Journal of
Software

Engineering

ISSN 1819-4311

@

Academic
Journals Inc. www.academicjournals.com

Journal of Software Engineering 2 {1): 23-38, 2008
ISSN 1819-4311
© 2008 Academic Journals Inc.

A Proposition of Generic Deployment Platform
for Component Based Applications

'A. Benamar, ‘N. Belkhatir and 'F.T. Bendimerad
"Universite Aboubekr Belkaid de Tlemcen, BP 230, Tlemcen 13000, Algérie
’Adele Team, LSR-IMAG 220 Rue de la Chimie, Grencble 38041, France

Abstract: In this study, we propose a generic approach for the deployment of component
based applications. The proposed approach is based on D and C specification and model
driven architecture that is becoming a key approach for model transformation. Specifically,
our generic deployment tool is implemented and tested for enterprise Java beans through
two main steps. Starting from a platform specific model, it is transformed by means of Atlas
transformation language to a platform independent model that is represented by D and C
application model. Then, the resulting D and C model and deployment domain model allow
to launch the deployment plan by describing the choice of components, their locations and
linkages.

Key words: Deployment, enterprise java beans, D and C specification, model driven
architecture

INTRODUCTION

Software life cycle is composed of many steps such as analysis, design, production, test,
deployment and execution. With the emergence of the component oriented programming paradigm, each
life-cycle step is subject to abstraction for reuse and standardization. This study subject focuses on
the deployment step in the context of component based applications. Complexity and importance of
deployment are both increased by network evolution and component based applications. Many
component technologies such as the Object Management Group (OMG) CORBA Component Modzl
(CCM), the Sun Microsystems Enterprise Java Beans (EJB) and the Microsoft corporation. Net exist.
But generally, the proposed systams are difficult to modify and hard to configure. Also, even if the
deployment logic and its concepts are almost always the same ones, one can easily note that each
component technology proposes its own deployment system. Therefore, we would like to propose
a generic approach for a deployment and reconfiguration system. A generic approach makes it possible
to concentrate on deployment concepts and to implement a common and reusable platform.

In this study, we propose a generic approach that allows to provide a deployment platform for
component based applications. This approach follows the Model Driven Architecture (MDA)
technique and identifies two main steps:

« Transformation of Platform Specific Model (PSM) to Platform Independent Model (PIM) by
means of Atlas Transformation Language (ATL)

« Execution of deployment plan, by affecting and connecting the component systems to the
network

RELATED WORK

There is a considerable interest in development of generic deployment model that is relevant to
MDA approach and metadata management.

Corresponding Author: A. Benamar, Universite Aboubekr Belkaid de Tlemcen, BP 230, Tlemcen 13000, Algérie
23

J. Software Eng., 2(1): 23-38, 2008

Lestideau and Belkhatir (2003) tried to solve the deployment process of the component-based
applications. They defines a component model that is used for deployment purposes and that should
fit for the most component models. But this model is not sufficient; it does not cover all the necessary
abstractions typical for software components. The authors use the model for configuration purposes,
i.e., to select the concrete components that form an application, where their model is sufficient. But
for the purpose of the whole deployment process, the model is insufficient (for example it does not
cover ties among components).

Quema ef af. (2004) designed an environment for deploying software components. They define
own component model and own ADL for manipulating components. The focus is mainly imposed on
scalability and fault-tolerance of the environment.

Kebbal and Bernard (2001) also defined an environment for deploying components. The authors
focus mainly on discovery of components (based on trading). The solution is integrated into CCM.

Merle and Belkhatir (2004) proposed an Open enviRonment to deploY Application (ORYA)
which provides distributed support for deploying {ordinary) application. ORYA supports install,
configure, reconfigure and de-install stages of deployment process. Because it supports deployment
of ordinary applications, the planning stage is very primitive (for ordinary applications, there are
usually no necessities for complex planning).

Deng et al. (2005) proposed an implementation of D and C specification called Deployment And
Configuration Engine (DAnCE). The engine is currently under development and does not support all
features from the specification. It allows deployment of CCM components.

Hnétynka (2004) presented a Deployment Factory (DF) and model-driven unified environment
for deploying distributed component based applications. The DF via its generic feature support
heterogeneous applications is based on D and C specification. Moreover, DF is built using a plug-in
concept and facilitates deployment of components of most of the contemporary component
technologies without the necessity to modify them.

Flissi and Merle (2004) proposed a multi personalities environment for configuration and
deployment of component based applications. This environment is composed of a core capturing a
canomical model of configuration and deployment and a set of personalitics custormzed with languages
and platforms. Moreover, the proposed system details the architecture of such environment and
describes the personalities for the CORBA and Fractal component models.

SOFTWARE DEPLOYMENT PROCESS

According to Carzamga ef af. (1998), the term of software deplovment refer to all the activities
that make a software system available for use. These activities represent a life cycle of an application
and are related to the release, install, activate, de-activate, update, adapt, de-install and de-release.
Although we can identify a set of distinet and key activities that typically constitute a generic
deployment process, we cannot precisely define the particular practices and procedures embodied in
cach activity. They heavily depend on the characteristics and requirements of the software producers
and consumers. Therefore, Fig. 1 should be interpreted as a reasonable process that has to be
customized according to specific requirements of the deployment activity being observed.

« Release: This is the most important activity for software deployment process. It represents an
interface between deployment and development process. Thus, it must determine the resource
required by the software svsterm to operate correctly and must also collect the necessary
information for carrying out subsequent activities

« Install: The installation activity covers the initial insertion of a system into a consumer site.
Effectively, it is the most complex of the deployment activities because it deals with the proper
assembly of all the resources needed to use a system. It is also currently the activity best
supported by specialized tools

24

J. Software Eng., 2(1): 23-38, 2008

Release > De-release
Install < : De-install

A A 4

\4 \4

Update < > Adapt
A
\4 /
+—>

Fig. 1: The software deployment process (Carzaniga ef al., 1998)

+ Activate and de-activate: thesc activities consist respectively to start up and shutdown the
executable system. For a simple system, activation involves establishing some form of command
{or clickable graphical icon) for executing the binary software. For a complex system, it might be
necessary to start servers or daemons, before the software system itselfis activated. Furthermore,
de-activation is often required before other deployment activities

« Update: Tt is a special case of the install activity. However, it is usually less complex because it
can oftenrely on the fact that many of the needed resources have already been obtained during
the installation process. Similar to installation, update also includes the transfer and configuration
of the components needed to complete the operation

« Adapt: Like the update activity, the adaptation involves to modify a software already installed.
Adaptation differs from update in that the update activity is initiated by remote events, such as
a software producer releasing an update, whereas adaptations are initiated by local events, such
as a change in the environment of the consumer site. Therefore, the same release is kept but only
modified in terms of configuration

+ De-install: It consists of removing an installed application. Of course, de-installation presumes
the system is also deactivated. This activity must be done properly, because it is possible that,
it involves some reconfiguration of other systems in addition to the removal of the de-installed
system’s files

¢ Derelease: Finally a system is marked as obsolete and support by the producer is withdrawn.
This requires that the withdrawal be advertised to all known consumers of the system

SURVEY OF DEPLOYMENT PLATFORMS FOR COMPONENT
BASED APPLICATIONS

Every component technology uses its own component model. This section provides an overview
and analysis of the typical component models used in contemporary component technologies
(Wang and Qian, 2005). Specifically, we have considered the OMG’s CCM, the Sun Microsystems
EJB and the Microsoft Corporation. Net.

Corba Component Model (CCM)

CCM is a component specification developed by OMG. The main focus of CCM is to ease the
development process of applications made of distributed components that are heterogeneous. In the
initial definition of Corba architecture, the aspects related to the deployment were ignored. The
specification was exclusively oriented towards the object interoperability.

25

J. Software Eng., 2(1): 23-38, 2008

However, in the new component specification, the OMG has given a great importance to the
software deployment and distribution. In fact, the specification includes a deployment model allowing
to describe component assemblics. Four models constitute the Corba 3.0 standard, including abstract
model, programming model, deployment model and execution model.

« Abstract model: It covers specification of component interfaces and their interconnections

¢ Programming model: It describes component implementations and their non-functional
properties

« Deployment model: It defines how to assemble component systems (i.e., packaging, installing)

« Execution model: Tt defines containers as a runtime environment for component instances

Enterprise Java Bean (EJB)

The EIB framework, provided by Sun Microsystems, is a component architecture intended for
the development of distributed, object-oriented business applications in the Java programming
language. EIB component (Monson-Haefel and Burke, 2006), also called bean is a server component
represented by home interface and the remote interface. The remote interface reflects the functionality
of the bean and is implemented by so named business methods. On the other hand, the home interface
supports methods for ereation and removal of particular bean objects, as well as methods for querying
the population of the EJB objects. A container provides a deployment environment that wraps the
beans during their life cycle; every bean lives within a container. The container provides services that
the contained beans can use namely transactions, security and persistence. By default, both interfaces
are accessible via Remote Method Invocation (RMI). Every client method invocation on a bean is
supervised by the bean’s container, which makes it possible to manage the transactions according to
the transaction attributes that are specified in the corresponding bean’s deployment descriptor.

Microsoft’s .Net

The newest significant product in the area of distributed computing is the Microsoft’s Net
Framework. Although its concepts are far different from the traditional concepts of the component-
oriented development, it can provide quite a flexible way to develop distributed applications. Basic
building units in the NET Framework are classes, sometimes also called components. The source code
of'the classes can be implemented in variety of programming languages, including C#, visual Basic .Net
and Jscript. Once fimished, it is compiled into the Microsoft Intermediate Language (MSIL). The
structure of the resulting files is very similar to the structure Java class files. As a next product of the
compilation process, a manifest file with description of published data types, dependencies and digital
signatures is created. All the resulting files are packaged into a single file called an assembly. The
assembly files must be manually deployed to the target machine and run with the support of the
Common Language Runtime (CLR).

Synthesis

As shown in the subsequent tables, this synthesis is focused on two aspects. The first aspect is
related to metadata (Table 1) and the second aspect is related to the activities provided by platform
interfaces (Table 2).

Deployment Metadata
« Component Implementations: All the deployment technologies studied above are based on the

package concept. A package is an archive that contains the component files together with some
metadata describing the component systems. For instance, CCM allows to use multiple

26

J. Software Eng., 2(1): 23-38, 2008

Table 1: Comparison of deployment platforms through deployment metadata

CCM EIB

Net

Component implementations

Component structures

Cormponent dependences

Support multiple Java classes
implementations. For each,
description, reference to its code,
cormpiler name, dependences,

programming language,

location constraints

Abstract models of component
(facets, receptacles, events and
attributes) and its home

Packages, resources and files

Provided
interfaces and
home interfaces
Resources

List of implementation files
(C#, Visual Basic Net or Jscript)

No structural information
in manifest

Static references to assermblies and
resources

Component functional Description of configuration Description of
properties properties configuration Not managed
properties
Cormponent non-fimctional Type of component, transaction, Type of Mot managed
persistence, Qo8 of event ports component,
and threading.properties transaction,
persistence,
relations and
attributes provided
by container
Deployment domain modeling Not supported Mot supported Mot supported
Deployment plan Supported Not supported Not supported
Abstract assembly description Not supported Supported Not supported
Table 2: Comparison of deployment platforms through deplovment activities
CCM EIB Net
Package installation Manual Manual Manual
Tnstantiation Supported Supported Supported
Connection Supported Supported Supported
Site assignation Mot supported Mot supported Mot supported
Assemnbly supervision Not supported Not supported Not supported
Activation/De-activation Supported Supported Supported
De-installation Manual Manual Manual

implementations of the same components. Besides, the selection of suitable implementation is
carried out at runtime. However EJB and Net are restrained to a single component
implementation. In fact, EJB and Net depend on specific technologies that are respectively Java
Virtual Machine (JVM) and CLR

Component structures: Almost the deployment platforms allow to describe the structural
information of the component excluding .Net. Moreover, some conception and assembly tools
would highlight component interfaces and so that detect the possible connection among these
connections

Component dependences: All the deployment platforms let to represent component
dependences among packages and resources. For instance, CCM could support a general
description of component dependences, besides the dependences through the same component
implementation

Component properties; Thanks to non-functional properties, CCM and EJIB could define
container type, so that benefiting of functional services (transaction, persistence and security).
However, the Net deployment model is unable to characterize the non-functional properties and
its manifest file could not describe the functional properties

Domain modeling: All the deployment technologies studied above have no feature to model the
deployment domain

Deployment plan and assembly description: Even if, CCM support a suitable description of
deployment plan, EJB support only the assembly description. On the other side, the concept of
assembly in .Net is only based on possessing a reference to its implementation

27

J. Software Eng., 2(1): 23-38, 2008

Deployment Activities

All the deployment platforms studied previously, realize the basis deployment activities such
as instantiation, configuration and connection, but more or less expressed differently. For instance in
CCM, the deployment activities are opaque, which in turn decreases the dynamicity and flexibility of
deployment process.

GENERIC DEPLOYMENT PLATFORM

The deployment of component based applications is not unified. Moreover, each component
model solves the deployment issues in its own proprietary way. Therefore, we propose a generic
approach that is intended to make unified the deployment of component based applications.
Specifically, this approach is based on model transformation technique that uses an appropriate PIMs
and PSMs.

Model Transformation Overview

Several attemnpts were performed for making the deployment of software component unified but
none of them supports all the necessary features. OMG tries to solve this problem in its Deployment
and Configuration (D and C) of component based distributed applications specification (OMG, 2004).
The specification follows the MDA paradigm. It defines an approach to software development based
on modeling and automated mapping of models to implementations. The basic MDA pattern involves
defining a PIM and its automated mapping to one or more PSMs. While the current OMG standards
such as the Meta Object Facility (MOF) and the Unified Modeling Language (UML) provide a well-
established foundation for defining PIMs and PSMs, no such well established foundation exists for
transforming PIMs into PSMs (Gerber ez /., 2002). In 2002, in its effort to change this situation, the
OMG initiated a standardization process by issuing a Request for Proposal (RFP) on
Query/Views/Transformations (QVT). This process will eventually lead to an OMG standard for
defining model transformations, which will be of interest not only for PIM-to-PSM transformations,
but also for defining views on models and synchronization between models.

Driven by practical needs and the OMG’s request, a large number of approaches to model
transformation have recently been proposed. In the following, we present a number of existing
model transformation approaches: VIATRA (Varro ef af., 2002), Tefkat (Gerber ef af., 2002), AMW
(Bézivin ef af., 2005), ATL (Jouault and Kurtev, 2005; Bézivin and Jouault, 2006), Kent (Akehurst
and Kent, 2002) and C-SAW (Gray et al., 2006).

Platform Modeling

This subsection explains the overall design and functionality of generic deployment platform for
component based applications. For this purpose, present system uses OMG’s D and C models and
EJB PSM that are presented hereunder.

OMG’s D and C Specification

OMG’s D and C specification is an attempt to define generic support for deployment of
component-based software. This specification defines three main PIMs (e.g., component model, target
model, execution model). Moreover, each model has two parts, or it can be said views on the model
(e.g., data, management).

Besides component packages and configuration, the data part of the component model defines
descriptors for components with their interfaces and implementations. Figure 2 provides a simplified
view of the component model.

28

J. Software Eng., 2(1): 23-38, 2008

PackageConfiguration ImplementationArtifactDescription

A
+PrimaryArtifact | 1..

*

ComponentAssemblyDescription ComponentMonolithicDescription
0.1 < 0.1 e
0.1 +BascPackage +Assemlympl o1 (Xor} M +Monolithicmpl
s ~
1“* ~,
v +Implementation
ComponentPackageDescriptior‘l »(ComponentImplementationDescription
1.*
+Releases +Implemets

A

ComponentInterfaceDescription

Fig. 2: OMG’s D and C component data model {OMG, 2004)

+InfoPrepoerty
< Domain j@—— | Property
L.* +Interconnect +Bridge
+Node
+Connection +Connection]
Node Interconnect Bridge
+Connect +Connect
+Node
1.* 1.*
- +Resource
+Resourc
+SharedResource
+SharedResource +Resource
— SharedResource f————> Resource [«

Fig. 3: OMG’s D and C target data model (OMG, 2004)

Package Configuration describes a configuration of a component (i.e., the result of configuration
stage). ComponentPackageDescription describes the component packed in a package. It refers to
ComponentInterface Description, which describes provided and required interfaces of the component
and to ComponentlmplementationDescription, which can be either monolithic implementation
(ComponentMonolithiclmplemtation) or assembled from other components (Component
Assemblylmplemtation). A monolithic implementation is composed from implementation artifacts
(code of the component, etc.), whereas an assembly implementation is composed only from other
interconnected components; it does not directly contain any implementation artifact.

The management part of the component model contains just single class called Repository. Tt
stores and manages information about components. It provides API for installing component packages
into the repository, searching the repository content by different criteria and also for deleting packages.

Figure 3 shows the data part of the Target model, which describes and manages information about
the target site into which applications can be deployed.

In the specification, the target site is called Domain. A Domain comprises of Nodes,
Interconnects, Bridges and SharedResources. Nodes provides a computational capability and instances
of components are executed on them. Also, nodes have resources and shared resources (shared among
several nodes) and requirements of components are satisfied with these resources. Interconnects
directly comnect two nodes and do not have only shared resources. Bridges route component
connections between interconnections. A minimal domain consists of just a single node.

29

J. Software Eng., 2(1): 23-38, 2008

TargetManager

NodeManager

ExecutionManager

Logger

A4

| DomainApplicatonManager |—>| NodeApplicatonManager

v A4

DomainApplicaton }—>| NodeApplicaton

Fig. 4: OMG’s D and C execution management model {OMG, 2004)

The management part of the Target model contains just TargetManager that provides information
about the domain using data model and allows querying, allocating and releasing resources within the
domain.

The data part of the Execution model defines the DeploymentPlan, which is produced by planning
stage and describes actual deployment decisions about concrete application. The DeploymentPlan is
very similar to ComponentPackageDescription from component model; it can be viewed as a flattened
component assembly. Each composite component is recursively replaced with their subcomponents
and finally, the deployment plan consists just of primitive components, respectively implementation
artifacts and their connections. All artifacts and connections have assigned nodes and interconnections
from target model.

After the planning stage, the application is ready to be launched according to deployment plan
via ExecutionManager from the management part of the Execution model. An overview of this model
is shown on Fig. 4.

There is only one ExecutionManager for the whole domain. It manages execution of applications
and has knowledge of NodeManages, which manage nodes and also manage a part of the application
executed on this node. Each launched application has a DomainApplicationManager that controls the
launching process of the application in the scope of the domain and also it is used to stop application.
On the other hand, NodeApplicationManager controls the launching process on the corresponding
node. Finally, the whole executed application is represented by Domain Application; NodeApplication
represents piece of the application that is executed within a single node.

EJB PSM

The current version of our system supports only EJB PSM, because this model is commonly
used by academic and industrial communities and provides almost features related to component based
applications. A graphical overview of EIB PSM Metamodel is shown in Fig. 5.

Implementation

Present prototype is implemented with Eclipse SDK (Version: 3.2.1, Build id: M20060921-
0945). Specifically, the prototype uses respectively application and domain metamodels of D and C
specification as PIM and domain metamodels. Actually, only EJB PSM is tested and a graphical
overview of its transformation process is shown in Fig. 6.

The main tools used for prototype implementation are presented in the following:

+ Eclipse Modeling Framework (EMF) as development environment

« Atlas Transformation Language (ATL) as EMF plug-in for model transformation
+ Eclipse Web Tools Platform (WTP) as Eclipse plug-in for EJB implementation

« AntBuild Tool (ABT) as running tool

30

J. Software Eng., 2(1): 23-38, 2008

Descriptor

Application

<<Cnterprise bean>> enterprise-beans +isDescribed By Message driven
<<Relationships>> relationships —{<<String>> Name¢ <<String— .
<<Assembly descriptor>> assembly-descriptor <String>> Version| <<String>> cjb-local-ref

s N
Ressource isComposed

|<<String>> Name] Entity
*

[<<String>> Type 1 <<String>> local-home
0.* ComponentlmplementationDescription <~ String>> local Commun

+Use <<String>> persistance-type

<<§lrmg>>]\Eamc > <<String>> prim-key-class <<String>> cjb-namc|
<<String>> Version <<String>> reentrant > <<String>> ejb-class
<<String>> Type <<String>> cmp-version
[<<String>> abstract-scheme-na.
<<Tield>> emp-field
Package +Located +Implements <<Query>> query
[<<String>> Namc|
1
C: aceDescription Scssion
<<String>> Namc
Somng <<String>> name
<<String>> Type <<String>> remote
<<String>> session
+Extends <<String>> transaction-t
0.1 0.* ejb-local-ref: EJB Local
Class
<String>> Name
J<<String>> Type “Implementation

Fig. 5. Metamodzl of EJB PSM

Metamodel of D and C Metamodel of EJB
application in UML PSM in UML

\/r‘—
1
1
L
L

E Transformation

Metamodel of D and C

application in Ecore o Metamodel of EJB

PSM in Ecore

Atlas Transformation

Conforms to
Conforms to Language (ATL)

EJB PSM

Metamodel of
domain in UML

!

Metamodel of
domain in Ecore

Execution of f
deployment plan Conforms to

. Domain model
: UML to Ecore Transformation

: EJB PSM to D and C PIM Transformation

Deployment
plan

Fig. 6: Stages of metamodel transformations

31

J. Software Eng., 2 (1): 23-38, 2008

Eclipse Modeling Framework (EMF)

Eclipse was created by OTI and IBM teams responsible of Integrated Development Tool (IDE)
products. Eclipse is platform that has been designed for building integrated web and application
development tooling. At the core of Eclipse there is an architecture for dynamic discovery, loading and
running of plug-ins. Each plug-in can then focuses on a small number of well-defined tasks.

EMF is a modeling framework and code generation facility for building tools and other
applications based on a structured model. EMF provides its own format (Ecore) for models and
metamodels encoding. This format is based on the semantics of the Ecore metamodel and the
corresponding files are encoded with XMI 2.0. Although possible, the manual edition of Ecore
metamodels is particularly difficult with EMF. In order to make this common kind of editions easier,
the ATL Development Tools (ADT) include a simple textual notation dedicated to metamodel edition,
called Kernel MetaMetaModel (KM3). This textual notation greatly eases the edition of metamodels.
Onee edited, KM3 metamodels can be injected into the Ecore format using ADT integrated injectors.

In this case, the prototype is developed via Eclipse project, which include the following file
formats:

5” KM3: Tt allows to introduce metamodels through text editor

| Ecore: It provided by EMF injector KM3 to Ecore tool
(ATL: Tt is composed of rules that define how EJB PSM is matched to create D and C PIM

T‘,gi XML: It describes deployment metadata and is represented by deployment descriptor of EJB
PSM

Figure 7 and 8 provide, respectively a project explorer view and a graphical overview of ETB PSM
metamodel in Ecore format.

Recall that application and domain metamodels are provided by D and C specification; also their
graphical overviews in Ecore format are shown in Fig. 9 and 10.

Atlas Transformation Language (ATL)

ATL is the LINA-INRIA research group’s answer to the OMG MOF/QVT RFP. Tt is a model
transformation language specified as both a metamodel and a textual conerete syntax. Developed over
the Eclipse platform, the ATL IDE provides a number of standard development tools (syntax
highlighting, debugger, etc.) that aim to ease the design of ATL transformations. The ATL development
environment also offers a number of additional facilities dedicated to models and metamodels handling.
These features include a simple textual notation dedicated to the specification of metamodels, but also
a number of standard bridges between common textual syntaxes and their corresponding model
representations.

In this case, the aim of using ATL is to design a set of rules that define how EJB PSM is matched
to create D and C PIM. The Figure 11 provides a screenshot for the corresponding ATL file.

Web Tools Platform (WTP)

The Eclipse Web Tools Platform (WTP) project, seeded by contributions from the IBM Rational
Application Developer for WebSphere and ObjectWeb Lomboz, provides a set of well-rounded and
tightly integrated tools that simplify the creation of often complex web and J2EE applications. The
WTP consists of two subprojects: Web Standard Tools (WST) and J2EE Standard Tools (JST). The
WST project contains tools for programming-language-neutral standards such as HTML, XML and
web services. The JST project contains tools specific to the Java language and its J2EE platform such
as EIB, Servlet and Java Server Pages (JSP) and Java web services.

32

J. Software Eng., 2 (1): 23-38, 2008

sSro.resources
A sStockManaogerEIB
B2 workspace
t--Eh JRE Swstem Library [jrel.5.0_02]
£ build. xml
ID ComponentDataModel_Dnl . ecore
Kk ComponentDatatodel Do km3
ComponentDataModel_EJE. ecore
ComponentDataModel_EJE. km3
DeploymentPlan_Dnc. km3
Dormain_DncC.ecore
5 Dormain_Dnc . kmS
Ejb_application_model.ecore
EJBZDniZ. asm
7 EJIBZDniZ. atl
MonDomaine.ecare
Zlf;‘l StockManagerEJB
El?_:‘J StockManagerEJBClient
3%5 StockManagerEJBEAR

ComponentDataMadel_E 18
= B application
2 name : Sktring
T wersion : Skring
5 composed @ ComponentImplementatioDescription
15 isDescribed : Descriptor
AssemblyDescriptar
Class
ClassType
CrrField
Camnnon
CamponentImplementatinDescription
ZomponentType
Componentyersion
CamponentInterfaceDescription
InterfaceType
CaomponentPackageDescription
Containet Transaction
Drescripbor
EjbLocalref
EjbRelation
EjbRelationshipRole
EnkerpriseBean
Enkity -= Cornmmon
Field
Messagelriven -= Common
Methiod
MethodParams
Query
QueryMethod
RelationshipRoleSource
Relationships
Fesource
Session
rimitiveTypes

() T)) D)))) 3 103 T 0§)

,_|
B
#®
o

Fig. 8: EJB PSM metamodel (Ecore)

33

J. Software Eng., 2 (1): 23-38, 2008

G- 8 PrimitiveTypes
=8 ComponentDataModel_Dnc

= E ComponentImplementationDescription
T narme : String
- = monolithicImpl : MonolithicImplementationDescription
- = geeemblyImpl : ComponentAssemblyDescription
- &= dependsOn : ImplementationDependency
&3 configProperty @ Property
&3 infoProperty @ Property
- &% capability : Capability
5* implements | ComponentInterfacebescription
ComponentassemblyDescription
SubcomponentInstantistionDescription
AssemblyConnectionDescription
SubcomponentPortEndpoink
AssemblyPropertyMapping

=
BB

(1T ()) (0)))) A)))) T 0

e}

SubcomponentPropertyReference
MonalithicImplementationDescription
MamedImplementationartifact
ImplementationartifactDescription
ComponentInterfacebescription
ComponentPorkDescription
ComponentPropertyDescription
iZapability - > RequirementSatisfier
ReguirementSatisFier
SatisFierProperty
SatisFierPropertykind
ImplementationDependency
Property

Requirement
ComponentPackageDescription
ComponentPackageReference
ExternalReferenceEndpoint
iZomponentExternalPortEndpoink

£ PackageConfiguration

< 1l

Fig. 9: D and C application metamodel (Ecore)

PrimitiveTypes

Domain_Dnic

=- B eridge

5 name : String

55 connect : Interconneck
‘&3 resource : Resource

= Diomain
-5 label : String
‘&= bridge : Bridge

&= infoProperty : Property
&= interconnect : Interconnect

node : Mode

sharedResource : SharedResource
erconneck

name @ Skring

conneck @ Mode

connection @ Bridge

resource : Resource

294

0

9

Mode
5 name : Skring
connection : Inkerconnect

HHE

resource : Resource

&= sharedResource : SharedResource
Property

Resource -= RequirementSatisFier
RequirementSakisFier

T name : Skring

I

mmm -

- resourceType : String

- 5= property : SatisfierProperty
SatisfierProperty

SatisFisrPropertykind

Oy

SharedRresource - = Resource

55 node : Mode

=] 1=

Riulufulin

Fig. 10: D and C domain metamodel (Ecore)

34

J. Software Eng., 2 (1): 23-38, 2008

EJB2DnC.atl X =0

muodule EJEZ0NC; -- Module Template
create OUT : ComponentDataiodel_DnC From IN : ComponentDataModel_EJE;
rule Component {
from
a + ComponentDatatodel_EJB! ComponentImplementationDescription
to
¢ : ComponentDatatodelComponent Implement ationDescription
name <- a.name,
implerments <- a.implements)

rule Intetface {
from
b : ComponentDatatodel _EJB! ComponentInterfaceDescription
to
i+ ComponentDataModel! ComponentInterfaceDescription
label «- b.name,
specificType <- b.type)

}
rule Package {
from
d : ComponentDataModel_E B! ComponentPackageDescription
to
p + ComponentDataModel! ComponentPackagebescription (
label <- d.label,
implementation <- d.implementation)

rule Resource {
from
b 1 ComponentDataModel_EJB!Resource
to
r 1 CamponentDataModel|Requirement:
resourceType <- b.type)

Fig. 11: ATL file EJB2DnC.atl

Recall that our prototype aims to deploy EJB specific application. For this reason, we use WTP
to develop an EJB application of stock management, which consists of three projects:

T_—',J- StockManagerEIB (application project) is used to organize the resources (e.g., XML
deployment descriptor, Manifest. MF file) and contains EJB module (i.e., E StockManager.ejb). This
EJB module is installed in enterprise bean container and includes [;3 entity beans (e.g, City, Country,
Product, ProductFamilly, Provider) and I__d session bean (e.g., StorageServiceBean).

15, StockManagerEJBClient (client project) contains all the interface classes that a client program
needs to use the client views of the enterprise beans.

'&h StockManagerEJBEAR (Enterprise Archive EAR project) includes all deployment
metadata of client and application project which are archived in deployment descriptor
(| X application.xml).

A graphical overview of EJB specific application is shown in Fig. 12.

Ant Build Tool (ABT)

ABT is Eclipse’s external tool framework and is developed by Apache software foundation. ABT
is a Java-based build tool that uses build files written in XML. The build files use a target tree where
various tasks are executed. A target, which is a set of tasks to be executed, can depend on other targets.
Examples of targets include creating directories, compiling, packaging into Java ARchive (JAR) for
distribution, deploying and so on.

In this case, once ATL transformation tool generates D andC PIM, then the next step is to
prepare and execute the deployment plan. For this purpose, we use the Ant build file Build xml.
Mainly, this file executes the following tasks:

35

J. Software Eng., 2 (1): 23-38, 2008

File Edit Source Mavigate Project

Run XML ‘Window Help

G its-0O-igiGe-

iz

T |5 1oee (B ATL

= Deployment Descriptor: StockMan
L] AssemblyDescriptor
=] & Entity Beans
[City
-] Country
Product
ProductFanily
;i -4z Provider
= -B Message-Driven Beans
-8 session Beans
[ERE ShorageService
B eibModule
BB JRE System Library [jrel.5.0_09]
=
E

£, JBoss w4.0 [JBoss v4.0 2]

- B EAR Libraries

B buid

2] &:;J' StockManagerE JBClient

=& StockManagerEJBEAR
& -ﬂDT Deployment Descriptor: StockMan
B EarContent

= m [m ejbejar ol EL m application. xml ‘

=g

«ejb-jar id="gib-jar_1" zmins="http:fiava.sun, comfzmlins/izee" xmins |=

<description:= < [CDATA[StockManagerE 6 generated by eclipse wip
<display-name =5tockManagerEJB < /display-name >

<enterprise-beans =

<1-- Session Beans -
<session id="5ession_StorageService"»
<description> <I[CDATA[Description for StorageService]]> </desc
1 «display-name =StorageService <fdisplay-name>

<ejb-name:=5torageService </ejb-name >

<home =stockmanager . ejb. StorageServiceHome <fhome>
<remate=stockmanager.ejb. StorageService </remote
«ejb-class =stockmanager eib, StorageServiceSession </ejb-class >
“session-type xStateless </session-types

<transaction-type >Container </transaction-type =

«ejb-local-ref id="EJELocalref 1">
<ejb-ref-name =ejbiProductLocal<fejb-ref-name =
<ejb-ref-type=Entity </ejb-ref-type>
<locakhome =stockmanager ejb, ProductLocalHome <flacal-home
<local=stockmanager ejb. ProductLocal <jlocal >
<ejb-link=Product </ejb-link:

«lejb-local-ref =

>

4 & <ejb-local-ref id="EJBLocalref _2">
& M@m ““'F ; <ejbrref-name seibiProductaniyLacal</eib-ref-names l
application,xm < i])il
(\ Ll } Design | Source

‘rEADANE

=] E;‘J StockiManagerEB

Fig. 12: Project explorer view of EJB specific application (StockManagerEIB)

= [}
A

Buildfile: Ceclipse 3.2, 1workspace\EJB2DnC build, sl =i
skart, jboss:

[echa] + +

[echa] | |

[echa] | STARTING JBEOSS |

[echa] | |

[echa] +

[echa] This will take some time, possibly up ko & minute.
prepare:

[mkdir] Created dir: Cieclipse 3.2, workspacetEJBZDnC) build

[mkdir] Created dir: Cieclipse 3.2, Uworkspacet EJBZDnC)buildiclasses

[mkdir] Created dir: Cieclipse 3.2, Uworkspacet\EJBZDnCbuildear
compile:

[iawac] Compiling 76 sources files to Chedipse 3.2, 1 workspace\EJBZDNC build classes
ejbjar:

[iar] Building jar: C:Yeclipse 3.2, 1\workspace\EIBZDnC\build\ StockManagerEJE. jar

[copy] Copying 1 file to Cijboss-4.0,4\serveridefaultideploy
bl ar:

[copy] Copwing 14 files to Checlipse 3.2, 1\workspacel EJBZ0nC) buildywebapp WEB-INF\classes

[copy] Copying 2 files to Cieclipse 3.2, 1workspacelEJB2DnC buildywebapph WEE-INF

[copy] Copying 32 files to Checlipse 3,2, 1 workspacelE JB2DnC buildywebapp

[iar] Building jar: C:leclipse 3.2, workspace\EJBZ2DnCbuildiear StockManagerEJB . war
buildEar:

[iar] Building jar: C:lecipse 3,2, workspacelEIB2DnC dist) StockManagerE B, ear

[copy] Copying 1 file to C:Yjboss-4.0.4\serveridefaultideploy
all: il
BUILD SUCCESSFLL
Total time 1 minute 23 seconds

v

Fig. 13: Result of deployment plan running

36

J. Software Eng., 2(1): 23-38, 2008

« Start running the JBoss server
+ Preparing and compiling Java Bean classes
« Packaging and deploying the result files

The output screenshot of this file is presented in Fig. 13.
CONCLUSTON AND PERSPECTIVES

Software deployment is a complex process. It covers the post-development activities such as
release, install, configure, plan, launch, de-install, de-release. Many component technologies (e.g.,
CCM, EJB, .Net) exist. On the other hand, a generic model that covers all these technologies would
be desirable. The main contribution of this study is to present a generic deplovment approach using
D and C specification and MDA technique. The proposed approach is tested over EJB model and is
implemented such as:

+ Transformation of EJB PSM to D and C application model PIM by means of ATL tool
« Execution of deployment plan, that describes an assembly of component instance by specifying
where, they are distributed and 'how' they are connected and configured

Further work remains to be done on several aspects. Our future plans consist in two areas:

+ Extension of the system, thus tries to investigate the integration of other component systems
{e.g., CCM, Net) and novel application architecture such as Service Criented Architecture (SOA)
and embedded systems

« Intention to evolve the prototype with dynamic (re) configuration of components

REFERENCES

Akehwurst, D.H. and S.J.H. Kent, 2002. A relational approach to defining transformations in a
metamodel. Proceedings of 5th International Conference on the Unified Modeling Language,
Dresden, Germany, 30 September-October 4, Springer Berlin/Heidelberg, pp: 243-258.

Bézivin, I., F. Jouault, P. Rosenthal and P. Valduriez, 2005. Modeling in the large and modeling in the
small. Proceedings of Europsan MDA Workshops: Foundations and Applications, MDAFA
2003 and MDAFA 2004, Twente, The Netherlands, June 26-27, Springer Berlin/Heidelberg,
pp: 33-46.

Bézivin, J. and F. Jouault, 2006. Using ATL for checking models. Proceedings of International
Workshop on Graph and Model Transformation, GraMoT 2005, March 27, Tallinn, Estonia,
pp: 69-81.

Carzaniga, A., A. Fuggetta, R.S. Hall, D. Heimbigner and A. Van der Hoek ef af, 1998. A
characterization framework for software deployment technologies. Techmical Report CU-CS-857-
98. Department of computer Science University of Colorado, USA.

Deng, G., I. Balasubramanian, W. Otte, D.C. Schmidt and A. Gokhale, 2005. DAnCE: A QoS-enabled
component deployment and configuration engine. Proceedings of 3rd Working Conference on
Component Deployment, CD 2005, Grenoble, France, November 28-29, Springer
Berlin/Heidelberg, pp: 67-82.

Flissi, A. and P. Merle, 2004. Vers un environnement multi-personnalités pour la configuration et le
déploiement des applications & base de composants logiciels. Proceedings of 1st French
Conference on Software Deployment and (Re) Configuration, DECOR’04, October 28-29,
Grenoble, France, pp: 3-14.

37

J. Software Eng., 2(1): 23-38, 2008

Gerber, A., M. Lawley, K. Raymond, JI. Steel and A. Wood, 2002. Transformation, the missing link
of MDA. Proceedings of 1st International Conference, ICGT 2002, Barcelona, Spain, October
7-12, Springer Berlin/Heidelberg, pp: 90-105.

Gray, I., Y. Linand J. Zhang, 2006. Automating change evolution in model-driven engineering. Special
issue on Model-Driven Enginzering. IEEE Comput. Soc., 39: 51-58.

Hnétynka, P., 2004. Making deployment of distributed component-based software unified.
Proceedings of CSSE 2004 (Part of ASE 2004), Linz, Austria, September 20-24, Austrian
Computer Society, pp: 157-161.

Jouault, F. and I. Kurtev, 2005. Transforming models with ATL. Proceedings of 5th International
Conference on Model-Driven Engineering Languages and Systems, MoDELS 2005. Montego Bay,
Jamaica, October 2-7, Springer Berlin/Heidelberg, pp: 128-138.

Kebbal, D. and G. Bemard, 2001. Component search service and deployment of distributed
applications. Procesdings of 3rd International Symposium on Distributed Objects and
Applications, DOA 01, September 17-20, Roma, [talv, pp: 125-134.

Lestidean, V. and N. Belkhatir, 2003. Providing highly automated and generic means for software
deployment process. Proceedings of 9th International Workshop on Software Process
Technology, EWSPT 2003, Helsinki, Finland, September 1-2, Springer Berlin/Heidelberg,
pp: 128-142.

Merle, N. and N. Belkhatir, 2004. Open architecture for building large scale deployment systems.
Proceedings of International Conference on Software Engineering Research and Practice, SERP
'04, June 21-24, Las Vegas, Nevada, USA., pp: 930-936.

Monson-Haefel, R. and B. Burke, 2006. Enterprise Java Beans 3.0. 5th Edn., O'Reilly Media, Inc.,
Cambridge, MA, USA., ISBN-10: 0-596-00978-X, pp: 760.

OMG, 2004. Deployment and configuration of component-based distributed applications
specification. http://comquad.inf tudresden.de/nfc04/presentations/OMG%20D&C%
208pec%20(Francis%20Bordelean). pdf.

Quema, V., R. Balter and L. Bellisard, 2004. Asynchronous, hierarchical, and scalable deployment of
component-based applications. Proceedings of 2nd International Working Conference on
Component Deployment, CD 2004. Edinburgh, UK, May 20-21, Springer Berlin/Heidelberg,
pp: 50-64.

Varro, D., G. Varro and A. Pataricza, 2002. Designing the automatic transformation of visual languages.
Sci. Comput. Programm., 44: 205-227.

Wang, A.JA. and K. Qian, 2005. Component-Oriented Programming. 1st Edn., John Wiley and Sons
Inc., Chichester, West Sussex, UK., ISBN 13: 9780471713708.

38

	JSE.pdf
	Page 1

