.)° e -
—AVT, —-AVT, r—AT.T,
(19)

Statement of the problem: At the dawn of the 21st century
humankind is faced with new, more resilient diseases
including HIV/AIDS and hepatitis B that come along with a
death toll from preventable infectious diseases that remain
high due to poor sanitation and malnutrition among other
conditions in many parts of the world. A good understanding
of the dynamics of viral infections, the various stages of viral
infectionsand theinteraction of immune cells at these specific
phases are important to help our natural countermeasures
which could be augmented with modern medicinal techniques
and immunotherapies (Table 1).

Computational procedure

MATLAB: Ordinary differential equation solver ‘oded5’ is
used to evaluate the numerical solutions of the systems of
differential equations. The MATLAB softwareisinstalled on
a Laptop with the specification as Toshiba (Brand) with 4.4
rating of Windows experience index with a processor of
Intel (R) Pentium (R) CPU B 960 at 2.20 GHz, memory
installed is 2.00 GB and 32 bit operating system and has
windows 7 ultimate edition installed. The MATLAB software
version is R2009a. The data are substituted into Eq. 5, 10, 15
and 19 to get 2 by 2, 4 by 4, 4 by 4 and 3 by 3 Jacobian
matrices for innate immune response stage, overlap of innate
and adaptive immune responses, viremia stage of adaptive
immune response and cell-mediated immune response stage
respectively. MATLAB codes were written to find the
equilibrium points and their corresponding eigenvalues. The
eigenvalues were then classified into either a stable point or
unstable point which describes the behaviour of these
eigenvalues.

RESULTS

This study is an extension of the model by Anderson and
May (1992) on human immune response to virus infectious
diseases and it has yielded results that are in consistent with
themodel by these previous authorswith the additional results
which comealong with the addition of other phases of immune
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Parameters Description Value
r Growth rate of virus cells 0.10
Y Interaction rate of NK cellsand V cells 0.05
A Interaction rate of T cytotoxic and V cells 1.20
My Desath rate of NK ells 1.25
K Desth rate of virus Cells 1.25
p Theinteraction rate of B and V cells 0.10
& The interaction rate of T helper and V cells 0.85

response which had been captured by Anderson and May
(1992). The various results of the study are presented.

Linearization stability analysis: Although it is usualy not
easy to determine the stability of an equilibrium point of a
system of differential equations, the determination of the
asymptotic stability isusually quite easy. Themethodinvolves
linearization of the equations about the equilibrium point and
the determination of the stability of the linearized equations.
The numerical calculation of eigenvalues of matrices can
easily be carried out with many mathematical software
packages(e.g., MATLAB, MAPLE, MATHEMATICA). The
linearization method examines the behaviour of the system
close to equilibrium point. The stability of the equilibrium
point can be determined by finding the eigenvalues of the
system.

Equilibrium pointsin the innate immune response stage:
We obtained the equilibrium points of systems of Eq. 3 and 4
by substituting the parameter values of Table 2.

1-1.25N+0.05 NV = 0 (20)

0.0V-1.25VN =0 (21)
The equilibrium points are determined by Universa

Mathematics Equation Solver.
There exists two equilibrium points and these arein

e

Substituting the values of the parameters of Table 2 in
Eqg. 23, we have:

N’

v (22

I(N,V) = -1.25+0.05V  0.05N -
’ | -128v 0.1-1.25N (23)

At (N*, V*) = (0.8,0) we obtained:
3(08,0)- -125 0.04 o
0 -09 (24)

The corresponding eigenvalues were found to be:
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1.25%y*x

i

Dx/dt = 1-1.25*x+0.05* x*y, dy/dt = 0.1*y-

| ¥
% AL
A Wills

Natural killer cells

Virus cells

Fig. 1: Interaction betweenthenatural killer cellsandthe viral
cells at the early stages of viral infection

Table 3: Classification of the equilibrium points in the innate immune

response stage
Equilibrium point Eigenvalues Classification
(0.8,0) A, = 1.2500, A, = -0.9000 Asymptotically stable
(0.08, -225) A, =-12.5894,2,= 0.0894  Saddle point
A, =-1.2500 and X, = -0.9000 (25)
At (N*, V*) = (10, -255) we obtained in Eg. 26:
3(20,-225) - -125 0.004 26
' 28125 0 (26)
The corresponding eigenvalues are:
A, =-12.5894 and A, = 0.0894 27

It is observed from Table 3 that one of the equilibrium
pointsis stable while the other oneis unstable. This gives an
assurance that even at the early stages of viral infections, the
human systemis somehow stableif only the natural killer cells
are functioning well.

Figure 1 represents the interaction between the natural
killer cellsandtheviruscells. They-axisrepresentstheN cells
whiles the x-axis represents the virus cells. We observed that
all the arrows converge to a particular point (0.8, 0). This
confirms that there is stability when the virus cells enter the
human body for the 1st week. The natural killer cellsare able
to suppress vira abundance to a very low level in the host
within this 1st week.

Figure 2 representstheinteraction betweentheN cellsand
the virus cells in the innate immune response stage. In this
figure, weplot N cellsand virus cells against time. The curve
shows both cell s decrease with time but the rate of decrease of
the virus cells is greater than the rate of decrease of the N
cells. The virus cells decrease drastically with time. We
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observed that the virus cells die faster than the natural killer
cellsastimeincreases. Asaresult of theinteraction of thetwo
cells, both cells decrease asymptotically as time increases.
Besides, the virus cells approach a constant endemic value of
about 0.001 whereasthe N cellsapproach afixed value of 0.8.

Equilibrium points of the overlap of innate and adaptive
immuner esponsesstage: We obtained the equilibrium points
of systems Eq. 6-9 by substituting the parameter values of
Table 2:

dN

o -1~ 125N+0.05NV (28)
B _1 12584 922NB 4050 (29)
dt (1+0.008T,B)
dTe 3 g057, 02218 ATV (30)
t (1+0.008T,B)
dv
o -0V -005VB-125VN (31)

MATLAB isthen used to find the equilibrium points as:

N* 20)(1.0)(5.0)(0.0769 14.2882+£13.973i
B"| | 08| 08| 0.8 0.0769 an 1.3589 £ 0.0538i
T*| | 20|10}/ 5.0} 0.0035 1.4416+ 0.6238i
A 0)LO0 )L 0){ -235 12.4945+ 5.2595i
(32)

We realized that two of these equilibrium points involve
complex numbers and therefore are neglected. By substituting
parameter values, we obtained:

~1.25+0.05V 0
0.252T,
(1+0.008T,B)’
0.05T,
(1+0.008T,B)*
-0.05V

0
0.2528
(1+0.008T, B)’
L 02528
(1+0.008T,B)*
0

0.05N

0 -1.25+ +0.05V 0.05B

JN,B,T,V)=

0 -125 1.20v

-1.25V 0.1-0.05B-1.25N

(33)
At (N*, B*, T*, V*) = (1, 0.8, 1, 0) we obtained:
~1.25 0 0 0.05
1(L0810) = 0 -23019 0.1584 004
(10810)= 0 0.0393 -2.3019 0
0 0 0 -1.1900
(34)
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Viruscells
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0.6
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0.4
0.3
0.2
0.1

Natural killer and viral cells

0.0 1 1

Time (days)

Fig. 2: Growth nature of the Natural killer cells (N) and the Viral cells (V) at the innate immune response stage

The corresponding eigenvalues were found to be:

A, =-2.2230, A, = -2.3808,

Ay =-1.2500 and 2, = -1.1900 (35)
At (N*, B*, V*) = (5, 0.8, 51, 0) we obtained:
—2.46 0 0 0.25
0 -04317 0.12452 0.04
J(5,0.8,5,0.8) =
0 0.19648 -2.3456 0.96
-1 -0.04 0 —6.1900
(36)
The corresponding eigenvalues were found to be:
A =-6.1217, ), = -2.5280,
Ay =-2.3579 and 2, = -0.4197 (37)
At (N*, B*, T*, V*) = (20, 0.8, 20, 0) we obtained:
-1.25 0 0 0.05
0 27110 01584 0.04
J(20,0.8,20,0) =
0 39611 -1.0916 0
0 0 0 —24.94
(38)
The corresponding eigenvalues are found to be:
A, =3.0239, )\, = 2.3983,
A; = 1.2500 and A, = -24.9400 (39

At (N*, B*, T*, V*) = (0.0781, 0.07686, 0.8126,
-235.1599), we obtained:
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-13
0
J(0.0769,0.0769,0.0035,-235) = 0

29375 -11.758

0 0 0.003845
—12.9993 0.01523 0.003845
0.00013 -1.2348  -282
0 —0.00003

(40)
The corresponding eigenvalues are found to be:
A, = 1.4035, 1, = 2.8973,
A =12.740 and ), = -13.0002 (41)

Itisobserved from Table4 that thereisgreater percentage
of stability when (NK, T, and B cells) get recruited to fight the
infection. The behaviour of two of the equilibrium points are
asymptotically stable while the other two are not stable.

Figure 3 represents the overlap of innate and adaptive
immune response stage of vira infection. In this figure, we
plot N cells, T cytotoxic cells, B cells and virus cells against
time. Weobserved that B and T cellsincreaseto acertain peak
value of 20 and approach this constant endemic value astime
increases. However, the N killer cells and the virus cells
decrease to certain constants values of about 0.8 and 0.0001,
respectively. This confirms the fact that the N cells get
overwhelmed and become inactive after some time of viral
infection.

Equilibrium points in the viremia stage of adaptive
immune response; We obtained the equilibrium points of
Eq. 11-14 by substituting the parameter values of Table 2.

1-1258+ - 222NB g o5yp -0 (42)
(1+0.008T B)

1-1257 + 2221 4507y =0 (43)
(1+0.008T,T,)
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Fig. 3: Growth nature of the viral cells and the immune cells
(Natural killer cells, T cellsand B lymphocytes) at the
overlap of innate and adaptiveimmuneresponses stage

1-125T, + 22218 g 1yg_0 (44)
(1+ 0.008T, B)
0.1V ~1.20VT, -1.25VB =0 (45)

MATLAB isthen used to find the equilibrium points as:

B') (-10.0792) (-1.4616) ( 0.0810 ) ( 0.5379
T, | | 355400 || 0.4864 || 0.7538 || 0.8650
T, | | 00735 |'| -1.6365|'| 0.0841 |'| 0.5479
A 4919 )\ 1.4487 ) (-9.0231) | -0.6609

(46)

And four other complex equilibrium points which have
been displayed in the Appendix.

We evaluated the equilibrium points by substituting the
parameter values of Table 3-4:

BRI Y 0 02528 125v
(1+0.008T,B) (1+0.008T,B)
0 -1.25+0.252T, +1.20V 0.252T, 1.25T,
BT, V)= 02527, 02528
22T 010v 0 1254 5 0108
(1+0.008T,B) (1+0.008T,B)
-0.10v 1.20v 0 0.10-1.20T_-0.10B

(47)

At (B*, T*, T,*, V*) = (-10.0792, 35.5400, -0.0735,
4.9196) we obtained:

13.7503 0 -25101 6.1495
0 4635 8.9561 44.425

0.4737 0 -3.7601 -0.1008

-0.4920 5.9035 0 —41.5401

(48)

J(-10.0792,35.5400,-0.0735,4.9196) =

The corresponding eigenvalues were found as:

A, = -46.6113, ., = -3.6669,
A, = 13.6031 and 2., = 9.7602 (49)

At (B*, T.*, Th*, V*) = (-1.4616, 0.4864, -1.6365, 1.4487),
we obtained:

0.1451 0 -0.3640 1.8109
0 0.0760 0.1226 0.6080
J(—l.4616, 0.4864,-106365, 1.4487) = 02627 0 16140 01462
—0.1449 1.7304 0 —-0.3375
(50)
The eigenvalues were found as:
A\, = 0.6865, A, = 0.3353,
A; = -1.6458 and ), = -1.10064 (52)

At(B*, Tx, T.*,V*)=(0.0810,0.7538,0.0841,-9.0231),
we obtained:

-12.5079 0 0.0202 -11.2789
J(0.0810,0.7538,0.0841,-9.0231) = —0.:3)814 712'(?565 _Oifgo _(2)9:.?;4
0.9023 -10.8277 0 -0.8127

(52)

The corresponding eigenvalues were found as:

A, =-12.2183, 4, = -10.1715,
A = -2.9879 and ), = -1.2974 (53)

At(B*,T*, T.*,V*)=(0.5379, 0.8650, 0.5479, -0.6609),
we obtained:

-31897 0 01340 -0.8261

0  -109050 00218 10813

3(05379,08650,0.5479,-0.6600) = .= T D

00661 -07931 0  -09918
(54)

The corresponding eigenvalues were as below:
A =-3.1767, A, = -1.4653+0.8241i,

A; = -1.4653-0.824i and ), = -1.0953 (55)

Table5 displaystheclassification of equilibrium pointsof
the viremia stage of adaptive immune response. Two of the
equilibrium pointsare unstablewhiletheother two equilibrium
points are stable.

Figure 4 presents the viremia stage of adaptive immune
response which involves the interaction between B cells, T
cytotoxic cells, T helper cells and the virus cells. In this
figure, weplot B cells, T cytotoxic cells, T helper cellsand
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Table 4: Classification of the equilibrium pointsin the overlap of innate and adaptive immune responses

Equilibrium point

Eigenvalues

Classification

(1,08,1,0) A\ =-2.2230, A, = -2.3808, A, = -1.2500 and %, = -1.1900 Asymptotically stable
(5,0.8,5,0.8) A =-6.1217, %, = -2.5280, A, = -2.3579 and X, = -0.4197 Asymptotically stable
(20, 0.8, 20, 0) A =3.0239, A, = 2.3983, A, = -1.250 and A, = -24.94 Saddle point

(0.0769, 0.0769, 0.0035, -235) A\, = 1.4035, ), = -2.8973, A, = -12.740 and 2, = -13.00 Saddle point

Table 5: Classification of the equilibrium points in the viremia stage of immune response

Equilibrium point Eigenvalues Classification
(-10.0792, 35.54, -0.0735, 49196) A\ =-46.6113, A, = -3.6669, A, = 13.6031, A, = 9.7602 Unstable point
(-1.4616, 0.4864, -1.6365, 1.4487) A\, = 0.6865, A, = 0.3353, A; = -1.6458, A, = -1.1064 Unstable point

(0.081, 0.7538, 0.0841, -9.023)
(0.538, 0.865, 0.548, -0.661)

A =-12.218, A, = -10.172, A, = -2.988, 2., = -1.297

M =-3.177, ), = -1.465+0.824i, A, = -1.465-0.824i, ), = -1.095

Asymptotically stable
Stable sink

35
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Fig. 4: Growth nature of theviral cellsV andtheimmune cells
(T helper, T cytotoxic and B lymphocytes) at the
viremia stage of adaptive immune response

virus cells against time in days. We observe that B cells, T
cytotoxic cellsand T hel per cellsriseto peak valuesof 3.0, 1.5
and 1.2, respectively. There is avery sharp increase in B as
compared with T cytotoxic and T helper cells. On the other
hand, virus cells decrease drastically towards zero. This
indicates that B cells are more active in the viremia stage of
immune response to viral infections.

Cell-mediated stage of adaptive immune response: By
substituting parameter valuesinto Eq. 16-18, we obtained the
Jacobian matrix hence finding the corresponding equilibrium
points using MATLAB:

8y Al AT,
(1+ b, TT, ) (l+ bcThTC)
_ a,T, _ aT,
(TTV)= 1+bT,T. " h+(1+thth)+§V ST
—AVT, -AVT, r=AT.T,
(56)
The equilibrium points are as follows:
T, 1) (5) (20) (0.3221) (-0.3646
T, |=|1[|5],|20|| 02583, -0.2285 (57)
A 0)l0)\ 0){-2252) | 4.7646

We evaluate the equilibrium points by substituting the
parameter values of Table 2 into Eq. 19:

0.252T, 0.252T,

-125+ +1.20V 1.20T,

(1+0.008T,T,)* (1+0.008T,T,)*
I(T, T, V)= % -125+ % +0.85V  0.85T,
—1.20VT, ~120VT, 0.1-1.20T,T,
(58)
At (B*, T, T,*, V*) = (1, 1, 0) we obtained:
-2253 0248 1.20
J(ZLZL O) =| 0.248 -2253 0.85 (59)

0 0 -11

The corresponding eigenvalues were found to be;
A, =-2.0050, A, = -2.5010 and A, = -1.100

At (B*, T*, T,*, V*) = (5, 5, 0), we obtained:

-1892 06076 6
J(5,5,0)=| 0.6076 -1892 4.25 (60)
0 0 299

The corresponding eigenvalues were found to be:
A, =-1.2844, ), = -2.4996 and 1, = -29.90

At (B*, T, T*, V*) = (0.3221, 0.2583, -2.252), we
obtained:

23136 01864 24
J(20,20,0)=| 0.1864 -23136 17 (61)
0 0 -4799

The corresponding eigenvalues were found to be;
A, =-2.1272, )\, =-2.50 and A, = -479.90

At (B*, T*, T,*, V*) = (0.3221, 0.2583, -2.252), we
obtained:
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Fig. 5: Growth nature of the viral cellsV and the immune cells (T cytotoxic and T helper cells)

Table 6: Classification of the equilibrium pointsin the cell-mediated stage of adaptive immune response

Equilibrium points Eigenvalues

Classification

11,0
(5,5,0)

(20, 20, 0)

(0.3221, 0.2583, -2.252)
(-0.3646, -0.2285, 4.7646)

Xy = -2.0050, A, = -2.5010 and A, = -1.100
A, = -1.2844, 4, = -2.4996 and A, = -29.90
M =-2.1272, %, =-250 and A, =-479.90
A = 0.1296, A, = -3.9391 and 2, = -3.1447
A, = 0.1296, X, = -3.9391 and ), = -3.1447

Asymptotically stable
Asymptotically stable
Asymptatically stable
Saddle point
Saddle point

-38713 0.065 0.3865
J(T,.T,,V')=| 0065 -3083 02196 (62)
0.698 0.8704 0.00016

The eigenvalues were found to be:
A = 0.1296, &, = -3.9391 and X, = -3.1447

At (B*, T*, T,*, V*) = (-0.3646, -0.2285, 4.7646), we
obtained:

4376 -0.0575 -0.4375
J(T, T, V' )=| -00575 27082 -01942| (63)
13065 20846 0.00003

The eigenvalues were found to be:
A =0.1296, ), = -3.9391 and ), = -3.1447

Table 6 displayed the equilibrium points in the cell
mediated stage of the adaptive immune response. Thisisthe
last stage of immune cells’ destruction of viral infections. The
behavior of the equilibrium points show stability morethanthe
other stages provided there are no deficiencies with the two
main cells (T, and T,) that are the main components of the last
phase of viral destruction.

Figure 5 the cell-mediated stage of adaptive immune
response stage of viral infection. Thisinvolvesthe interaction
between T cytotoxic cells and T helper cells, respectively
(CD* 8 cellsand CD" 4 cells). We plot T cytotoxic, T helper
and Viruscellsagainst timein days. We observed that virus
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cells approaches zero with time. There is a sharp increase in
thegrowth of T helper and T cytotoxic cellsastimeincreases.
The growth rate of T cytotoxic cellsis very fast as compared
to T helper cells. We observed that as T cytotoxic approaches
a certain endemic value of 200, T helper cells approach a
constant endemic value of 70 within the same duration of
growth. We observethat at thislast phase of immune response
toviral infections, the viral l0ad approaches zero. This shows
that T cytotoxic cells are more active than the T helper cells.

RESULTS

This study is an extension of Anderson and May (1992)
model on human immune responseto virusinfectious diseases
and it has yielded results that are in consistent with these
workers except that this current study included the dynamics
of athird lymphoid cell (Natura Killer Cells) which provide
afirst line of defence and if atherapy is designed for it, vira
infections could be compacted faster. In the presence of
viruses Anderson and May (1992) considered only one phase
of the adaptive immune response and had three different
behaviour of the equilibrium states which are two unstable
states at:

A, =-1.25, 4, = -0.75397 and A, = 0.09 and
A =-1.254,=0.05and A, = 0.05

respectively and one asymptotically equilibrium state as
A = -1.25, A, = -0.6785 and A; = -0.1. The last stage of
immuneresponsewhichwas considered by Andersonand May
(1992), which yielded three steady states gives five behaviour
of steady states in this current study and these are three
asymptotically stable states and two unstabl e states.
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The current study realizes two behaviour of equilibrium
points at the innate immune response stage (the first line of
defense) that was not considered by Anderson and May (1992)
and these are.

A =-125 and A, = -0.90-asymptotically stable and
A, =-12.5894 and A, = 0.0894-saddle point. Four behaviour of
equilibrium points are realized at the overlap stage of
immune response and these are: A, =-2.2230 A, =-2.3808,
Ay = -1.2500 and A, -1.1900-asymptotically stable:
A =-6.1217, A, =-2.5280, A, = -2.3579 and ), =-0.4197:
A =-3.0239, A, =-2.3983, &; = -1.250 and A, = -24.94-
asymptotically stable: A, =-1.4035 A, =-2.8973, A, =-12.740
and A, = -13.00-saddle point and finally-saddle point. These
behaviour indicate the systematic stability that the human
system maintains at the various stages of immune response to
viral infections. The viremia stage gives only one stable state
of equilibrium since NK cells become inactive and T helper
cellsare also not active. The only stable state is:

M =-3.177 A, = -1.465+0.824i,
A = -1.465-0.824i and ), = -1.095

which is aso a stable sink. All the rest of the equilibrium
points give unstable states and these are:

M =-46.6113, A, = -3.6669,
A; = 13.6031 and A, = 9.7602

A, = 0.6865, A, = 0.3353,
Ay = 1.6458 and 1, = -1.1064

A, =-12.218, 4, =-10.172,
Ay = -2.988 and A, = -1.287

The study also considered the dynamics of the two types
of T cells thus T cytotoxic and T helper cells that have
different dynamics. Theinclusion of these cellshave helped to
explain the viral infection in awider perspective. We realized
that there is stability in the human body when the virus cells
enter the body. All the models considered give an equilibrium
state that is asymptotically stable. At this point, the lymphoid
cells are said to be in the immune state and any further
infections result in a rapid re-equilibration. The models,
therefore, display al of the major macroscopic characteristics
of the human immune response to viral infections.

DISCUSSION

Thisresultsisin consistent with the results of Anderson
and May (1992) which predicts two different types of study
states thus a stable state and an unstable state even though
their model is on two lymphocyte population types and this
current study also considers four lymphocyte types. The
unique aspect of this study isthe inclusion of other two types
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of effector cells thus Natural Killer cells and T helper cells
(NK cellsand CD* 4 cells). The current study had considered
the immune response to viral infection in awider perspective
and each of the models at the specific stages of immune
response also predictstwo different types of steady statesthus
a stable state and an unstable state. The model of Bittner and
Wahl (2000) predicts the existence of four different types of
study states thus a state of no infection, infection being
controlled by immune cells, all mutants held in check by
T lymphocytes and responses to both conserved and variable
epitopes control theinfection. Theresults of Bittner and Wahl
(2000) are in consistent with the results of both the current
study and the study of Anderson and May (1992). The main
immune cell studied in the model of Wodarz (2004) is
cytotoxic T lymphocytes and the results show that T
lymphocytes induce pathology in the clearance of viral cells
and also suppress viremia to a certain degree but there is no
obvious correlation between pathology and viral load. The
study of this author is on Hepatitis C Virus infection. The
results of this current study isin consistent with the results of
Wodarz (2004), sincethe numerical simulation analysisshows
the suppression of the viral load at al the stages of vira
clearance. Thesimulation and sensitivity analysisof themodel
of Hancioglu et al. (2007) shows that the diseases fall into
either of thesethree categories: asymptomatic di seases, typical
diseases and severe diseases which represent various viral
loads and the analysis of the adaptive immune response
showed that whenever there is sufficient antibody response
with enough specificity, the health of the host will restore,
irrespective of theintensity of theinnate response. Theresults
of Hancioglu et al. (2007) are in consistent with this current
study since the simulation analysis of the final stage of the
adaptiveimmuneresponse of the current study showed enough
stability in the host. The categories with their corresponding
viral loads also corresponds to the continuous reduction of
viral load at the various stages of this current study. The
results of the study of Wiah et al. (2011) showed the existence
of diseasefree and endemic equilibrium states. Theanalysisof
theadaptiveimmuneresponse stage of thissamestudy showed
that with sufficient antibody responsewith enough specificity,
the dynamics is able to restore the health of the host
irrespective of theintensity of theinnate response. Theresults
of Nakata (2011) showed three possible equilibria and these
arean uninfected equilibrium and infected equilibriumwith or
without immuneresponse depending onthebasic reproduction
number for vira infections. This results is aso in consistent
with the results of the current study which are infection
equilibrium (unstable state) and infection free equilibrium
(asymptotically stable equilibrium state). The model of Tian
and Wang (2015), established two threshold parameterswhich
represents the infection-free equilibrium and the endemic
equilibrium respectively. Thisresultsis also in the consistent
with the results of the current study.



J. Med. Sci., 15 (4):

This study has extended the work of Anderson and May
(1992) which considered only the adaptive immune response
stage of viral infection and also dealt with two main effector
cells thus (T cytotoxic and B cells) to four main stages with
four main effector cells thus (T,, T,, B and NK cells) thus
innate, overlap of innate, viremia and cell-mediated immune
responses stage. The system of three differential equations by
Anderson and May (1992) of the adaptive immune response
stage has been extended to a system of four differential
equations yielding three asymptotical stabilities as compared
to the one asymptotical stability in the adaptive immune
response stage in the work of Anderson and May (1992). By
numerical simulation analysis, the immune system is seen to
be very effective in the fight of viral infections if the specific
immune cells (T,, T,, B and NK cells) function effectively. By
stability analysis, there is the state of infection free steady
state(s) at each stage of the stages of immune response to
viruses that corresponds to the asymptotical stability which
represents the ability of the immune cells (T, T,, B and NK
cells) to fight viruses without the activation by drugs if there
are no deformities of these cells. In summary, all the
equilibrium points fall into either an asymptotical stable state
or unstable state as compared to the study of Bittner and Wahl
(2000) which shows four main stability states. The state of
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endemic steady state where the equilibrium points are
unstable represents the immune-deficiency as a results of one
or more of these cells not functioning properly or such cells
may be absent altogether. The simulation analysis shows that
at all the stages of immune response to viral infections, the
cells of the immune system considered increase as viral load
decreases which agrees with the three categories of viral loads
of the study of Hancioglu et al. (2007). In summary, the
stability analysis in the current study is in consistent with the
results of Anderson and May (1992), Bittner and Wahl (2000),
Wodarz (2004), Hancioglu et al. (2007), Wiah et al. (2011),
Nakata (2011) and Tian and Wang (2015).

CONCLUSION

It can be concluded that the characteristics and growth
nature of the immune cells are different thus it is
recommended that further research be carried out on variable
sensitivity analysis and also bifurcation analysis to determine
the specific immune cell which is paramount to fight viral
infection and at what specific stage it will function. It is also
recommended that further research be carried on a specific
viral infection in the near future which could predict an
immunotherapy for such a viral infection.

Appendix: MATLAB Codes for numerical solutions and simulations

Window

3/22/15 1:47 PM MATLAB Command
>> egsd4="'1-1.25*n+0.05%n*v,1-1.25*
(1+0.008*c*b) +1.20%*c*v O.l‘?—O.QE'X*E—-.ZS'!‘"'

n,b,t,v]=solve (egs4)

.0
-0
-0

nl—~

D.3769281394289206858525665826:03?5

0.076922874422843172565897336693
298671364045006735730707834 - 0.57152780611818425330003327778503*1
+ 1.3589298671364045006735730707834

.3589
.571527680611818425330003327778503*1

- 31.973246678410112516839326769586
- 31.973246678410112516839326769586

|mmm

0.
0.
0.
a8

209

2

(= =y =]

(L]

0.00353068153701053684220461927991408

T

S2%1

0.62375851277973591704E068906771
1.441613175343104323706840578E637 -

-235.00068
.49451666038383295056743867822€ - 5.25945571¢6
.2594557161358761260533913617437*1 + 12.494516

12
>> ++31

172

+ 1.4416131753431043237084057688637
0.62375851277973591704806890677152*1

(= =y =

445259190025532528481318
1358781260533913617437*1
66038383295056743867822¢6



J. Med. Sci., 15 (4): 160-177, 2015

3/22/15 8:45 PM MATLAB Command Window 1 of 1

>» J=[-1.25,0,0,1;0,2.7111,0.1245,0.004;0,0.7859,2.7111,0:0,0,0,-24.94];
lambda=eig (J)

lambda =

3.0239
2.3983
-1.2500
-24.9400

»» K=[-1.25,0,0,0.05;0,-2.3019,0.15644,0.05;0,0.0393,-2.3019,0.04;0,0,0,-1.1900];
lambda=eig (K)

lambda =

-2.2230
-2.3808
-1.2500
-1.1900

>> L=[-2.46,0,0,0.25;0,-0.4317,0.1245,0.04;0,0.19648,-2.3456,0.96;-1,-0.04,0,-6.19];
lambda=eig (L)

lambda =

-6.1217
-2.5280
-2.3579
-0.4197

>> M=[-13,0,0,0.00385;0,-12.9993,0.01523,0.00385;0,0.000138,-1.2348,-282;293.75, ¢
-11.75,0,0.00003];
lambda=eig (M)
lambda =
1.4035
-2.8973
-12.7400
-13.0002

>

3/23/15 10:27 PM MATLAB Command Window 1 of 1

>> eqgs9='1-1.25*b+0.252*b*h/ (1+0.008*b*h)+1.25*v*b,1-1.25*c+0.252*c*h+1.20*c*v,1-1.25*h+0. ¥
252*b*h/ (140.008*0*h) +0.1*v*b, 0,1%v=-1.20*c*v=-1.25*t*b";
(b,t,h,v]=30lve (=2gs9)

b =

-10.07921130264838794982203814072

-1.4615901379635667701207132146362

0.081044021553026695234089752733822

0.5379481295458412319760505042483¢6

2.3543842536103182780996377979055*1 + 2.4163693505738574204552053137759
3.397945931244142675688139026356%1 + 1.8234101735485213134494405174067
1.82341017354685213134494405174067 - 3.397945931244142675868139026356*1
2.4163693505738574204552053137759 - 2.3543842536103182780996377979055*1
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3/29/15 9:15 PM MATLAB Command Window 1 of 1

>>» eqs9l='1-1.25*b+0.252*b*h/ (1+0.008*b*h)+1.25*v*b,1-1.25%c+0.252*t*h+1.20*t*v,1-1.25«
*h+0.252*b*h/ (1+40.008*b*h) +1.25*%v*b,1.28*v-1.20*c*v-1.25*Cc*b";
[b,t,h,v]=s0lve (egs9l)

b=

-2.30830381903157740220505015476€37

0.52113209816193083976781651701228 - 0.36059820181348122708371092874345*1
12.430080857862859323483990406856%1 + 4.00314341483793317686467768E8277081
7.7878687626€43757515803771488896*1 - 1.0647870821430771995931914964172
0.36059820181348122708371092874345*1 + 0.52113209816193083976781651701228
- 7.78786B87626643757515803771488896*1 - 1.06476870821430771995931914964172
4.0031434148379331786467786277081 - 12.430080857882859323468399040685¢€*1

-2.3083038190315774022050501547€37

0.52113209816193083976781651701228 - 0.36059820181348122708371092874345*1
12.430080857862859323483990406856*%1 + 4.00314341483793317686467768E8277081
7.7878687626€643757515803771488896%1 - 1.06476870821430771995931914964172
0.36059820181348122708371092874345*1 + 0.52113209816193083976781651701228
- 7.78786876266437575156803771488896*1 - 1.0647870821430771995931914964172
4.0031434148379331786467786277081 - 12.430080857882859323468399040685¢€*1

4.9196377188843944604195924689823

1.4487198154083134724704797629053

-9.02307207732681230144605651375542

-0.66087403618€632049771245001377311

- 6.5131248943€644771879000030043282*1 - 3.7624703431230085067262916525668
- 1.6723476107915930014304217749334*1 - 6.9496071063965584862409325398872
1.6723476107915930014304217749334*1 - 6.9496071063965584862409325398872
€.5131248943644771879000030043282*1 - 3.762470343123008506726291652566¢8

>

3/29/15 9:15 PM MATLAB Command Window 1 of 1

>>» eqs9l='1-1.25*b+0.252*b*h/ (1+0.008*b*h)+1.25*v*b,1-1.25%c+0.252*t*h+1.20*t*v,1-1.25«
*h+0.252*b*h/ (1+40.008*b*h) +1.25*%v*b,1.28*v-1.20*c*v-1.25*Cc*b";
[b,t,h,v]=s0lve (egs9l)

b=

-2.30830381903157740220505015476€37

0.52113209816193083976781651701228 - 0.36059820181348122708371092874345*1
12.430080857862859323483990406856%1 + 4.00314341483793317686467768E8277081
7.7878687626€43757515803771488896*1 - 1.0647870821430771995931914964172
0.36059820181348122708371092874345*1 + 0.52113209816193083976781651701228
- 7.78786B87626643757515803771488896*1 - 1.06476870821430771995931914964172
4.0031434148379331786467786277081 - 12.430080857882859323468399040685¢€*1

-2.3083038190315774022050501547€37

0.52113209816193083976781651701228 - 0.36059820181348122708371092874345*1
12.430080857862859323483990406856*%1 + 4.00314341483793317686467768E8277081
7.7878687626€643757515803771488896%1 - 1.06476870821430771995931914964172
0.36059820181348122708371092874345*1 + 0.52113209816193083976781651701228
- 7.78786876266437575156803771488896*1 - 1.0647870821430771995931914964172
4.0031434148379331786467786277081 - 12.430080857882859323468399040685¢€*1
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3/29/15 9:15 PM MATLAB Command Window 1 o0f 1
h-
-3.1270348387713496780007840927685
0.53425072072661073343673747186798 - 0.3585267B8659682699560009542903909*4
0.15896567407997017732532116384176%1 + 0.084714797562780693158198281778671
- 0.48661765431350562760509315464832*1 - 0.419424294368416496549612419156632
0.35852678865982699560009542903909%1 + 0.53425072072661073343673747186798
0.48€61765431350562760509315464832*%1 — (0.419424294368416496549612419158832
0.084714797562780693158198281778671 - 0.15896567407997017732532116384176+%1
v o=
1.79290360B74636786726022166275
- 0.6460071666595659845573836154889%1 — 0.14324513868370154728400378451535
1.472423843119628251889908729404*1 - 1.9747371406943394603137309927268
2.1121554750048570739676€239458€72 - 2.618009907608478064259493520818652*1
0.6460071666595659845573836154889%1 - 0.14324513866370154728400378451535
2.6180099076847806425949520818652*1 + 2.1121554750048570739676239458672
= 1.472423843119628251889908729404"1 - 1.9747371406943394603137309927268
33
3/29/15 9:46 EM MATLAB Command Window 1 of 2

>> egsldl='l-1.25*p+0.252*b*nh/ (1+0.008*b*h) +1.25%v*b,1-1.25%c+0.252*c*h/ (1+0.008*h*t) +1. ¥

20*c*v,1-1.25%h+0.252*b*h/ (1+0.008*b*h) +1.25*%v*b, 0.1%v-1.20*%c*v-1.25%c*b";
[b,t,h,v]=30lve (2gsl0l)

h =
0.54784513812813845239656514912214
-1.79412755208491374422434353089002
0.081104003219724946762279984164653
-1.7274039143012657312961146979B¢
0.520021341174B81596142134455284746
11.5009083398471245954316373110644*1 + 0.B22708786228B84985332619496782354
9.6655124037352359077577765839018*1 - 0.440326988163E817540047457315€67301
10.063953438633371557578026698089*1 + 0.121030241B8291001E8833246244994239
0.121030241682%10018533246244994239 — 10.063553438633371557578096698089*1
- 9.6655124037352359077577765839016*1 - 0.44032698816361754004745731567301
0.82270878522384985332619496782394 - 11.500808398471245954316373110644*1
t=

0.54784513812813845239656514512214

-1.7941279520849137442243435308909

0.081104003219724948762279984164653

-1.727403914350126573512961146979€E8E

0.52002134117461596142134455284746

11.500908398471245954316373110644*1 + 0.822708786228E84985332619496782394

9.6655124037352359077577765839018*1 - 0.4408269881636817540047457315€67301

10.063953438€3337155757809660280809*%31 + 0.12103024182910018833246244994239

0.12103024182910018833246244994239 - 10.063953438633371557578096698089*1

- 9.6655124037352359077577765839018*1 - 0.440826988163681754004745731567301

0.82270878622884985332619496782394 - 11.500908398471245954316373110644¢*1
h:

-211.92332510143939769342462098151

-2.125883682855496386851570026044

0.08413375200089976065603304473999

38.839612429698708816170902861674

0.528686201467173342634333001835544

0.028399386006264018812185674618466*1 + 0.045506386501574159479995657506582
- 0.14204123915928157804988406438495*1 - 0.060150162150111823217265684846002
9.9689759813867883004712981676927*1 + 0.14143360252158584309736130111922
0.14143360252158584399736130111922 - 9.9689759813867883004712961676927*1
0.142041239159281576804588406438495%1 - 0.060150162150111823217265684846002
0.045506386501574159479995657506582 - 0.02838938600626401B8812185674618466*%1

-0.57044770516651826152670814327312
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3/29/15 9:50 PM MATLAB Command Window 2 of 2

1.7985150039086140508287631053964
-8.880227792114363974942680798%188
1.8032480828633834533774592919951
-0.643008392954771€31003405B82792418
5.8049794997426350362212066646393*1 - 12.3215670E8410099651624473487461
3.248102837116103777227961503668 - 6.981€6137888€618753796938512142806*1
- 10.482741703198782393916030874717*1 - 0.21370891239173657175217550371023
10.482741703198782393916030874717*1 - 0.21370891239173657175217550371023
6.5816137888618753756939512142806*1 + 3.248102837116103777227861503668
- 5.8049794997426390362212066646393*1L —- 12.32156708410099651694473487461

4/25/15 6:24 PM MATLAB Command Window 1 cof 1

>> eqsl7="1-1.25*t+0.252*t*h/ (14+0.008*t*h) +1.20*%t*v,1-1.25*h+0.252*t*h/ (1+0.008*t*h)+0.¥

85%h*wv, 0.1%v—-1.20%c*h*v";
(t,h,v]=sclve (egsl7)

Tt =

1.0

5.0

20.0
0.32263449119674238891245452669129
-0.36464501481891556487125566541758

1.0

5.0

20.0
0.25829021883006519178380609633745
-0.22853276459769252547965528973967

0

o

0
-2.2523863497157964313235835808¢644
4.7646412516765807450490737769428

>

4/5/15 1:58 PM C:\Users\MADAM HAWA ADUSEI\Documents‘\MATLAB\ydm.m 1 of 1

function ydm=ydm(t,y)
vamn=[1-1.25*y(1)+0.05*y (1) *v(2);0.1*y(2)-1.25*y (1) *v(2)];

function overlapZ =overlapz(t,y)

overlap2 (1)=1-1.25*y(1)40.05*y(1)*v(4);

overlap2 (2)=1-1.25*y(2)+0.252%y (3) *v(2) / (1+0.008*%y(3) *y(2) )+0.05*y (4) *v(2) :
overlap2 (3) =1-1.25*y(3)+0.252*y(2)*y(3)/(140.008*y(2)*y(3))+1.20%y(3)*y(4):
overlapz (4) =0.1"y(4)-0.05*y(4)*y(2)-1.25*y(4)*v(1):

overlap2 = [overlap2(l) overlap2(2) overlap2(3) overlap2(4)]':

funcrtion adaptive =adaptive(t,y)

adaptive (1)=1-1.25*y (1) +0.232*y (3)*y(1)/ (1+0.008*y(3)) *y(1)+1.25*y (1) :
adaptive(2) =1-1.25*y(3)+0.252*y(2)*y(3)+1.20*y(2)*v(4):

adaptive (3) =1-1.25*y(3)+0.252*y(3)*y (1) /(140.008*y(3)*yv(1))+0.1*y(4) *v(1);
adaptive (4)=0.1*y(4)-1.20*y(4)*y(2)-1.25*y(4)*y(1):

adaptive = [adaptive(l) adaptive(2) adaptive(3) adaptive(4)]"':
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4/25/15 7:25 EM C:\Users\MADAM HAWA ADUSEI\Documents\MATLAB\cmiadaptive.m 1l of 1
function cmiadaptive =cmaidaptive (t,y)
cmiadaptive (1)=1-1.253*y(1)+0.252*y (1) *y(2)/(1+0.008*y{1)*y(2))+1.20*y (1]} *y(3);
cmiadaptive (2] =1-1.25"Yy(2)+0.252*y(2)*y(1l)/ (L+0.008*y (2] *y(Ll))+0.85"y(2)*Y(3);
cmiadaptive (43)=0.1*y(3)-1.20%y (3)*y(1) *v(2);
cmiadaptive = [cmiadaptive(l) cmiadaptive(2) cmiadaptive(3)]1':
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