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Abstract
Artificial Intelligence (AI) is redefining the frontiers of biochemistry and medicine by enhancing molecular understanding, diagnostic
precision and therapeutic discovery. This review examines the transformative roles of AI across key biomedical domains, including medical
imaging, disease prediction, protein structure modeling, drug development, enzyme engineering and multiomics integration. Deep
learning architectures, such as convolutional neural networks and transformers, now surpass traditional diagnostic approaches in accuracy
and  efficiency,  particularly  in  neuroimaging  for  conditions  like  Alzheimer’s  disease.  Tools  like  AlphaFold2  and  generative  models
(e.g., ChemBERTa, MolGPT) have revolutionized protein structure prediction and de novo drug design. AI-driven strategies also empower
personalized medicine through real-time health monitoring, wearable integration and omics-based systems biology. Despite these
advances, challenges remain including data heterogeneity, model interpretability, ethical concerns and global disparities in AI access.
This manuscript addresses these barriers by highlighting solutions such as explainable AI, open-source platforms and international
collaboration. Furthermore, emerging applications, including AI-enhanced microplastic toxicology, sleep biochemistry, herbal compound
modeling and gut microbiota host interaction mapping, illustrate the interdisciplinary breadth and future potential of AI in biochemistry.
By synthesizing foundational developments with next-generation innovations, this review affirms AI’s role as a catalyst for accelerating
discovery, improving healthcare equity and reshaping the molecular sciences for the next era of research and clinical translation.
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INTRODUCTION

Artificial Intelligence (AI) has emerged as a
transformative force across scientific disciplines, with its
profound impact increasingly evident in biochemistry and
medicine. Leveraging computational power, AI, particularly
deep  learning  models,  has  significantly  enhanced  the
analysis, interpretation and prediction of complex biological
data. Its applications now span from medical imaging and
diagnostics to drug discovery and molecular biology, 
redefining  the  paradigms  of  biomedical  research  and
clinical practice.

One of the earliest and most notable breakthroughs of AI
in healthcare is in the field of medical image analysis.
Convolutional Neural Networks (CNNs), a subclass of deep
learning algorithms, have demonstrated exceptional
performance in tasks such as tumor detection, segmentation
and  classification  across  various  imaging  modalities,
including MRI,   CT   and   ultrasound.   Foundational   surveys 
by  Litjens et al.1 and Shen et al.2 comprehensively chart the
evolution of deep learning in medical imaging, highlighting
key breakthroughs and practical implementations that
underpin current AI-assisted diagnostics1,2.

A landmark study by McKinney et al.3 revealed the
capability of AI systems to outperform radiologists in breast
cancer screening, emphasizing not just accuracy but also
consistency and efficiency in diagnostics3. Similarly, AI-driven
solutions in radiology are now streamlining workflows and
improving patient outcomes, as evidenced by significant
reductions in diagnostic errors and turnaround times4. These
developments underscore a paradigm shift in radiological
practices, where AI serves not as a replacement but as an
augmentation to human expertise.

Transformer-based architectures have further expanded
these capabilities by enhancing segmentation precision
through global context integration. Models like TransUNet
exemplify  this  shift  by  combining  convolutional  layers  with
transformer modules to better capture anatomical features5.
These advancements, along with newer transformer-based
models, surpass CNN methods in handling complex
biomedical imaging tasks by modeling long-range
dependencies and spatial hierarchies6.

As AI continues to evolve, its integration into the fabric of
biochemistry and medicine opens new avenues for scientific
inquiry and clinical innovation. This article explores the
multifaceted contributions of AI to the bimolecular sciences,
with particular focus on its role in medical diagnostics, protein
structure prediction, drug development, genomic analysis and
ethical considerations.

Artificial intelligence in biomedical sciences
AI  in  medical  imaging  and  diagnostics:  Artificial
Intelligence  (AI) has profoundly transformed medical imaging
by enhancing image interpretation, increasing diagnostic
accuracy and reducing human error. The AI-powered deep
learning models, particularly Convolutional Neural Networks
(CNNs), are now integral in detecting pathologies from
imaging modalities such as CT, MRI and X-rays. Esteva et al.7

emphasized  that  AI  systems  rival  expert-level  performance
in detecting skin cancer and diabetic retinopathy, offering
rapid, scalable diagnostic support across healthcare settings7.
Harmon et al.8 demonstrated that AI algorithms can detect
COVID-19 pneumonia from chest CT scans with high
sensitivity across multinational datasets, thus accelerating
pandemic response efforts8.

Furthermore,  transformer-based  architectures  are
emerging  as  a  powerful  tool  in  neuroimaging.  A  recent
scoping review by Iratni et al.9 highlighted the expanding role
of  transformers  in segmenting  complex  brain  structures,
thus  facilitating  early  diagnosis  of  neurological  conditions9.
In Alzheimer’s disease, 3D CNNs applied to structural MRI
scans have enabled automated classification with high
precision10.

Figure  1  visually  represents  the  AI-driven  medical
imaging workflow. It demonstrates how deep learning
models,   such   as   Convolutional   Neural   Networks  (CNNs)
and  transformer-based  architectures,  process  medical  scans
to perform segmentation, classification and automated
diagnosis. As shown by Esteva et al.7 and Harmon et al.8, AI
models trained on large-scale datasets can detect complex
patterns with higher sensitivity than traditional methods.
Moreover, Iratni et al.9 and Basaia et al.10 describe the
integration of these models into clinical pipelines, enhancing
the detection of diseases like COVID-19 and Alzheimer’s
through automated analysis of CT and MRI scans.

Figure 1 outlines the sequential stages of AI-assisted
diagnostic imaging, from image acquisition via MRI/CT,
through AI-powered segmentation and classification, to the
generation of a diagnostic report.

AI in disease prediction and monitoring: Beyond diagnostics,
AI is now employed for predictive modeling and real-time
monitoring of disease progression. In neurodegenerative
disorders like Alzheimer's disease, AI models analyze
longitudinal imaging and EEG data to predict cognitive
decline trajectories. Dauwels et al.11 reviewed how EEG signals,
combined with machine learning, offer non-invasive, cost-
effective avenues  for  Alzheimer’s  diagnosis  and  monitoring.
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Fig. 1: AI-powered medical imaging workflow: From acquisition to diagnostic report (self-generated)

Fig. 2: AI in disease prediction and monitoring (self-generated)

Liu   and   Brown12   provided   baseline    methodologies   for 
ASL  imaging,  upon  which  recent  AI-driven  quantification
tools have improved sensitivity to early vascular dysfunction.

In  medical  image  segmentation,  Chen et al.13

introduced a cross-fusion network combining attention
mechanisms and transformer layers, further refining
diagnostic precision across scales. These approaches help
clinicians not only detect diseases earlier but also track their
evolution, leading to more personalized treatments. The flow
of data from wearable health devices to AI-powered
dashboards through the integration of Electronic Health
Records (EHR) is shown in Fig. 2. The AI systems utilize
continuous data streams from smart wearables and patient
EHRs to predict disease trajectories and support real-time
monitoring. The AI dashboard in the image highlights how
these inputs are processed to generate early warnings,
enabling more proactive and personalized healthcare
interventions.

An illustration showing the integration of wearable
devices, Electronic Health Records (EHR) and AI dashboards.
Fig. 2 demonstrates how AI processes real-time health data for
personalized disease prediction and continuous patient
monitoring.

Case example-Alzheimer’s diagnosis using deep learning:
Alzheimer’s disease (AD) is a progressive neurodegenerative
disorder that  presents  a  major  diagnostic  challenge  due  to
its  complex  pathology  and  often  subtle  early  symptoms.
Deep  learning  has  emerged  as  a  promising  tool  for
improving  diagnostic  precision  in  AD  through  the  analysis
of  neuroimaging  data.

Recent advancements in protein structure prediction
have contributed to a better understanding of AD at the
molecular level. The success of AlphaFold, an AI system
developed by DeepMind, has enabled researchers to model
amyloid precursor protein (APP) and tau protein structures
with  remarkable  accuracy,  facilitating  the  exploration  of
their roles in neurodegeneratio14. This structural insight
complements imaging approaches, enhancing molecular
diagnosis and therapeutic targeting.

The  complementary  role  of  AI  in  both  clinical
diagnostics  and   molecular   research   on   Alzheimer’s
disease  was illustrated in Fig. 3. The left panel displays a
stylized   neuroimaging   heatmap   representing   brain 
regions  affected  by  Alzheimer’s,  while  the  right  panel
features  AlphaFold-predicted  structures  of  the  amyloid
precursor   protein   (APP)  and   tau   protein.   Deep   learning
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Fig. 3: Molecular insights into Alzheimer’s disease using AI (self-generated)

models are employed to classify MRI and EEG data for early
diagnosis, while AlphaFold enables accurate 3D prediction of
key neurodegenerative proteins. This integrative approach
underscores how AI facilitates a multi-dimensional
understanding of Alzheimer’s disease, linking imaging
biomarkers to protein-level insights essential for diagnosis and
therapy development.

A dual-pane illustration combining neuroimaging data
with AlphaFold-predicted structures of amyloid precursor
protein (APP) and tau protein, highlighting how AI bridges
clinical diagnostics and molecular understanding in
Alzheimer’s disease, shown in Fig. 3.

The critical assessment of protein structure prediction
(CASP) community has validated AlphaFold’s superior
performance,  highlighting  its  ability  to  predict  highly
accurate protein structures, including those relevant to
neurodegenerative  diseases  like  AD15.  These  predictions  aid
researchers  in  understanding  protein  misfolding  and
aggregation  mechanisms,  key  features  of  Alzheimer’s
pathology.

Additionally, the AlphaFold Protein Structure Database
has vastly expanded the accessible structural landscape,
providing detailed 3D models of proteins involved in AD
pathophysiology16. The availability of these models has
enhanced the interpretability of biomarker-related studies and
accelerated drug development targeting protein misfolding.
By integrating deep learning for both neuroimaging and
molecular modeling, AI is providing a multi-dimensional
approach to Alzheimer's diagnosis and treatment design.

Artificial intelligence in biochemistry
Protein structure prediction-AlphaFold2 and beyond:
Protein structure prediction has traditionally been one of the
most difficult challenges in computational biology due to the
complexity  of  folding  patterns  and  the  sheer  variability  in

amino acid sequences. However, recent breakthroughs in AI
have dramatically improved structural prediction accuracy and
accessibility. Generative AI models are now being used to
explore protein folding landscapes by predicting possible
conformations  and  modeling  atomic  interactions.  Walters
and Murcko highlighted how generative methods are
reshaping the design process in medicinal chemistry by
enabling de novo exploration of protein configurations and
ligand docking17. 

In parallel, transformer-based models have been
introduced to predict molecular properties and folding
outcomes using large-scale sequence data. Tran and Eze18

demonstrated that these models accurately estimate
physicochemical features of biomolecules, helping prioritize
folding candidates for deeper analysis.

A major milestone came with the application of deep
learning to real-world drug discovery. Zhavoronkov et al.19

employed an end-to-end deep learning pipeline that led to
the rapid identification of DDR1 kinase inhibitors, marking one
of the first successful uses of AI in practical therapeutic design.
These methods also leverage protein structure predictions as
inputs, reinforcing the value of structural insights from models
like AlphaFold in guiding AI-powered discovery19.

Figure  4  illustrates  the  AI-driven  pipeline  for predicting
3D protein structures, beginning with an amino acid
sequence, processed through transformer layers and resulting
in a predicted protein conformation. Generative AI models like
AlphaFold2  employ  deep  learning  architectures,  particularly
transformers,  to  model  spatial  and  physicochemical
relationships  between  amino  acid  residues.  This  process
has  revolutionized  protein  structure  prediction,  achieved
near-experimental accuracy and accelerated research in
molecular biology, drug design and enzymology. The visual
encapsulates  how  sequence-based  input  is  transformed  by
AI into actionable molecular insights.
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Fig. 4: Protein structure prediction with generative AI (self-generated)

Fig. 5: AI pipeline for drug discovery (self-generated)

A schematic representation of a generative AI pipeline
that predicts protein structure from an amino acid sequence
input through transformer-based layers to produce a 3D
protein  model.  Figure 4  highlights  the  core  mechanism
behind AI-driven structural biology tools like AlphaFold2.

The convergence of these technologies is pushing the
boundaries  of  protein  science  and  setting  the  stage  for
real-time, AI-assisted structural biology.

AI in drug discovery and development: Artificial intelligence
has become a cornerstone in modern drug discovery, enabling
faster and more cost-effective identification of drug
candidates. One striking example of AI’s real-world impact was
the  repurposing  of  Baricitinib  as  a  treatment  option during
the COVID-19 pandemic. Richardson et al.20 demonstrated
how AI-guided molecular modeling identified this anti-
inflammatory  agent  as  a  potential  therapeutic,  illustrating
the power of computational reasoning in urgent medical
contexts.

In enzyme-targeted drug discovery, machine learning has
been applied to streamline the design and optimization of
bioactive compounds. Mazurenko et al.21 showcased how
supervised learning algorithms, trained on enzyme-ligand
interaction datasets, improve substrate specificity prediction
and support rational inhibitor design21. AI has also been
instrumental in  expanding  our  understanding  of  noncoding

genetic  variants,  which  play  crucial  roles  in  drug  response 
and  disease  susceptibility.  Zhou  and  Troyanskaya22

developed  a  deep  learning  model  that  accurately  predicts
the regulatory effects of noncoding mutations, thereby
enabling more targeted therapy development22. Furthermore,
in transcriptomics, deep neural networks have been applied
to predict splicing outcomes from primary sequences.
Jaganathan et al.23 illustrated how such models enhance our
ability to interpret pathogenic variants that affect RNA
splicing, contributing to more precise genomic medicine and
drug development23.

These  advances  demonstrate  that  AI  not  only
accelerates  drug  discovery  but  also  deepens mechanistic
insights   that   inform   safer   and   more   personalized
therapeutics.

Figure 5 presents a simplified flowchart of the AI-driven
drug discovery process, beginning with compound
generation, progressing through target docking, ADMET
profiling and ending with candidate selection. Artificial
intelligence leverages generative models and molecular
simulations to identify novel compounds, predict their binding
affinity with biological targets, evaluate pharmacokinetic
properties (ADMET) and prioritize drug candidates for further
testing. This pipeline illustrates how AI integrates speed,
precision and multi-parameter optimization to revolutionize
the traditional drug development timeline.
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Fig. 6: AI applications in enzyme engineering and omics integration (self-generated)

A flowchart depicting the sequential stages of AI-assisted
drug discovery, beginning with compound generation,
followed by target docking, ADMET profiling and culminating
in candidate selection. This process demonstrates how AI
accelerates and optimizes each phase of modern drug
development.

AI in enzyme engineering and omics: Artificial intelligence is
rapidly transforming enzyme engineering and omics research
by enabling predictive modeling, integrative analysis and
high-throughput data interpretation. In enzyme engineering,
AI  models  such  as  deep  neural  networks  and  decision
trees are used to predict the functional impact of amino acid
substitutions, optimize catalytic efficiency and design
improved variants with novel activity. Amann et al.24

emphasized that incorporating explainability in such models
is essential to ensure confidence and traceability in
biochemical applications.

Beyond  protein-level  modifications,  AI  plays  a  critical
role   in   multi-omics   integration-combining   genomics, 
transcriptomics, proteomics and metabolomics to model
complex biological systems. 

Figure 6 illustrates the dual role of AI in enzyme
engineering  and  multi-omics  data  integration. The left panel
demonstrates  how  AI  algorithms  analyze enzyme sequences
and   protein    structures   to   predict   catalytic    activity    and

optimize functionality. The right panel depicts AI’s capacity to
assimilate various omics layers-genomics, transcriptomics,
proteomics and metabolomics-into a unified framework for
biological prediction. This visualization emphasizes how AI
enhances enzyme variant design and interprets complex
biological systems through integrative analysis.

Visual representation of how AI supports enzyme
structure prediction and integrates multi-omics data
(genomics, transcriptomics, proteomics, metabolomics) to
generate predictive biological insights.

This holistic view is vital for understanding disease
mechanisms and regulatory networks. Vayena et al.25 pointed
out that while AI facilitates powerful insights in these domains,
ethical challenges such as consent, fairness and accountability
must guide its application.

To address the evolving risks of AI misuse in biochemical
research, the World Health Organization (WHO) published
guidelines on ethics and governance. These guidelines
advocate for responsible AI development, emphasizing
transparency, safety and global equity in access and
application26. Adhering to such frameworks is especially crucial
in omics studies where patient-derived biological data are
highly sensitive.

Together, these efforts are steering enzyme and omics
research into a new era where AI-powered innovation is
balanced with ethical responsibility and scientific rigor.
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Fig. 7: Barriers to AI deployment in biomedicine: A systems-level framework (self-generated)

Challenges, ethical considerations and future directions in
AI-driven biochemistry
Technical and scientific limitations: Although AI has
achieved remarkable milestones in biochemistry and
biomedical sciences, it faces persistent technical challenges.
As outlined by Ching et al.27, many AI models struggle with
data  sparsity,  overfitting  and  poor  generalization,  especially
in heterogeneous biological datasets. Fig. 7 illustrates a
systems-level overview of the core barriers limiting the
adoption of artificial intelligence in biochemistry and
biomedical sciences. These barriers, ranging from poor data
standardization and fragmented databases to limited
computational access and reproducibility challenges, are
interlinked and often exacerbate one another. As Ching et al.27

explain, such structural and technical limitations not only
impair model reliability but also inhibit broad AI deployment
across diverse research settings. The diagram encourages a
holistic understanding of the technological and scientific
constraints  discussed  in  this  section.  Training  datasets
often lack the diversity necessary to support unbiased
predictions across populations and biological systems.

Figure 7 outlines the four major categories of challenges-
data, scientific, computational and infrastructure-related-that
collectively hinder effective AI deployment. It emphasizes the
interdependence of these factors in shaping equitable and
scalable applications of AI in biochemical research.

Additionally, the integration of multi-modal data from
proteomics to metabolomics poses algorithmic and
computational difficulties. Without careful normalization and
standardization, AI systems risk generating irreproducible or
misleading outputs in real-world experiments27.

Foundational applications and structural challenges: AI is
already being applied in practical biochemical domains such
as  drug-target  modeling,  metabolic  pathway  mapping  and

biomolecular docking. Arowora et al.28 have emphasized the
utility of AI tools in early-stage drug discovery and the
exploration of biochemical mechanisms. These models
enhance prediction accuracy for enzyme activity and protein-
ligand binding, driving high-throughput experimentation and
rational compound screening28.

Nevertheless, many of these applications still suffer from
black-box model behavior, which limits interpretability and
slows regulatory approval. Arowora et al.28 argue for
interpretable machine learning approaches tailored to
biochemical systems, such as attention-based visualizations or
modular networks that reflect domain-specific knowledge.

Infrastructure, access and research equity: Beyond technical
capacity, AI research and applications in biochemistry are
hindered by resource inequities. Access to computational
infrastructure, annotated datasets and cloud services is
uneven globally. 

Figure 8 visualizes the global disparities in AI
infrastructure and resource accessibility that challenge
equitable participation in biochemical research. It contrasts
regions with high AI capacity, indicated by icons for data
servers, internet connectivity and analytics, with underserved
areas represented by satellite links and fragmented
connectivity. This disparity mirrors the concerns, which
emphasize how limited access to computational tools, cloud
services and annotated datasets hinders contributions from
low-resource  laboratories,  particularly  in  the  Global South.
The image reinforces the need for international collaboration,
open-access platforms and inclusive AI development.

Figure 8 highlights disparities in global access to AI
resources such as data servers, internet connectivity and
computational infrastructure, emphasizing the need for
equitable inclusion in biochemical research.
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Fig. 8: Global inequities in AI access for biochemical research (self-generated)

Arowora et al.28 highlight that these disparities limit
meaningful contributions from low-resource laboratories,
especially in developing countries, where biological insights
are urgently needed.

Solutions such as open-access databases, shared model
repositories and international training programs are key to
promoting inclusion and accelerating discovery across
continents28. Encouraging collaborative platforms between
computational and life scientists can also foster responsible
and widespread use of AI tools.

Toward explainable and trustworthy AI: The future of AI in
biochemistry hinges on building trustworthy and explainable
models that can integrate seamlessly into both clinical and
laboratory workflows. As emphasized by Jumper and
Hassabis29, efforts like AlphaFold have not only advanced
structural prediction but also set standards for transparency
and open science, offering code, models and data to the
global research community.

These  standards  are  essential  to  mitigate  overreliance
on black-box systems and to ensure that AI tools remain
scientifically  accountable  and  biologically  interpretable.

Emerging tools and next-generation applications
Empowering   biochemical   discovery   through   precision 
AI-driven biomedical image segmentation: The multi-
transformer U-Net by Dan et al.30 enhances the precision of
biomedical  image  segmentation,  which  is  critical  for
analyzing complex biochemical data such as histopathology

and proteomic imaging. This advancement supports faster,
more accurate interpretation of experimental results. It also
paves the way for AI-assisted workflows in biochemistry,
enabling real-time analysis and hypothesis generation.

Advancing  human  health  through  AI-enhanced
microplastic  toxicology  and  biochemical  modeling: In their
comprehensive  review,  Biochemical  Effects  of  Microplastics
on Human Health, Anih et al.31 highlight the urgent need for
sophisticated computational models and biomonitoring
strategies   to   evaluate   how   microplastics   impact  human
biochemistry.  Their  work  points  to  exciting  new  directions
in AI-driven research, such as tools that can predict organ-
specific  toxicity,  map  patterns  of  exposure  and combine
omics  data  to  a  nticipate  potential  long-term  health
effects.

Harnessing neurochemical insights for AI-driven
innovations in sleep biochemistry: In their review,
Biochemical Mechanisms of Sleep Regulation, Anih et al.32

offered  a  detailed  look  into  the  molecular  and  hormonal
systems  that  govern  sleep,  providing  a  critical  foundation
for the future of AI in biochemistry. By connecting complex
pathways  involving  neurotransmitters  and  circadian  signals
to real-world sleep disorders, the authors pave the way for
cutting-edge  AI  applications,  such  as  predictive  modeling,
personalized  diagnostics  and  data-driven  therapy  design, 
to  transform  sleep  medicine  and  beyond.
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Integration  of  traditional  herbal  medicine  with  cutting
edge AI technologies in molecular biochemistry: In their
review, Biochemistry of Traditional Herbal Compounds and
their Molecular Targets, Anih et al.33 explored how modern
techniques like molecular docking and omics technologies are
helping decode the complex actions of traditional herbal
compounds. By linking chemical structures to specific
molecular targets and signaling pathways, their work lays a
solid  groundwork  for  the  development  of  AI-powered 
tools in drug discovery. These insights point to exciting future
directions where machine learning can accelerate the design,
prediction and refinement of bioactive phytochemicals for
precision medicine.

AI-powered exploration of microbiota-derived biochemical
networks in host system regulation: In their review,
Biochemically Active Metabolites of Bacteria: Their Influence
on  Host  Metabolism,  Neurotransmission  and  Immunity,
Anih et al.34 explore how gut microbiota-derived metabolites
modulate complex host pathways through receptor signaling,
epigenetic control and neuroimmune interactions. By
mapping these molecular dialogues, such as SCFA signaling
via GPRs and tryptophan-derived modulation of AhR and
NMDA receptors, the study lays a compelling foundation for
future AI-driven approaches to simulate, predict and
therapeutically target host microbiome interactions in systems
biochemistry.

CONCLUSION

Artificial Intelligence (AI) is emerging as a transformative
force in biochemistry and biomedical sciences, redefining the
pace and depth of molecular research and clinical innovation.
By enhancing diagnostic precision, enabling accurate protein
modeling, accelerating drug discovery and facilitating
integrative multiomics analysis, AI is reshaping scientific
workflows and expanding the possibilities of personalized
medicine. This review highlights AI’s pivotal role in deepening
our understanding of complex biological systems and
promoting interdisciplinary collaboration. However, for this
potential to be fully realized, challenges such as data bias,
limited interpretability, ethical concerns and global disparities
must be addressed. The development of explainable and
equitable AI systems will be essential for sustainable and
inclusive progress. Ultimately, AI stands as a central pillar in
advancing modern biochemistry and improving health
outcomes worldwide.

SIGNIFICANCE STATEMENT

This study discovered the transformative potential of
Artificial Intelligence (AI) as both a computational engine and
a scientific collaborator in biochemistry and biomedical
sciences. It can be beneficial for enhancing diagnostic
accuracy, accelerating drug discovery, improving protein
structure prediction and integrating multiomics data for better
disease understanding. The study also emphasizes the
importance of ethical governance, equitable access and
explainable AI to ensure responsible deployment across
diverse settings. By providing practical examples in areas such
as neurodegeneration, toxicology and systems biology, this
study will help researchers to uncover the critical areas of
molecular research and data integration that many were not
able to explore. Thus, a new theory on AI-driven biochemical
innovation may be arrived at.
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