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Spinal Cord Injury (SCI) is still a devastating clinical problem with irreversible
consequences leading to permanent functional loss and life time disability. This study
was conducted to assess the healing effect of bone marrow-derived mesenchymal stem
cells on locomotor function and changes of Tumor Necrosis Factor alpha (TNF-α) after
SCI in mice. Forty two BALB/C mice were divided into 3 equal groups of control, SCI
and treatment [transplantation of 5×104  Bone Marrow Stem Cells (BMSCs)]. The SCI
was induced by compression for 2 min at T10 and injury bilaterally. The femoral and
tibial bones were used for bone marrow isolation and culture was made using
Dulbecco’s  Modified   Eagle’s   Medium   supplemented   with  fetal  bovine  serum,
L-glutamine and penicillin/streptomycin. Cell morphology was evaluated in all passages.
Characterization of BMSCs was conducted by reverse transcription polymerase chain
reaction and by osteogenic differentiation of BMSCs. The ELISA was undertaken for
TNF-α. Open field locomotion was evaluated by Toyama mouse score. The BMSCs
were plastic adherent and fibroblastic spindle-shape. MSCs were positive for CD90 and
negative for CD34 and CD45. Osteogenic differentiation  was  noticed  when  stained 
with alizarin  red.  The  serum TNF-α level increased after 24 h, 3 and 5 weeks post-SCI
and was time dependent. The neurological score significantly improved  after  8  weeks 
after  BMSC transplantation. Transplantation of BMSCs was shown to decrease the
TNF-α level and inflammation in injured spinal cord and improve the neurological
outcome. These findings can be added to the literature for reduction of inflammation in
SCI and improvement of neurological outcome after transplantation of BMSCs.

Key words: Bone marrow, mesenchymal stem cells, TNF-a, spinal cord injury, mice

1Bentolhoda Sadr Campus, Farhangian University, Bushehr, Iran
2Stem Cell and Transgenic Technology Research Center, 
Shiraz University of Medical Sciences, Shiraz, Iran 
3Department of Regenerative Medicine, University of Manitoba, Manitoba, Winnipeg,
Canada

16

http://crossmark.crossref.org/dialog/?doi=10.3923/jms.2016.16.24&domain=pdf&date_stamp=2016-03-15


J. Med. Sci., 16 (1-2): 16-24, 2016

INTRODUCTION

The relatively permanent nature of Central Nervous
System  (CNS) injury is an important dilemma, especially if it
is related to Spinal Cord Injury (SCI) (Tempel  et al., 2015).
Sports and recreational activities, work-related accidents,
motor-vehicle accidents and falls at office or home were
reported to be the major causes of trauma to the cord while
most of SCI victims are young and otherwise healthy and
suffer the burden of a life-long disability (Kwon et al., 2011)
The annual incidence of SCI was estimated to be about 20-40
persons per million in the world (Cadotte and Fehlings, 2011).
The SCI as a serious clinical problem suddenly deprives the
patients of neurologic function and decreases their quality of
life by developing complications such as chronic pain,
spasticity, decubitus ulcers, bowel/bladder dysfunction and
compromised sexual function (Scovil et al., 2012). The SCI
has not only a burden to the concerned patient and their family
but also in a  great  extent  to  their  society  by  means  of
socio-economical dropdown of the spinal cord injured patient
family, loss of man power to the society and maintenance cost
of the patient (Draulans et al., 2011).

After SCI, the pathological sequelae are categorized to
two broad chronological events of primary and secondary
injuries (Oyinbo, 2011). The  rst phase is due to a direct
mechanical trauma to the spinal cord characterized by axonal,
oligodendrocyte and neural cell death (Grossman et al., 2001).
Accordingly, biologically relevant animal SCI models were
focused on development of animal injury models that may
reliably mimic human SCI (Chamankhah et al., 2013). 

Several factors are secreted by astrocytes and microglia
leading to an increase in the migration of leukocyte to the site
of SCI (Weber et al., 2007). Microglias are activated by
increasing the level of proin ammatory cytokines, including
interleukin-1-α (IL1-α), interleukin-1-β (IL-1β) and Tumor
Necrosis Factor-alpha (TNF-α) (Pineau and Lacroix, 2007)
TNF-α is a pro-inflammatory, pro-apoptotic cytokine that
cause various biological actions, like the induction of
apoptosis (Tracey, 2011). The role of TNF-α is extended from
the immune system to neuro-inflammatory in the nervous
system (Leung and Cahill, 2010). Therefore, there is a need to
improve functional recovery of spinal cord after injury
including control of inflammation (Dyck et al., 2015), rescue
of neural tissue (Kwon et al., 2013) stimulation of axonal
regeneration by modulation of the lesioned environment
(Eftekharpour et al., 2008) or promotion of remyelination
(Gauthier et al., 2013). 

Currently, the care in the acute phase is often limited to
administration of high doses of corticosteroids and surgical
stabilization and decompression to possibly attenuate further
damages (Fehlings et al., 2011).  The  therapeutic interventions

to promote neuronal regeneration may range from genetic
modifications  and   stem   cell   transplantation   to 
exogenous injection of neuroprotective factors (Tempel  et al.,
2015). A large  number   of  studies  were  undertaken  to 
determine  the effects  of  transplanting  a  variety  of  stem 
cells  or  stem cell-derived cells in SCI using different
strategies and approaches to address the glial scar and
facilitate neuroanatomical plasticity (Eftekharpour et  al.,
2008;   Karimi-Abdolrezaee    and   Eftekharpour,  2012;
Alluin et al., 2014).

Mesenchymal  Stem Cells (MSCs) have been isolated
from Bone Marrow  (BM)  (Aliborzi  et  al.,  2015), adipose
tissue (Mehrabani et al., 2013), umbilical cord blood
(Razmkhah et al., 2015), endometrial tissue (Ghobadi et al.,
2015) and menstrual blood (Faramarzi  et al., 2016). The
MSCs have been used for tissue recovery in patients
(Mehrabani et al., 2016). Multi-lineage properties of MSCs
into mesodermal and  ectodermal  cellular lineages were
shown for neuronal-like cells (Jahromi et al., 2016),
osteoblasts (Aghamir et  al.,  2016)  and  adipocytes
(Mehrabani et al., 2013).  Bone  Marrow  Stem  Cells 
(BMSCs)  are  the  most well-known type of mesenchymal
stem cells  (Mehrabani  et  al.,   2016)   used   based  on   their
anti-in ammatory effects, safety and efficacy in several
diseases (Faulkner  et al,. 2004), such as spinal cord injury
(Fehlings et al., 2011). This study determined the healing
effect of  BMSCs  on  locomotor  function  and  changes of
TNF-α after SCI in mice to evaluate the changes in
inflammation in SCI and improvement of neurological
outcome after cell transplantation. 

MATERIALS AND METHODS

Animals: Forty two adult male BALB/C mice (30-35 g) were
obtained from the Center of Comparative and Experimental
Medicine, Shiraz University of Medical Science, Shiraz, Iran.
Animals were randomly divided into 3 equal groups of control
(with no intervention), SCI (undergoing SCI) and treatment
(transplantation of BMSCs after induction of SCI). They were
maintained under standard conditions of temperature of
22±1EC and lighting of 12  h dark/light cycle. They had free
access to food and tap water throughout the experiment. This
study was approved by the Ethical Committee of Shiraz
University. 

Spinal cord injury: The SCI was induced as described
previously  in   mice   (Faulkner    et  al.,   2004)   with  slight
modification. Briefly, mice were anaesthetized with xylazine
(Rompun 2%, Bayer 3 mg kgG1) and ketamine (Imalgène
1000, Merial, 30 mg kgG1). Betadine was applied on the skin
before a longitudinal incision in the skin was  made  to  expose

17



J. Med. Sci., 16 (1-2): 16-24, 2016

the spine between T7-T11 vertebral body levels. Two pairs of
forceps attached to a metal frame were used to keep the spine
immobilized  during  the  experiments.  The  spinous process,
lamina and pedicles of  T10  were  removed  by  a  micrometer
drill in order to expose the underlying intact dura and spinal
cord. The cord was injured at T10  by  compression  for 2 min
bilaterally. Then mice were returned to their cage. After the
injury, urinary retention was relieved by twice-daily bladder
expressions, as described before (Basso et al., 2006).

Isolation and culture of BMSCs: To culture BMSCs, the
animals were euthanized and the femoral and tibial bones were
removed under sterile condition. After removal of muscular
and connective tissues, both ends of the bones were cut and the
bone marrow was flushed in a 15 mL falcon tube by a 10 mL
syringe full of Dulbecco’s Modified Eagle Medium (DMEM;
Biovet, Bulgaria) and 1% penicillin streptomycin (Sigma,
USA). After isolation of bone marrow; they were kept on ice
and under sterile condition and were transferred to stem cell
laboratory (Stem Cell and Transgenic Technology Research
Center, Shiraz University of Medical Sciences, Shiraz, Iran).

The bone marrow was diluted with an equal volume of
DMEM and centrifuged for 7 min at 1200 rpm. The
supernatant was removed and the precipitate was cultured in
25 cm2 flasks with DMEM supplemented with 10% fetal
bovine serum (FBS Biovet, Bulgaria), 1% L-glutamine (Sigma,
USA) and 1% penicillin and streptomycin. The culture flasks
were transferred into CO2 incubator with 5% CO2  at 37°C and
saturated humidity. The medium was changed after 24 and
then every 3 days until 80% confluency. The adherent cells
were then passaged by washing with PBS twice (Gibco, USA)
and use of 0.25% trypsin (Gibco, USA) for 3 min. An equal
volume of DMEM was used to inactivate the enzyme activity.
Cell passaging was continued till passage 3. In cell
transplantation group, 5×104 BMSCs were administered
intravenously via tail 1 day after induction of SCI (5×104 cells
in a volume of 100 µL of DMEM).

Cell morphology and count: Cell morphology was evaluated
using inverted microscope (Olympus, USA). 

Characterization of BMSCs by Reverse Transcription
Polymerase Chain Reaction (RT-PCR): The RT-PCR
conducted to evaluate the expression of markers for MSCs. In
summary, after extraction of the total RNA by use of column
RNA isolation kit (Denazist-Asia, Iran) based on
manufacturer’s guideline. It was determined by
spectrophotometry. The complementary DNA (cDNA) was
purchased from AccuPower Cycle Script RT PreMix Kit
(Bioneer, Korea) based on manufacturer’s instruction. For each
reaction 15 µL  of  total  RNA  was  used  to  reach  a   volume 

of 20 µL with  the  DEPC  water. Twelve thermal cycles was
performed as  follows: After 30  sec  at  20EC for primer
annealing, 4 min at 42EC for cDNA synthesis, 30 sec at 55EC
for melting secondary structure and cDNA synthesis and 5 min
at 95EC for inactivation.

Then, 1 µL of template (cDNA) and PCR buffer, H2O,
dNTPs, MgCl2, Taq DNA polymerase and forward  and 
reverse  primers  were   mixed.  The  microtubules containing
20 µL of the mixture were put in thermocycler (Eppendorf
Mastercycler Gradient, Eppendorf, Hamburg, Germany) and
30 amplification cycles were done (30 sec denaturation at
95EC, 30 sec annealing at 64, 62 and 61EC and 30 sec
extension at 72EC with the 5 min  at  95EC  for  primary 
denaturation and 5 min at 72EC for final extension). The PCR
products were evaluated for defined bands by gel
electrophoresis by DNA safe stain in 1.5% agarose gel
medium. The bands were visualized by use of UV radiation
and a gel documentation system (UVtec, Cambridge, UK) and
then were photographed.

Osteogenic differentiation: For osteogenic differentiation,
cells from passage 5 were transferred into 6 well plates. At
80%  cell  confluency,  they  were  plated  for  21  days  with
low glucose DMEM containing  100  nM  dexamethasone 
(Sigma, USA), 0.05l M ascorbate-2-phosphate (Wako
Chemicals, USA), 10 mM β-glycerophosphate (Sigma, USA),
1% penicillin/streptomycin and 10% FBS. The medium was
replaced every 3 days. After 21 days, osteogenic
differentiation was evaluated using alizarin red staining
method (Sigma, USA).

ELISA analysis of TNF-α: Six animals in each group were
bled after 3 and 5 weeks post-SCI to evaluate the TNF-α
serum level. The ELISA tests were performed in a 96-well
microtiter plate according to the protocol. The TNF-α mouse
in vitro ELISA (ab108910) kit was used to assess quantitative
measurement of plasma TNF-α level. All materials and
reagents were equilibrated to room temperature (18-25°C)
prior to use. The plasma was provided using one-tenth volume
of 0.1 M sodium citrate as an anticoagulant. Then the samples
were centrifuged for 10 min at 3000 g. Fifty microliter  of 
TNF-α  standard  was  added  to  per  well  and incubated for
2 h. After that the well was washed five times with 200 μL of
1X wash buffer manually.

In next step, each sample was incubated with 50 μL of 1X
biotinylated TNF-α antibody for 2 h and washed with wash
buffer. The samples were incubated with streptavidin-
peroxidase conjugate for 30 min and then unbound conjugates
were washed away with wash buffer. To visualize
streptavidin-peroxidase enzymatic reaction, chromogen
substrate was added  per  well  and  incubated  till  the  optimal
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blue color product produce. The color was changed into yellow
after adding acidic stop solution. The density of yellow
coloration was directly proportional to the amount of TNF-α
captured in plate.

Locomotor evaluation: For neurological scoring, the mice
were separately put in  an  open-field  and  observed  for 5 min
once a week until 8 weeks post-injury. Open field locomotion
was  evaluated   using   the   0-8   point   Basso   Mouse   Scale
(BMS) score (without tail score), the 0-4 point Body Support
Scale (BSS) score  and  the  0-30  point  Toyama  Mouse Score
(TMS). Animals were allowed  to  move  freely  in  the  plastic
box.

Statistical analysis: All quantitative data were evaluated
statistically and the significance with one-way ANOVA. The
measurement data shall be expressed in (Mean±SD), compared
with other groups for significance by one-way analysis of
variance (ANOVA) using a statistical software package-Graph
Pad Prism and p<0.05 indicates that the discrepancy has
statistically significance.

RESULTS

Morphology: The BMSCs were plastic adherent and
fibroblastic spindle-shape throughout all passages  (Fig. 1a-c).

RT-PCR: The BMSCs were positive for CD90 marker of
mesenchymal stem cells and negative for CD34 and CD45
markers of hematopoietic stem cells (Fig. 2).

Osteogenic induction: After culture of BMSCs in osteogenic
media for 21 days, osteogenic differentiation of the cells were
noticed based on presence of calcium deposits when stained
with alizarin red (Fig. 3).

ELISA analysis of TNF-α: The effect of BMSCs on
proinflammatory cytokine of TNF-α in the injured mouse
spinal cord by ELISA demonstrated an increase in the serum
TNF-α level after 24 h of post-SCI. The rise in the level of
TNF-α was time dependent and more after 35 days in
comparison to 21 days post-SCI denoting to a sign of
inflammation after SCI. There was a significant decrease
in serum  level  of  TNF-α  after  transplantation  of BMSCs in 
comparison  to  other  groups  (p<0.05)  indicating  to  the
anti-inflammatory and immunomodulatory effects of BMSCs
in the injured tissue (Table 1).

Locomotor evaluation:  Hindlimb   function  in mice with
SCI mice evaluated by TMS was assessed neurologically
every week. The neurological score significantly improved
after 8  weeks  post-stem  cells   transplantation  (p<0.05,
Table 2).

Fig. 1(a-c): BMSCs are plastic adherent and fibroblastic spindle-shape through (a-c) passages
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Fig. 2: BMSCs are positive for CD90 marker and negative for CD34 and CD45 markers

Fig. 3(a-b): Culture of BMSCs in osteogenic media for 21 days, denoting to presence of calcium deposits after staining with
alizarin red (a) Control and (b) Osteogenic differentiation
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Table 1: Serum TNF–α level in SCI in different time intervals

Groups Minimum Maximum Mean SD F p-value Sum of squares df Mean square

Control (After 3 weeks) 47.90 155.90 97.25 34.49
Control (After 8 weeks) 67.20 119.70 98.70 14.84
1 day after lesion 38.50 284.40 164.68 77.61
3 weeks after lesion 82.90 190.10 139.55 29.48 3.42 0.007 34631.05 6 5771.84
5 weeks after lesion 117.60 147.40 132.50 7.96
3 weeks after therapy 47.90 197.60 117.72 52.19
5 weeks after therapy 43.20 136.70 91.40 26.88

Table 2: Hindlimb function in SCI mice evaluated by transcranial magnetic stimulation (TMS)

Groups Minimum Maximum Mean SD F p-value Sum of squares df Mean square

Control (After 3 weeks) 30.00 30.00 30.00 0.00
Control (After 8 weeks) 30.00 30.00 30.00 0.00
3 weeks after lesion 6.00 10.00 7.71 1.60
5 weeks after lesion 6.00 14.00 9.29 2.98 129.94 0.001 3470.21 5 694.04
3 weeks after therapy 11.00 15.00 13.43 1.72
5 weeks after therapy 15.00 25.00 20.57 4.19

DISCUSSION

In this study, administration of BMSCs after SCI could
significantly improve the neurological outcomes and diminish
the serum level of TNF-α. The serum level of TNF-α increased
after SCI due to initiation of inflammation and decreased
significantly after 8 weeks with a significant improvement in
neurological scores too. The improvement may be due to
enhancement in T-cell regulatory activities after
transplantation of BMSCs modulating the immune response
and reducing the migration of inflammatory cells to lesion area
(Lei et al., 2015). The MSCs were shown to reduce apoptosis
and Caspase 3 activity which could further result in a decrease
in neuronal loss after SCI (Hosseini et al., 2015). 

Also, MSCs can secret GDNF that enhance
neuroprotection and decrease inflammation. Transplantation of
MSCs can make changes in the secreted cytokines and reduce
the secretion of TNF-α, IL-1 and IL-20 (pre-inflammatory
cytokines) and increase the TGF-β secretion which regulate
inflammatory responses (Piscioneri et al., 2015). Another role
of MSCs is making the microenvironment enrich for neural
regeneration and proliferation of other cells. They can secrete
BDNF, bFGF and VEGF in the microenvironment that can
promote angiogenesis for survival and proliferation of neural
cells. A large population of neurons and glia located in the
lesion site undergo death due to the disruption of cell
membranes or as a consequence of the ischemia caused by
vascular disruption which in turn, causes hemorrhage that
extends rostrally and caudally from the lesion site (Yan  et al.,
2001). 

The massive cell death extended in the secondary phase
occurs by apoptosis and necrosis and affects all functional
neurons and glial cell population, including oligodendrocytes
(Tator and Koyanagi, 1997). Furthermore, some serum

proteins such as thrombin have a neurotoxic effect and can
promote additional neural death by themselves or after
activating the protease-activated receptor on the microglia
(Basso et al., 2006; Beattie et al., 2002). In the secondary
injury process after SCI, apoptosis has been well documented.
Oligodendrocytes, microglia and neurons are susceptible to
apoptosis. After SCI, some cellular demises were directly
related to post-traumatic necrosis, whereas others die due to
apoptosis (Sokolova and Reiser, 2008). Spinal cord trauma
was shown to activate the upregulation of caspases and calpain
and the apoptotic machinery that can lead to an increase in
expression of death receptors and their ligands. However, there
are  conflicting   reports   as  to  the  role  of  cell  death in
SCI- probably a reflection of the known dual capacity of TNF
to be both pro and anti-apoptotic (Casha et al., 2001). 

TNF-α is a proinflammatory and proapoptotic cytokine
that can regulate cellular events and contribute to neuronal
damage and functional impairment associated with SCI
(Harrington et al., 2005) TNF-α level is elevated in human
spinal cord after SCI, reaching a peak within 1 h after the
initial trauma (Dinomais et al., 2009) and its expression is
upregulated rapidly at the lesion site after SCI (Yan et al.,
2001) leading to apoptosis of oligodendrocytes and neuronal
cell line in vitro (Sipe et al., 1996). Rapid accumulation of
TNF-α may act as an external signal initiating apoptosis after
SCI in neurons and glial cells too (Li et al., 2000). 

The immunomodulatory properties of MSCs have been
associated with both molecule secretions and cell-cell contact.
It was shown that MSCs were able to suppress T-cell
proliferation (Bartholomew et al., 2002) and monocyte
maturation into dendritic cells (Jiang et al., 2005). Moreover,
MSCs can impair the functionality of dendritic cells, their
antigen-presenting properties and cytokine secretion
(Aggarwal and Pittenger,  2005)  and  also  hamper  the  proper
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function of natural killer cells and their interleukin (IL)-2
secretion (Spaggiari et al., 2006) that can explain our findings
for significant improvements in motor/sensory score. 

These improvements were also shown to be correlated
with a reduction of in ammatory events of IL-1b and IL-6
expression and an increase in IL-10 expression. Moreover, the
number of activated macrophages was demonstrated to be
reduced in these conditions  (Seo  et  al.,  2011).  These
findings are in consistent with previous observations  from
Abrams et al. (2009) too showing that BMSCs transplantation
could decrease the astrocytic reactivity and microglial
activation inside the lesioned spinal cord, associated with a
reduced injury-induced response to mechanical stimuli.

The MSCs transplantation were shown to be associated
with a reduction in IL-6 and TNF-α levels at the lesion site.
All these events are correlated with a signi cant recovery of
locomotor function in mice SCI (Nakajima et al., 2012).
Although, PGE2 might be an intriguing candidate factor to be
released by MSCs after cell-to-cell contact. Aggarwal and
Pittenger (2005)  proved that the inhibition of PGE2 synthesis
restored the secretion of TNF-α and IFN-γ by dendritic cells
cultured in the presence of MSC.

CONCLUSION

Our results denoted to the point that transplantation of
BMSCs can decrease the TNF-α level and inflammation in
injured spinal cord tissue and further improve the neurological
outcome. These findings can add the literature in reduction of
inflammation in SCI and improvement of neurological
outcome after transplantation of BMSCs.
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