Medical Sciences

ISSN 1682-4474

science
alert

ANSI|n27

an open access publisher
http://ansinet.com




3 OPEN ACCESS Journal of Medical Sciences

ISSN 1682-4474
DOI: 10.3923/jms.2025.1.10

@ CrossMark

Review Article
Redefining Biomolecular Frontiers: The Impact of Artificial
Intelligence in Biochemistry and Medicine

David Chinonso Anih, Kayode Adebisi Arowora, Moses Adondua Abah, Kenneth Chinekwu Ugwuoke and
Bilyaminu Habibu

Department of Biochemistry, Faculty of Biosciences, Federal University Wukari, Taraba, Nigeria

Abstract

Artificial Intelligence (Al) is redefining the frontiers of biochemistry and medicine by enhancing molecular understanding, diagnostic
precision and therapeutic discovery. This review examines the transformative roles of Al across key biomedical domains, including medical
imaging, disease prediction, protein structure modeling, drug development, enzyme engineering and multiomics integration. Deep
learning architectures, such as convolutional neural networks and transformers, now surpass traditional diagnosticapproachesinaccuracy
and efficiency, particularly in neuroimaging for conditions like Alzheimer’s disease. Tools like AlphaFold2 and generative models
(e.g., ChemBERTa, MolGPT) have revolutionized protein structure prediction and de novo drug design. Al-driven strategies also empower
personalized medicine through real-time health monitoring, wearable integration and omics-based systems biology. Despite these
advances, challenges remain including data heterogeneity, model interpretability, ethical concerns and global disparities in Al access.
This manuscript addresses these barriers by highlighting solutions such as explainable Al, open-source platforms and international
collaboration. Furthermore, emerging applications, including Al-enhanced microplastic toxicology, sleep biochemistry, herbal compound
modeling and gut microbiota hostinteraction mapping, illustrate the interdisciplinary breadth and future potential of Al in biochemistry.
By synthesizing foundational developments with next-generation innovations, this review affirms Al’s role as a catalyst for accelerating
discovery, improving healthcare equity and reshaping the molecular sciences for the next era of research and clinical translation.
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INTRODUCTION

Artificial Intelligence (Al) has emerged as a
transformative force across scientific disciplines, with its
profound impact increasingly evident in biochemistry and
medicine. Leveraging computational power, Al, particularly
deep learning models, has significantly enhanced the
analysis, interpretation and prediction of complex biological
data. Its applications now span from medical imaging and
diagnostics to drug discovery and molecular biology,
redefining the paradigms of biomedical research and
clinical practice.

One of the earliest and most notable breakthroughs of Al
in healthcare is in the field of medical image analysis.
Convolutional Neural Networks (CNNs), a subclass of deep
learning algorithms, have demonstrated exceptional
performance in tasks such as tumor detection, segmentation
and classification across various imaging modalities,
including MRI, CT and ultrasound. Foundational surveys
by Litjens et a/' and Shen et a/*> comprehensively chart the
evolution of deep learning in medical imaging, highlighting
key breakthroughs and practical implementations that
underpin current Al-assisted diagnostics'2.

A landmark study by McKinney et a/? revealed the
capability of Al systems to outperform radiologists in breast
cancer screening, emphasizing not just accuracy but also
consistency and efficiency in diagnostics®. Similarly, Al-driven
solutions in radiology are now streamlining workflows and
improving patient outcomes, as evidenced by significant
reductions in diagnostic errors and turnaround times?. These
developments underscore a paradigm shift in radiological
practices, where Al serves not as a replacement but as an
augmentation to human expertise.

Transformer-based architectures have further expanded
these capabilities by enhancing segmentation precision
through global context integration. Models like TransUNet
exemplify this shift by combining convolutional layers with
transformer modules to better capture anatomical features®.
These advancements, along with newer transformer-based
models, surpass CNN methods in handling complex
biomedical imaging tasks by modeling long-range
dependencies and spatial hierarchies®.

As Al continues to evolve, its integration into the fabric of
biochemistry and medicine opens new avenues for scientific
inquiry and clinical innovation. This article explores the
multifaceted contributions of Al to the bimolecular sciences,
with particular focus onits role in medical diagnostics, protein
structure prediction, drug development, genomic analysis and
ethical considerations.

Artificial intelligence in biomedical sciences

Al in medical imaging and diagnostics: Artificial
Intelligence (Al) has profoundly transformed medicalimaging
by enhancing image interpretation, increasing diagnostic
accuracy and reducing human error. The Al-powered deep
learning models, particularly Convolutional Neural Networks
(CNNs), are now integral in detecting pathologies from
imaging modalities such as CT, MRI and X-rays. Esteva et a/’
emphasized that Al systems rival expert-level performance
in detecting skin cancer and diabetic retinopathy, offering
rapid, scalable diagnostic support across healthcare settings’.
Harmon et a/® demonstrated that Al algorithms can detect
COVID-19 pneumonia from chest CT scans with high
sensitivity across multinational datasets, thus accelerating
pandemic response efforts?.

Furthermore, transformer-based architectures are
emerging as a powerful tool in neuroimaging. A recent
scoping review by Iratni et a/° highlighted the expanding role
of transformers in segmenting complex brain structures,
thus facilitating early diagnosis of neurological conditions®.
In Alzheimer’s disease, 3D CNNs applied to structural MRI
scans have enabled automated classification with high
precision'®.

Figure 1 visually represents the Al-driven medical
imaging workflow. It demonstrates how deep learning
models, such as Convolutional Neural Networks (CNNs)
and transformer-based architectures, process medical scans
to perform segmentation, classification and automated
diagnosis. As shown by Esteva et a/” and Harmon et a/&, Al
models trained on large-scale datasets can detect complex
patterns with higher sensitivity than traditional methods.
Moreover, Iratni et a/° and Basaia et al'® describe the
integration of these models into clinical pipelines, enhancing
the detection of diseases like COVID-19 and Alzheimer’s
through automated analysis of CT and MRl scans.

Figure 1 outlines the sequential stages of Al-assisted
diagnostic imaging, from image acquisition via MRI/CT,
through Al-powered segmentation and classification, to the
generation of a diagnostic report.

Alindisease predictionand monitoring: Beyond diagnostics,
Al is now employed for predictive modeling and real-time
monitoring of disease progression. In neurodegenerative
disorders like Alzheimer's disease, Al models analyze
longitudinal imaging and EEG data to predict cognitive
decline trajectories. Dauwels et a/'" reviewed how EEG signals,
combined with machine learning, offer non-invasive, cost-
effective avenues for Alzheimer’s diagnosis and monitoring.
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Liu and Brown' provided baseline methodologies for
ASL imaging, upon which recent Al-driven quantification
tools have improved sensitivity to early vascular dysfunction.

In medical image segmentation, Chen et a/'®
introduced a cross-fusion network combining attention
mechanisms and transformer layers, further refining
diagnostic precision across scales. These approaches help
clinicians not only detect diseases earlier but also track their
evolution, leading to more personalized treatments. The flow
of data from wearable health devices to Al-powered
dashboards through the integration of Electronic Health
Records (EHR) is shown in Fig. 2. The Al systems utilize
continuous data streams from smart wearables and patient
EHRs to predict disease trajectories and support real-time
monitoring. The Al dashboard in the image highlights how
these inputs are processed to generate early warnings,
enabling more proactive and personalized healthcare
interventions.

An illustration showing the integration of wearable
devices, Electronic Health Records (EHR) and Al dashboards.
Fig.2 demonstrates how Al processes real-time health data for
personalized disease prediction and continuous patient
monitoring.

Case example-Alzheimer’s diagnosis using deep learning:
Alzheimer’s disease (AD) is a progressive neurodegenerative
disorder that presents a major diagnostic challenge due to
its complex pathology and often subtle early symptoms.
Deep learning has emerged as a promising tool for
improving diagnostic precision in AD through the analysis
of neuroimaging data.

Recent advancements in protein structure prediction
have contributed to a better understanding of AD at the
molecular level. The success of AlphaFold, an Al system
developed by DeepMind, has enabled researchers to model
amyloid precursor protein (APP) and tau protein structures
with remarkable accuracy, facilitating the exploration of
their roles in neurodegeneratio™. This structural insight
complements imaging approaches, enhancing molecular
diagnosis and therapeutic targeting.

The complementary role of Al in both clinical
diagnostics and molecular research on Alzheimer's
disease was illustrated in Fig. 3. The left panel displays a
stylized neuroimaging heatmap representing brain
regions affected by Alzheimer's, while the right panel
features AlphaFold-predicted structures of the amyloid
precursor protein (APP) and tau protein. Deep learning
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models are employed to classify MRI and EEG data for early
diagnosis, while AlphaFold enables accurate 3D prediction of
key neurodegenerative proteins. This integrative approach
underscores how Al facilitates a multi-dimensional
understanding of Alzheimer's disease, linking imaging
biomarkers to protein-level insights essential for diagnosis and
therapy development.

A dual-pane illustration combining neuroimaging data
with AlphaFold-predicted structures of amyloid precursor
protein (APP) and tau protein, highlighting how Al bridges
clinical diagnostics and molecular understanding in
Alzheimer’s disease, shown in Fig. 3.

The critical assessment of protein structure prediction
(CASP) community has validated AlphaFold’s superior
performance, highlighting its ability to predict highly
accurate protein structures, including those relevant to
neurodegenerative diseases like AD'. These predictions aid
researchers in understanding protein misfolding and
aggregation mechanisms, key features of Alzheimer's
pathology.

Additionally, the AlphaFold Protein Structure Database
has vastly expanded the accessible structural landscape,
providing detailed 3D models of proteins involved in AD
pathophysiology's. The availability of these models has
enhanced the interpretability of biomarker-related studies and
accelerated drug development targeting protein misfolding.
By integrating deep learning for both neuroimaging and
molecular modeling, Al is providing a multi-dimensional
approach to Alzheimer's diagnosis and treatment design.

Artificial intelligence in biochemistry

Protein structure prediction-AlphaFold2 and beyond:
Protein structure prediction has traditionally been one of the
most difficult challenges in computational biology due to the
complexity of folding patterns and the sheer variability in

amino acid sequences. However, recent breakthroughs in Al
have dramatically improved structural prediction accuracy and
accessibility. Generative Al models are now being used to
explore protein folding landscapes by predicting possible
conformations and modeling atomic interactions. Walters
and Murcko highlighted how generative methods are
reshaping the design process in medicinal chemistry by
enabling de novo exploration of protein configurations and
ligand docking".

In parallel, transformer-based models have been
introduced to predict molecular properties and folding
outcomes using large-scale sequence data. Tran and Eze™
demonstrated that these models accurately estimate
physicochemical features of biomolecules, helping prioritize
folding candidates for deeper analysis.

A major milestone came with the application of deep
learning to real-world drug discovery. Zhavoronkov et a/'
employed an end-to-end deep learning pipeline that led to
therapid identification of DDR1 kinase inhibitors, marking one
of the first successful uses of Alin practical therapeutic design.
These methods also leverage protein structure predictions as
inputs, reinforcing the value of structural insights from models
like AlphaFold in guiding Al-powered discovery'.

Figure 4 illustrates the Al-driven pipeline for predicting
3D protein structures, beginning with an amino acid
sequence, processed through transformer layers and resulting
ina predicted protein conformation. Generative Almodels like
AlphaFold2 employ deep learning architectures, particularly
transformers, to model spatial and physicochemical
relationships between amino acid residues. This process
has revolutionized protein structure prediction, achieved
near-experimental accuracy and accelerated research in
molecular biology, drug design and enzymology. The visual
encapsulates how sequence-based input is transformed by
Al into actionable molecular insights.
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A schematic representation of a generative Al pipeline
that predicts protein structure from an amino acid sequence
input through transformer-based layers to produce a 3D
protein model. Figure 4 highlights the core mechanism
behind Al-driven structural biology tools like AlphaFold2.

The convergence of these technologies is pushing the
boundaries of protein science and setting the stage for
real-time, Al-assisted structural biology.

Alindrug discovery and development: Artificial intelligence
hasbecomeacornerstone in modern drug discovery, enabling
faster and more cost-effective identification of drug
candidates. One striking example of Al's real-world impact was
the repurposing of Baricitinib as a treatment option during
the COVID-19 pandemic. Richardson et a/* demonstrated
how Al-guided molecular modeling identified this anti-
inflammatory agent as a potential therapeutic, illustrating
the power of computational reasoning in urgent medical
contexts.

Inenzyme-targeted drug discovery, machine learning has
been applied to streamline the design and optimization of
bioactive compounds. Mazurenko et a/*' showcased how
supervised learning algorithms, trained on enzyme-ligand
interaction datasets, improve substrate specificity prediction
and support rational inhibitor design?'. Al has also been
instrumental in expanding our understanding of noncoding

ADMET Candidate
Profiling Selection

genetic variants, which play crucial roles in drug response
and disease susceptibility. Zhou and Troyanskaya?
developed a deep learning model that accurately predicts
the regulatory effects of noncoding mutations, thereby
enabling more targeted therapy development?. Furthermore,
in transcriptomics, deep neural networks have been applied
to predict splicing outcomes from primary sequences.
Jaganathan et a/2 illustrated how such models enhance our
ability to interpret pathogenic variants that affect RNA
splicing, contributing to more precise genomic medicine and
drug development?,

These advances demonstrate that Al not only
accelerates drug discovery but also deepens mechanistic
insights that inform safer and more personalized
therapeutics.

Figure 5 presents a simplified flowchart of the Al-driven
drug discovery process, beginning with compound
generation, progressing through target docking, ADMET
profiling and ending with candidate selection. Artificial
intelligence leverages generative models and molecular
simulations to identify novel compounds, predict their binding
affinity with biological targets, evaluate pharmacokinetic
properties (ADMET) and prioritize drug candidates for further
testing. This pipeline illustrates how Al integrates speed,
precision and multi-parameter optimization to revolutionize
the traditional drug development timeline.
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Aflowchart depicting the sequential stages of Al-assisted
drug discovery, beginning with compound generation,
followed by target docking, ADMET profiling and culminating
in candidate selection. This process demonstrates how Al
accelerates and optimizes each phase of modern drug
development.

Alin enzyme engineering and omics: Artificial intelligence is
rapidly transforming enzyme engineering and omics research
by enabling predictive modeling, integrative analysis and
high-throughput data interpretation. In enzyme engineering,
Al models such as deep neural networks and decision
trees are used to predict the functional impact of amino acid
substitutions, optimize catalytic efficiency and design
improved variants with novel activity. Amann et a/*
emphasized that incorporating explainability in such models
is essential to ensure confidence and traceability in
biochemical applications.

Beyond protein-level modifications, Al plays a critical
role in multi-omics integration-combining genomics,
transcriptomics, proteomics and metabolomics to model
complex biological systems.

Figure 6 illustrates the dual role of Al in enzyme
engineering and multi-omics data integration. The left panel
demonstrates how Al algorithms analyze enzyme sequences
and protein structures to predict catalytic activity and

optimize functionality. The right panel depicts Al's capacity to
assimilate various omics layers-genomics, transcriptomics,
proteomics and metabolomics-into a unified framework for
biological prediction. This visualization emphasizes how Al
enhances enzyme variant design and interprets complex
biological systems through integrative analysis.

Visual representation of how Al supports enzyme
structure prediction and integrates multi-omics data
(genomics, transcriptomics, proteomics, metabolomics) to
generate predictive biological insights.

This holistic view is vital for understanding disease
mechanisms and regulatory networks. Vayena et a/? pointed
out that while Al facilitates powerful insights in these domains,
ethical challenges such as consent, fairness and accountability
must guide its application.

To address the evolving risks of Al misuse in biochemical
research, the World Health Organization (WHO) published
guidelines on ethics and governance. These guidelines
advocate for responsible Al development, emphasizing
transparency, safety and global equity in access and
application?, Adhering to such frameworks is especially crucial
in omics studies where patient-derived biological data are
highly sensitive.

Together, these efforts are steering enzyme and omics
research into a new era where Al-powered innovation is
balanced with ethical responsibility and scientific rigor.
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Challenges, ethical considerations and future directions in
Al-driven biochemistry
Technical and scientific limitations: Although Al has
achieved remarkable milestones in biochemistry and
biomedical sciences, it faces persistent technical challenges.
As outlined by Ching et a/%’, many Al models struggle with
data sparsity, overfitting and poor generalization, especially
in heterogeneous biological datasets. Fig. 7 illustrates a
systems-level overview of the core barriers limiting the
adoption of artificial intelligence in biochemistry and
biomedical sciences. These barriers, ranging from poor data
standardization and fragmented databases to limited
computational access and reproducibility challenges, are
interlinked and often exacerbate one another. As Ching et a/?’
explain, such structural and technical limitations not only
impair model reliability but also inhibit broad Al deployment
across diverse research settings. The diagram encourages a
holistic understanding of the technological and scientific
constraints discussed in this section. Training datasets
often lack the diversity necessary to support unbiased
predictions across populations and biological systems.
Figure 7 outlines the four major categories of challenges-
data, scientific, computational and infrastructure-related-that
collectively hinder effective Al deployment. It emphasizes the
interdependence of these factors in shaping equitable and
scalable applications of Al in biochemical research.
Additionally, the integration of multi-modal data from
proteomics to metabolomics poses algorithmic and
computational difficulties. Without careful normalization and
standardization, Al systems risk generating irreproducible or
misleading outputs in real-world experiments?.

Foundational applications and structural challenges: Al is
already being applied in practical biochemical domains such
as drug-target modeling, metabolic pathway mapping and

biomolecular docking. Arowora et a/?® have emphasized the
utility of Al tools in early-stage drug discovery and the
exploration of biochemical mechanisms. These models
enhance prediction accuracy for enzyme activity and protein-
ligand binding, driving high-throughput experimentation and
rational compound screening®,

Nevertheless, many of these applications still suffer from
black-box model behavior, which limits interpretability and
slows regulatory approval. Arowora et al/® argue for
interpretable machine learning approaches tailored to
biochemical systems, such as attention-based visualizations or
modular networks that reflect domain-specific knowledge.

Infrastructure, access and research equity: Beyond technical
capacity, Al research and applications in biochemistry are
hindered by resource inequities. Access to computational
infrastructure, annotated datasets and cloud services is
uneven globally.

Figure 8 visualizes the global disparities in Al
infrastructure and resource accessibility that challenge
equitable participation in biochemical research. It contrasts
regions with high Al capacity, indicated by icons for data
servers, internet connectivity and analytics, with underserved
areas represented by satellite links and fragmented
connectivity. This disparity mirrors the concerns, which
emphasize how limited access to computational tools, cloud
services and annotated datasets hinders contributions from
low-resource laboratories, particularly in the Global South.
The image reinforces the need for international collaboration,
open-access platforms and inclusive Al development.

Figure 8 highlights disparities in global access to Al
resources such as data servers, internet connectivity and
computational infrastructure, emphasizing the need for
equitable inclusion in biochemical research.
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Fig. 8: Global inequities in Al access for biochemical research (self-generated)

Arowora et al?® highlight that these disparities limit
meaningful contributions from low-resource laboratories,
especially in developing countries, where biological insights
are urgently needed.

Solutions such as open-access databases, shared model
repositories and international training programs are key to
promoting inclusion and accelerating discovery across
continents?. Encouraging collaborative platforms between
computational and life scientists can also foster responsible
and widespread use of Al tools.

Toward explainable and trustworthy Al: The future of Al in
biochemistry hinges on building trustworthy and explainable
models that can integrate seamlessly into both clinical and
laboratory workflows. As emphasized by Jumper and
Hassabis?, efforts like AlphaFold have not only advanced
structural prediction but also set standards for transparency
and open science, offering code, models and data to the
global research community.

These standards are essential to mitigate overreliance
on black-box systems and to ensure that Al tools remain
scientifically accountable and biologically interpretable.

Emerging tools and next-generation applications

Empowering biochemical discovery through precision
Al-driven biomedical image segmentation: The multi-
transformer U-Net by Dan et a/*° enhances the precision of
biomedical image segmentation, which is critical for
analyzing complex biochemical data such as histopathology

and proteomic imaging. This advancement supports faster,
more accurate interpretation of experimental results. It also
paves the way for Al-assisted workflows in biochemistry,
enabling real-time analysis and hypothesis generation.

Advancing human health
microplastic toxicology and biochemical modeling: In their
comprehensive review, Biochemical Effects of Microplastics
on Human Health, Anih et a/>' highlight the urgent need for
sophisticated computational models and biomonitoring
strategies to evaluate how microplastics impact human
biochemistry. Their work points to exciting new directions
in Al-driven research, such as tools that can predict organ-
specific toxicity, map patterns of exposure and combine
omics data to a nticipate potential long-term health
effects.

through Al-enhanced

Harnessing neurochemical insights for Al-driven
innovations in sleep biochemistry: In their review,
Biochemical Mechanisms of Sleep Regulation, Anih et a/*
offered a detailed look into the molecular and hormonal
systems that govern sleep, providing a critical foundation
for the future of Al in biochemistry. By connecting complex
pathways involving neurotransmitters and circadian signals
to real-world sleep disorders, the authors pave the way for
cutting-edge Al applications, such as predictive modeling,
personalized diagnostics and data-driven therapy design,
to transform sleep medicine and beyond.



J. Med. 5ci, 25 (1): 1-10, 2025

Integration of traditional herbal medicine with cutting
edge Al technologies in molecular biochemistry: In their
review, Biochemistry of Traditional Herbal Compounds and
their Molecular Targets, Anih et a/* explored how modern
techniques like molecular docking and omics technologies are
helping decode the complex actions of traditional herbal
compounds. By linking chemical structures to specific
molecular targets and signaling pathways, their work lays a
solid groundwork for the development of Al-powered
tools in drug discovery. These insights point to exciting future
directions where machine learning can accelerate the design,
prediction and refinement of bioactive phytochemicals for
precision medicine.

Al-powered exploration of microbiota-derived biochemical
networks in host system regulation: In their review,
Biochemically Active Metabolites of Bacteria: Their Influence
on Host Metabolism, Neurotransmission and Immunity,
Anih et a/>* explore how gut microbiota-derived metabolites
modulate complex host pathways through receptor signaling,
epigenetic control and neuroimmune interactions. By
mapping these molecular dialogues, such as SCFA signaling
via GPRs and tryptophan-derived modulation of AhR and
NMDA receptors, the study lays a compelling foundation for
future Al-driven approaches to simulate, predict and
therapeutically target host microbiome interactions in systems
biochemistry.

CONCLUSION

Artificial Intelligence (Al) is emerging as a transformative
force in biochemistry and biomedical sciences, redefining the
pace and depth of molecular research and clinical innovation.
By enhancing diagnostic precision, enabling accurate protein
modeling, accelerating drug discovery and facilitating
integrative multiomics analysis, Al is reshaping scientific
workflows and expanding the possibilities of personalized
medicine. This review highlights Al's pivotal role in deepening
our understanding of complex biological systems and
promoting interdisciplinary collaboration. However, for this
potential to be fully realized, challenges such as data bias,
limited interpretability, ethical concerns and global disparities
must be addressed. The development of explainable and
equitable Al systems will be essential for sustainable and
inclusive progress. Ultimately, Al stands as a central pillar in
advancing modern biochemistry and improving health
outcomes worldwide.

SIGNIFICANCE STATEMENT

This study discovered the transformative potential of
Artificial Intelligence (Al) as both a computational engine and
a scientific collaborator in biochemistry and biomedical
sciences. It can be beneficial for enhancing diagnostic
accuracy, accelerating drug discovery, improving protein
structure prediction and integrating multiomics data for better
disease understanding. The study also emphasizes the
importance of ethical governance, equitable access and
explainable Al to ensure responsible deployment across
diverse settings. By providing practical examples in areas such
as neurodegeneration, toxicology and systems biology, this
study will help researchers to uncover the critical areas of
molecular research and data integration that many were not
able to explore. Thus, a new theory on Al-driven biochemical
innovation may be arrived at.
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