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Abstract: This study attempts to predict the testability of Eclipse (one of the
biggest open source project). Testability is an important attribute of software
quality. Assessment of software testability can help in predicting the testing effort
required for a given product. In this study the testability is predicted at package
level. Eclipse 1s a project whose functional testing 1s done at the package level. We
have developed an Eclipse plugin to extract the value of source code metrics and
test metrics from the source code of Eclipse project. The source code metrics and
test metrics of Eclipse project are calculated at the package level. Test metrics are
obtamed from the I unit test classes of test packages. The package level metrics are
obtained from the class level metrics. A correlation is found between source code
metrics and test metrics. The results show that there 1s a sigmficant correlation
between source code metrics and test metrics at the package level. Since, the test
metrics assess the testing effort and through testing effort an assessment of
testability is made. The results show that testability can be assessed from the
source code metrics. This study can help software practitioners to have an
understanding of package level testability and to assess the testing effort for a
given package.
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INTRODUCTION

Software testability 13 an important attribute of software quality. By predicting software
testability, improvements can be made in the quality of the software. Software quality can be
assured through software testing or through testability improvement. There are software
testing techniques which aim at improving the testability of the software (Ying et al., 2008,
Liu ef al., 2001, Ananya and Bhattacharya, 2004; Beizer, 1990). This study focuses on the
testability measurement only. A number of defimitions of testability have been given in the
literature. Most of them relate testability to the testing effort. Software testability has been
defined by a number of researchers with different viewpoints. The TEEE standard glossary
(IEEE Press, 1990) has defined testability as: the degree to which a system or component
facilitates the establishment of test criteria and performance of tests to determine whether
those criteria have been met Voas and Miller (1994) claims that testability analysis 1s a kind
of validation as it quantifies the semantic content of the program. Software testability has
two key concepts: controllability and observability. To test a given component, one must be
able to control its input and observe its output (Binder, 1994). If we cannot control the input,
we cannot say what produced the given output If we camot observe the output of a
component under test, we cannot be say how a given input is processed.

Software testability 1s an important characteristic of the software and 1s also defined in
terms of the software development process and as a characteristic of the architecture, design,
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and implementation of the software (Kolb and Muthig, 2006). There are a number of different
approaches for the assessment of software testability which have been proposed in the
literature. These approaches work at various stages of the software development life cycle.
L1e., at the design level, implementation level etc. The area of improving the software
testability had also been the focus of many researchers. Although, a lot of research has been
done in the area of software testability and there are a number of approaches for the
assessment of software testability, design for testability and to improve the testability.
Although a number of empirical studies exist to assess the testability in procedural and
object oriented software. These studies focus on the class level testability only. There are
no empirical studies at the package level to the best knowledge of the authors. This study
focuses on the assessment of package testability of object oriented software.

Testability is difficult to measure directly since it is an external attribute. Hence the
measurement of the testing effort is done to help in assessing the testability. This paper
quantifies testability through the testing effort. In this study, we evaluate the effect of the
source code metrics on testing effort for object oriented development at the package level.
This study 1s performed using 50 packages (25 packages of source code and 25 test
packages) of the Eclipse project. The Eclipse project 15 tested through functional testing
method. Corresponding to java packages there are test packages which contain JUnit test
classes for the java classes in the source packages. A number of metrics related to size,
inheritance, coupling, cohesion and polymorphism are calculated at the package level and
their correlation is found with the test metrics. The correlation is found to be quite
significant, which helps in predicting the effect of source metrics on the test metrics and
hence on testability. The results show that testability can be assessed through different
kinds of metrics at the package level.

This study is motivated by a number of factors: (1) Software testability is one of most
umportant attributes of the software quality. Hence assessing software testability will provide
indications to improve the software quality. (2) Testability measurement helps in measuring
software reliability, one of the critical aspects of the software (Yang et af., 1998). (3)
Assessment of software testability helps in planming of testing activities as it provides
mnformation about the testing effort required to test the system (Mouchawrab et al., 2005).
(4) Class testability has been the focus of many studies but empirical studies on software
testability at the package level are rare.

Testability has been defined by a number of researchers with different viewpoints.
Bache and Mullerburg (1990) define testability in terms of the effort required for testing. They
measure it by the number of test cases required to satisfy a given coverage criterion. They
focus on only the control flow based testing strategy and have used Fenton-Whitty Theory
for measuring testability. Flow graphs are used to measure the testability.

Binder defines software testability as the relative ease and expense of revealing software
faults (Binder, 1994). Reliability of a system is dependent on how testable a system i1s.
Testability helps m reducing the cost of testing. Testability has two key factors:
controllability and observability and the mamn concern of testability 1s to have more
controllable input and observable output. Observability can be increased by making use of
assertions. He states that the testability can be accessed through the use of software metrics.
Binder claims that, the software testability is dependent upon six factors: (1) characteristics
of requirements and, specification, (2) the process of software development, (3) the test suite,
(4) built-in test capabilities, (5) the environment which supports testing, and (6)
characteristics of the source code.
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Voas and Miller (1995) define software testability as the probability that during testing
the software will fail on its next execution if it contains faults. They make use of sensitivity
analysis to predict the testability. In that, the software and its mutant versions are repeatedly
executed and estimation 1s made about the likelihood of the mutants be detected. Depending
upon this, more testing effort is applied on the parts of the software where there is low
likelihood. Their technique depends upon the testing method used and also on the mutation
testing method used for seeding the faults.

Bruntink and Deursen predict the testability of a class using two test metrics: (1) the
number of test cases needed to test a class and (2) the effort required to develop each test
case (Bruntink and Deursen, 2006). They have used five java systems for the experiments.
Their technique finds a correlation between class level metrics (like LOC, NOA etc.) and the
test metrics. The testability 1s assessed at the class testing level. The results show sigmificant
correlations with size related metrics but inheritance related metrics did not show any good
correlation with test metrics. Such correlations are highly dependent upon the testing
technique used and the testing criterion used in the systems used for the study.

Briand and Labiche describe a method in which software contracts (pre and post
conditions of methods and class invariants) are used to improve the value of software
testability (Briand et al., 2003). They claim that the software contracts increase the
observability 1.e., the probability that a fault will be detected upon the execution of test cases.
A case study shows that using software contracts, a large number of failures can be detected
as compared to the software using no contracts.

Mouchawrab et al. provides a generic framework for the testability of the object oriented
software (Mouchawrab ef al., 2005). A number of hypotheses are stated which explain, how
an attribute can relate to testability and under what conditions. The software testability is
described at the design level, before the start of coding. They claim that evaluation of
testability at the analysis and design stage can reduce the testing cost. Design attributes,
that affect the testability for each testing activity, are stated. For each attribute a set of
measures 1s provided and model elements from UUML models are identified that are required
to evaluate these measures. The guidelines are provided on how the testability measurement
helps in providing suggestions to change the design so that the testability can be improved.

Baudry et al. (2002) emphasized upon making use of the design artifacts for analyzing
the testability. Mamly, they have used UML Class diagrams and state diagrams to analyze
software testability. Their work aims at finding the parts of the software where complex
interactions occur among objects and make the testing process difficult. A testing criterion
is introduced which exercises the object interactions. Testing effort is estimated as number
of object interactions in the UML class diagram. The number of object interactions also
provides an estimate of the number of test cases required to test a system. The testability
measurement proposed is derived from the design artifacts hence it would be different for the
unplementation of the system.

Jungmayr (2002) measuresd testability based on the dependencies between components.
The number of dependencies increase the testing effort required to test the system. The
metrics related to dependency are defined. The dependency information is used for possible
refactoring that improves the testability. The level of testability investigated 1s the
mtegration level.

IS0 has defined software testability as: attributes of software that bear on the effort
needed to validate the software product (ISO, 1991 ).This study follows this definition. The
attributes of software that we consider are the source code metrics (For example LOC, NOA,
NOM etc.) of object oriented software at the package level. The focus of this study 1s on the
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source code factors only and the effect of source code factors on the testing effort is
mvestigated. The testability is assessed through the testing effort.

A number of empirical studies (Yogesh and Goel, 2008; Chae et al., 2007) have been
done to predict and assess various attributes of software quality like maintamability, fault
proneness etc. These studies make use of differ rent statistical methods or neural networks
to predict the software quality attributes. Software testability 13 a software quality attribute
which is a part of software maintainability attribute. The similarity between these studies and
our study 1s that we also use various metrics and statistical method to assess software
testability.

JUNIT TESTING FRAMEWORK

TUnit is an open source framework which has been designed for the purpose of writing
and running tests in the Java programming language. Tt was originally written by Beck and
Gamma (1998). JUmnit has gained a lot of popularity as a part of test driven development (Beck,
2002), agile software development (Cockburn, 2002) and extreme programming methodology
(Beck, 1999). IUnit defines how to write the test cases and provides the tool to run them.
JUnit helps in testing a java class by writing the corresponding JUnit class. A number of
other frameworks exist for class testing in other languages like CPPUnit (for C++) ete. TUnit
1s described here as 1t 13 being used in this study. An example java class (calculator. java) and
its TUnit test class (calculator Test.java) is shown in Fig. 1 and 2, respectively.

To test our calculatorjava class we define calculator Testjava as a subclass of
TestCase. The TUnit test class contains various test methods to test the methods of the
source class. A JUnit test method does not contain any parameters. In writing the test cases
in a JUnit class a number of asserts are used. For example assertEquals (expected output,
actual output), assert Equals (message, expected output, actual output), etc. The
calculatorTest class in Fig. 2 uses asser Equals() to compare the expected and actual output.

public class calculator {
public calculator() { }
public int add(int a, int b)
{

refurn atb;

public int subtract(int a, int b)

{

return a-b;

I

Fig. 1: Calculator. java class

import junit. framework. TestCase;

public class calculatorTest extends TestCase
{

private calculator cal = new calculator();
private int a=4;

private int b =3;

public void testAdd() {

assertEquals(7, cal.add(a,b)); }

public void testSubtract() {

assertEquals(l, cal.subtract{a,b);}}

Fig. 2: CalculatorTest.java class
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If they are equal the test case passes otherwise test case fails. In TJava, classes are
contained in packages. The source class and test class can be kept in the same or different
packages. In this example calculator 1s the source class and calculatorTest 1s the test class.
There can be a number of source classes and a number of test classes corresponding to
these source classes i a given system. In the source system used for thus study, the source
classes are kept m the source package and test classes are kept in the test packages. In
Eclipse project there are different source packages and they have corresponding test
packages.

EXPERIMENTAL DESIGN

The aim of this study is to evaluate whether source code metrics can be used to assess
the testability of a package or not. This study was conducted in December 2009 at University
school of Information Technology. In this section, we identify the object oriented metrics
under consideration and formulate a hypothesis to be analyzed. Subsequently, we identify
test metrics based on JUmt test classes.

Object-Oriented Metrics

Object oriented metrics chosen in this work are given in Table 1; these metrics are
calculated at the class level and then calculated at the package level for analysis. These
metrics can be divided into 3 categories viz. size, coupling, cohesion, inheritance and
polymorphism. The source metrics are defined in the appendix.

Test Metrics

The four test metrics used for this study are: TLOC (Lines of Code for Test Class), TM
(Number of Test Methods), TA (Number of asserts) and NTClass (number of test classes per
test package). These metrics are calculated from the JUnit test classes of the test packages
of Eclipse source code. The first three metrics are class level metrics. They are

Table 1: Metrics calculated in the Eclipse Data Set

Level  Metric name Source Package level
Class  Line of code per class (LOC) Henderson-Sellers (1996) Max of class level metric.
Total of class level metric.
No. of Attributes per Class (NOA) Henderson-Sellers (1996)
No. of Methods per Class (NOM) Henderson-Sellers (1996)
Weighted Methods per Class (WHC) Chidarmber and Kemerer (1994
Response for Class (RFC) Chidamber and Kemerer (1994)
Coupling between Objects (CB() Chidarmber and Kemerer (1994
Data Abstraction Coupling (DAC) Henderson-Sellers (1996)
Message Passing Coupling ( MPC) Henderson-Sellers, 1996)
Tight Class Cohesion (TCC) Briand et al. (1991)
Information based Cohesion (ICH) Lee et af. (1995)
Lack of Cohesion (LCOM) Chidamber and Kemerer (1994)
Depth of Inheritance (DIT) Chidamber and Kemerer (1994)
No. of Children (NOC) Chidarmber and Kemerer (1994
No. of Methods Overridden by a subclass Henderson-Sellers (1996)
(NMO)
Class  Test Lines of code per Class (TLOC) (Bruntink and Deursen, 2006)  Total of class level metric.
Test methods per class (TM)
Test Cases per class (TA) (Bruntink and Deursen, 2006)
Package NClass (No. of Classes) Value

NTClass (No. of Test Classes)
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calculated at the package level for this study. TLOC and TA metrics are proposed by Brutink
and Deursen (2006). We proposed a new test metric TM. All the test metrics are defined
below:

TLOC (Test Lines of Code) Metric

Tt is defined as the number of lines of code (non comment and non blank) in a TUnit test
class. In Fig. 2, calculatorTest class has TLOC = 10. Since the total lines of code for
calculatorTest class 1s 12.

TM (Number of Test Methods) Metric

The TM metric is defined as the number of test methods in the Junit test class. In
Fig. 2 there are two test methods m calculatorTest class: testAdd and testSubtract. Hence
for calculatorTest class TM = 2.

TA (Number of Asserts) Metric
It 13 defined as the number of asserts in the test class. InFig. 2 there are two asserts
in the calculatorTest class. Hence for this class the value of TA = 2.

NTClass (Number of Test Classes)

It 15 defined as the number of test classes in a given test package.

The above three test metrics (TLOC, TM, and TA) are first calculated at the class level
and then calculated at the package level Eclipse source code contains test packages
corresponding to source java packages.

Goal and Hypotheses

This study evaluates the object oriented metrics using the framework proposed by Basili
(Briand et al., 2002). The goal, perspective and environment for this study are described
below:

Goal
To judge the capability of the object oriented metrics to assess the testability of a
package.

Perspective
The testing level considered is package level. Thus we judge if the object oriented
metrics can assess the testability at the package level.

Environment

This study uses eclipse packages as the source system, which 15 written mn java and
tested at the package level using JUmt testing framework. JUmt framework allows users to
create a test class for every java class. The source code of Eclipse is executed using Eclipse
IDE (http: //www.eclipse.org).

We formulate the following hypothesis that would be tested by this study:

¢+ Hy(c,t): There is no correlation between object oriented metric ¢ and test metric t for a
package

*  H(c,t): There is a correlation between object oriented metric ¢ and test metric t for a
package
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Where ¢ belongs to a set of object oriented metrics and t belongs to the set of test metrics
for a package.

Statistical Analysis

In order to evaluate the above hypotheses, we calculate Spearman’s rank-order
correlation coefficient (rs), for each object oriented metric of eclipse packages and four test
metrics of the corresponding packages. Spearman’s rank-order correlation between object-
oriented metric ¢ and test metric t 1s denoted by rs(c, t). Spearman’s rank-order correlation
coefficient measures the association between two variables, measured in an ordinal scale
(Siegel and Castellan, 1988). This kind of correlation is used because it does not depend
upon the underlying data distribution. The value of s ranges from -1 to 1. A value of 1
indicates a perfect positive correlation and -1 indicates a perfect negative correlation. A value
of 0 indicates that there is no correlation. To calculate rs, there should be corresponding test
metrics calculated for each source package. Each eclipse source package contains a number
of java classes and the corresponding test package contains a number of test classes.
Spearman’s rank-order correlation coefficient, 1s 1s calculated for each object oriented metric
¢ and all the test metrics, t. The values for each object oriented metric for all the eclipse
packages is calculated using the Eclipse plugin which is developed and then each value is
paired with the value of test metrics of the corresponding test package. The resulting pairs
are used to calculate the value of the correlation.

EMPIRICAL DATA COLLECTION

This study has used the source code of Eclipse (version 3.0), which 1s available as an
open source system. The Eclipse (http://www.eclipse.org) Project is an open source project
which provides a robust and freely available industry platform for developing the highly
mtegrated tools. The Eclipse Project is made from the following Projects:

¢ Platform: The platform upon which all other Eclipse based tools are built
¢+ IDT (The Java development tooling) also called Tava TDE
*  PDE (Plug-in development environment)

The Platform Project is further divided into various components, which are Ant,
Compare, Core, Debug, Doc, Help, Releng, Scripting, Search, SWT, Text, Ul Update, VCM,
and WebDAV. The JDT Project is divided into the following components: JDT Core, JDT
Doc, JDT Ul and JDT Debug. The PDE Project has following three components: PDE Build,
PDE Doc, and PDE Ul. These Projects are managed by a group called the Project
Management Committee (the PMC). Eclipse is tested using functional testing at the package
level by means of JUmt. The size measurements, of the source system are given in the
Table 2. In order to collect data from the Eclipse system, we have used the Eclipse platform
(http:/fwwrw.eclipse.org). We have developed an Eclipse plugin to calculate the set of metrics
used for this study. Figure 3 shows the calculated metrics using this plugin. In the Fig. 3, the
metric values are shown for the package org.eclipse.help. The shown metric values are class
level values. These are calculated for all the 25 packages. Corresponding to all the packages
there are test packages. Foe example org.eclipsehelp has org.eclipse help.tests as its test
package. To calculate the package level metrics we take the sum of the metrics at the class
level.

128



J. Software Eng., 4 (2): 122-136, 2010

Table 2: Size measurements of the packages of Eclipse

Source gystem No. of packages uzed Total java clasges Total test claszes
Eclipse 25 4420 1564
Lo e SOR =T
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Fig. 3: Metric calculation through metrics plugin
ANALYSIS

The results of this study are given in Table 3-5, the Tables contain the values of
Spearman’s rank order correlation coefficient (rs) between object oriented metrics and test
metries. This correlation allows us to accept hypotheses H1(c, t) and reject hypotheses
HO(e, t). The software used in this study, 1s SPSS 16. (www.spss.com).

The impact of source code metrics on testability of object oriented systems is explained
through the correlation values. The very first observation is that, all the source code metries
are highly correlated amongst themselves as shown in Table 4. Secondly, there 1s a high
correlation amongst test metrics as shown in Table 5. A detailed discussion of the correlation
between the source code metrics and test metrics 1s given below.

Size Related Metrics

The size related metrics for a package are: LOC, NOA, NOM, WMC and NSClass.
Intuitively, a package with more number of classes and more lines of code should require
more testing effort, the values in Table 3 show that all the five size metrics are correlated with
all the four test metrics.
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LOC

The size of a package 1s a sigmficant factor in the determination of the testing effort of
a package. A large package will require large number of test classes (i.e., high NTClass).
More the number of test classes, more is the number of test methods and test cases. Hence
high LOC leads to high testing effort and same 1s reflected by the correlation values in
Table 3. LOC is significantly correlated to all the test metrics. Hence high T.OC increases the
testing effort and decreases the testability.

NOA

There is a significant correlation between NOA and all the test metrics. Number of
attributes increases the number of test cases as more effort 1s required to imitialize all the
attributes for testing. High NOA leads to lower testability.

NOM
NOM 1is positively correlated to all the test metrics. High NOM leads to hugh test
methods(TM), hence high TA and higher TL.OC. Hence high NOM leads to lower testability.

Table 3: Correlation of source metrics (sum) with test metrics for Eclipse
LOC NOA NOM WMC LCOM ICH TCC CBO RFC DAC MPC DIT NOC NMO NSClass
LOC 1
NOA 0.965 1
NOM 0978 0942 1
WMC  0.993 0.951 0.990 1
LCOM 0.801 0.814 0.842 0.837 1
ICH 0.858 0.815 0.865 0.883 0.888 1
TCC 0.892 0.902 0.910 0.896 0.772 0.837 1
CBO 0.866 0.882 0.853 0.862 0.819 0.896 0919 1
RFC 0.952 0.942 0.978 0.969 0.875 0.901 0.946 0913 1
DAC 0.917 0.920 0.900 0.901 0.734 0.778 0.922 0.869 0.901 1
MPC 0.847 0.863 0.853 0.858 0.871 0.912 0.900 0.972 0.919 0.844 1
DIT 0.933 0.919 0.938 0.925 0.677 0.751 0.209 0811 0.904 0.900 0.770 1
NOC 0.901 0.887 0.923 0.911 0.793 0.835 0.954 0909 0957 0.911 0.907 0.878 1
NMO 0.854 0.784 0.860 0.869 0.753 0.834 0.797 0.736 0.820 0.739 0.712 0.824 0.716 1
NSClags 0.925 0.928 0.945 0.919 0.779 0.806 0.925 0.858 0.934 0.946 0.805 0.930 0.914 0.786 1

Table 4: Correlation of source metrics for Eclipse

Sum TLOC ™™ TA NTClass
LoC 0.515 0.408 0.439 0.440
NOA 0.502 0.425 0.478 0.432
NOM 0.566 0.463 0.505 0.453
WMC 0.548 0.450 0.482 0.448
LCOM 0.602 0.494 0.586 0.448
ICH 0.601 0.457 0.486 0.540
MPC 0.535 0.455 0.49 0.554
TCC 0.586 0.508 0.495 0.641
CBO 0.500 0.421 0.447 0.586
RFC 0.597 0.504 0.531 0.533
DAC 0.419 0.327 0.352 0.478
DIT 0.485 0.428 0.458 0.450
NOC 0.511 0.448 0.447 0.528
NMO 0.631 0.553 0.557 0.505

Table 5: Correlation of test metrics for Eclipse

TLOC ™ TA NTClass
TLOC 1
™ 0.874 1
TA 0.843 0.924 1
NTClass 0.890 0.771 0.723 1
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WMC
WDMC 15 positively correlated to all the test metrics. Hence higher WMC leads to lower
testability. The reason is same as for NOM.

Cohesion Metrics
Lack of Cohesion of Methods (LCOM)

LCOM metric 1s positively correlated with all the test metrics it implies that test effort
increases with decrease in cohesion. The results show that L.COM is significantly correlated
to all the test metrics. Hence testing effort increases with high LCOM value and leads to
lower testability.

Information Based Cohesion (ICH)

By definition, TCH metric suggests that cohesion increases the testing effort. The results
show that this metric is significantly correlated to all the test metrics. Hence testing effort
increases with increase in cohesion and testability is decreased.

Tight Class Cohesion (TCC)
TCC 1s significantly correlated to all the test metrics. Hence high TCC increases the
testing effort and lowers testability.

Coupling Metrics
Coupling Between Objects (CBO)

Theoretically, increase mn CBO should increase the testing effort. The same 1s shown by
the figures in Table 3, there is a significant correlation between CBO and all the test metrics.
Hence increase in CBO increases the testing effort and lowers the testability.

Data Abstraction Coupling (DAC)
The amount of testing increases with mcrease in DAC. DAC 1s correlated to all the test
metrics. Hence increase in DAC increases the testing effort and lowers the testability.

Message Passing Coupling (MPC)

MPC is significantly correlated to all the test metrics, which means that MPC can also
predict the testing effort. We can say that as MPC increases, testing effort increases and
testability decreases.

Response for Class (RFC)

RFC is significantly correlated to all the test metrics, which means that RFC can predict
the testing effort. We can say that as RFC increases, the testing effort mncreases and the
testability decreases.

From the correlation values of all the four coupling metnies (CBO, RFC, DAC and MPC)
we can conclude that as coupling increases the testing effort increases and it lowers the
testability of the system at the package level.

Inheritance Related Metrics
This Third Category of Metrics Deal with Inheritance
DIT and NOC. DIT measures the parent classes and NOC measures the child classes.
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DIT
We find a sigmficant correlation between DIT and test metrics. Hence as the depth of
inheritance increases the testing effort increases and testability decreases.

NOC

NOC has a sigmficant correlation with all the test metrics. The reason for correlation
among NOC and test metrics is that a thorough testing of parent class is done with the
mncrease n mumber of children, with an intention that if parent class 1s having a fault it does
not creep into the child class.

The inheritance related metrics are positively correlated to all the test metrics based on
the correlation values. Hence the property of inheritance increases the testing effort and
decreases the testabality.

Polymorphism Related Metrics
NMO

NMO 18 a metric which deals with the property of polymorplusm. Theoretically
polymorphism should increase the testing effort and hence decrease the testability. The
correlation values show a sigmficant correlation between NMO and all the test metrics.
Hence an increase in NMO increases the testing effort and decreases the testability.

IMPLICATIONS OF RESULTS: PRACTICAL LESSONS LEARNT

The results of the study presented have several important implications. Many of these
results should provide useful guidance to software practitioners to assess how hard it 1s to
test their code at the package level. An increase in lines of code, number of attributes,
number of methods and weighted methods per package and number of classes per package
will have a strong increasing impact on testing effort and will thus result in low testability.
In other words, the greater the lines of code per package, the number of attributes, the
number of methods and weighted methods per package, the lower would be testability. As
expected, an ncrease in coupling in classes 1s likely to mcrease the testing effort m the
software. Since coupling increases the complexity of the software and reduces encapsulation.
Hence for lugh testability the coupling should be low.

*  Lack of cohesion n methods m packages 1s likely to increase the testing effort. On the
other hand, cohesion in methods lowers the testing effort and increases the testability

¢+ An increase in response for class is likely to increase the testing effort and thus
decrease its testability. Thus an increase in response for classes is likely to increase the
value of testing effort and lower the testability

+  Logically it seems that an increase in NOC and DIT should increase the testing effort
and thus decrease the testability. The same 15 shown by the results of this study

¢ There is statistically a significant positive relationship between test metrics and NMO
(an mdicator of polymorphism). This 13 true theoretically because increase in
polymorphism increases the testing effort and lowers the testability. Since
polymorphism increases the complexity of the software due to run time binding. The
same is shown by the system under study

Threats to Validity

There are few limitations of this study which should be taken mnto account while
interpreting the results. The packages considered for this study are the ones which have
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corresponding test packages. Since, we considered the testability assessment at the package
testing level. The packages which do not have corresponding test package are not
considered. Those packages can provide additional information on testability at the package
level.

*  The source system used (Eclipse) has been tested using the fimctional testing. The
testability assessment would be different if some other kind of testing technique is used

*  This study 1s based on JUnit framework. Results may vary if some other framework 1s
used

CONCLUSIONS AND FUTURE WORK

The main goal of the authors’ study was to determine the interrelation between source
code metrics and the test metrics, and find the effect of source code metrics on testing effort
and on testability at the package level. The relationship between source java packages and
their JUmnit test packages in a large Java system (Eclipse) was analyzed. The correlation
analysis between source code metrics and test metrics shows that there is a significant
correlation between all the source code metrics and test metrics at the package level.

The results of correlation show that all the size metrics and coupling metrics are highly
correlated to test metrics. It 15 shown that as the size of the software increases the testability
decreases because testing effort increases. As the coupling grows, the testability decreases
because of the increased testing effort.

Inheritance and polymorphism increase the testing effort and lower the testability. The
same 1s shown by the correlation between source code metrics and test metrics.

The results show that ICH, TCC and LCOM are correlated to testing metrics. Hence high
value of ICH, TCC and LCOM increases the testing effort and decreases the testability.

This work can be extended with the following future work. First, this study should be
extended to a large number of systems, using different development methodologies like Test
driven development, extreme programming and agile software development. Second, this
study has been conducted at the package level. It should be extended to system level
testing. Third, this study should be extended to a number of other source code metrics which
deal with polymorphism, exception handling etc. Fourth, different statistical methods like
multivariate analysis etc. should be used to find the relation between source code metrics
and test metrics.

APPENDIX

Size Metrics

In this section four size metrics are discussed. These metrics measure the size of the
system m terms of lines of code, attributes and methods ncluded in the class. As these
metrics capture the complexity of the class hence they can give an insight into the testability
of the class.

Lines of Code per Class (LOC)
Tt counts the total number of lines of code (non-blank and non-comment lines) in the

class.

Number of Attributes per Class (NOA)
It counts the total number of attributes defined in a class.
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Number of Methods per Class (NOM)
It counts number of methods defined 1n a class.

Weighted Methods per Class (WMC)

The WMC 13 the count of the sum of the McCabe’s Cyclomatic Complexity for all the
methods in the class. Tf method complexity is one for all the methods, then WMC = n, the
number of methods in the class.

Number of Source Classes per package (NSClass): Number of java classes mn a given
package.

Cohesion Metrics

Cohesion measures the degree to which the elements of a module are functionally
related. A strongly cohesive module does little or no interaction with other modules and
implements the functionality which is related to only one feature of the software. This study
considers following three cohesion metrics.

Lack of Cohesion in Methods (LCOM)

Lack of Cohesion (I.LCOM) measures the cohesiveness of the class. Tt is defined as
below:

Let M be the set of methods and A be the set of attributes defined in the class. M, 1s the
number of methods that access a. Mean be the mean of M, over A . Then,

LCOM = (Mean - MY(1-M])

Information Flow Based Cohesion (ICH)
ICH for a class 13 defined as the number of invocations of other methods of the same
class, weighted by the number of parameters of the involed method.

Tight Class Cohesion (TCC)
The measure TCC is defined as the percentage of pairs of public methods of the class
with common attribute usage.

Coupling Metrics
Coupling relations increase complexity and reduce encapsulation.

Coupling Between Objects (CBO)

CBO for a class 1s the count of the number of other classes to which it is coupled. Two
classes are coupled when methods declared in one class use methods or instance variables
defined by the other class.

Data Abstraction Coupling (DAC)

Data Abstraction is a technique of creating new data types suited for an application to
be programmed. Data Abstraction Coupling (DAC) is defined as the number of ADTs defined
na class.

Message Passing Coupling (MPC)
Message Passing Coupling (MPC) 13 defined as the number of send statements defined

in a class. So if two different methods in class C access the same method in class D, then
MPC = 2.
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Response for a Class (RFC)
The response for a class (RFC) is defined as the set of methods that can be executed in
response to a message received by an object of that class.

Inheritance Metrics

This section discusses two different mheritance metrics, which are considered for this
study.

Depth of Inheritance Tree (DIT): The depth of a class within the inheritance ierarchy
is the maximum number of steps from the class node to the root of the tree and is measured
by the number of ancestor classes.

Number of Children (NOC)
The NOC is the number of immediate children of a class in the class hierarchy.

Polymorphism Metrics
Polymorphism 1s the characteristic of object oriented software through which the
implementation of a given operation depends on the object that contains the operation.

Number of Methods Overridden by a Subclass (NMO)
When a method in a child class has the same name and signature as in its parent class,
then the method in the parent class is said to be overridden by the method in the child class.
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