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Abstract: A new computational algorithm of Single-Term Walsh Series (STWS) for solving
2nth order state space equation representing the generalized linear, non-singular or singular,
time varying system has been proposed. Tt is noticed from the literature that a second order
(or third order) state space system (r<r matrix) is solved by converting into its first order
(or second order) state space system resulting that the size of oniginal system becomes
doubled (2r=2r matrix) and the matrix to be inverted has its size drastically increased. In
general, suppose that the problem of 2nth order state space systermm with r unknown
dependent variables is to be solved by the method of second order state space formulation
via STWS developed by others, then the size of the matrix to be inverted becomes (nr=nr).
It is further noted that for a differential equations of (2n-1)th order with r unknown
dependent variables, its order should, first be made as 2n by differentiating the differential
equations of (2n-1)th order with respect to the independent variable and the resultant matrix
to be inverted is of dimensions (nr=nr) in the case of second order state space formulation
via STWS. In contrast to the techmque mentioned above developed by others, the present
numerical algorithm solves the given state space system with any order without converting
into its lower order which in turn, implies that the original size of system matrix and the
matrix to be inverted are not altered. So, the proposed new numerical algorithm is
computationally very effective in lesser computing time as well as storage space.

Key words: Numerical computation, STW'S, non-singular/singular time varying systems,
generalized linear system

INTRODUCTION

A good amount of work has been done in recent years on the application of Walsh Functions
(WFs) to various problems such as non-linear dynamic systems, design and analysis of time varying
systems and optimization and identification of systems. Chen and Shih (1978) have applied Walsh
series analysis to the optimal contrel of time varying linear systems. Sivaramakrishnan and Srisailam
(1985) have presented the WFs method to obtain the solution of second order state space systems.
Sheih ef af. (1978) have obtained the solution of state space equations using Block Pulse Function
(BPF) techniques. Rao et ¢f. (1980) and Rao (1983) have introduced the Single Term Walsh Series
(STWS) approach to remove inconveniences of the WF and BPF methods. Campbell and Rose (1982)
have shown that a singular second order system may be decomposed into a linear and a singular
subsystemn. Using the single term Walsh series method, vibrating mechanical systemn has been analvzed
by Palanisamy and Arunachalam (1987). Thanushkodi ef af. (1988) have solved first and third order
linear differential equations with constant coefficients, by second order state space formulation via
STWS. In many investigations (Palanisamy and Arunachalam, 1987; Tharmushkodi er /., 1988;
Thanushkodi ef af., 1990), second (or third) order state space equations are transformed into their
equivalent first (or second) order state space equations while analyzing second (or third) order state
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space equations. Also, Murugesan ef af. (2000) converted the observer design in a generalized state-
space transistor circuit into a second order system. By doing this, the sizes of the original matrices
(r=r) are doubled (2r=2r) and the matrix to be inverted has its size drastically enhanced which implied
that the technique mentioned above is not computationally effective and consequently demands large
computing time and storage space as well.

STWS method is being adapted by many investigators to compute numerical solutions of
industrially applicable problems. Recently, Sepehrian and Razzaghi (2005) have used STWS method
to solve the non-linear Volterra-Hammerstein integral equations in which the problem has been reduced
to solving a system of non-linear algebraic equations. They have demonstrated the validity and
applicability of the technique with the help of several examples. A general and efficient pole-placement
solution for linear time-invariant systems with state-PID feedback is derived (Guo et af., 2006). Their
results open a new area for the design and tuning of state-PID feedback types of controller. Boukas
(2006) has dealt with the class of linear discrete-time systems with varying time delay. The problems
of stability and stabilizability for this class of systems are discissed. A numerical comparison between
the variational iteration method and the Adomain decomposition method for solving linear systems of
fractional differential equations has been presented by Momam and QOdibat (2007).

It is of immense importance to point out that suppose the problem of 2nth order state-space
system with r unknown dependent variables is solved by the method of second-order state space
formulation via STWS developed by Thanushkodi ef af. (1988) and Murugesan ef af. (2000), then the
size of the matrix to be inverted becomes (nrnr). To have a method that is computationally effective,
a modest effort has been made to develop a new numerical algorithm that computes nmumerical solution
of state space system of any order.

WALSH SERIES
A function f{t) integrable in [0,1) can be approximated using Walsh series as

£t) = if yi(t) W

Where, W(t) is ith Walsh function and f, is the corresponding coefficient. In practice, while
approximating a function only the first k components are considered where k is an integral power of
2. If the coefficients of the Walsh functions are concisely written as k vectors then

F=[f,f, ..., 5. @)
Where, T denotes transpose and
Pty = [Fo(®), Tit), ... Teu ()] (3)
Then,
£y = FT WD) 0

The coefficients f are chosen to minirmize the mean integral square error,

1 2
= l1rc Ty ®

The coefficients are given by 0
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1
£ = [£(tnnctidt ©
1]
It has been proved that
t
jf(t)dt ~FTEy(t) 7
i}

Where, E is called the operational matrix of integration in terms of WFs. In STWS, E = 1/2
(Rao ef af., 1980).

NUMERICAL ALGORITHM FOR GENERALIZED LINEAR
STATE SPACE ENGINEERING SYSTEM

Let us consider a generalized (2nth order) non-singular/singular time varying system. The
dvnamics of this system is described by the 2nth order state space equation as

A () =B, x ®UHB, x¥ 2  +B,,, xX(1) +B,, x(1) +C u(t) (8)

Where, x(t) is an r-state vector, A is an either non-singular or singular r=r matrix, B, B,. ...,
B,, are T X r matrices, C is an rxm matrix, ut) is an m-input vector, x"(t) is the first
derivative of x(t)(=x(t)),x(t) is the second derivative of x (t) (= £ (£)), ..., (t)) and x@(1) is the
2nth derivative of x(t). The initial conditions are

X @) = x @l x @iy =x @2 x W) =x0 and x(f) =x,att=0 {(9)

It is of importance to note that for a given value of 2n and r, systems of the form in Eq. 8 along
with Eq. 9 cover a variety of cases in many areas of science and technology such as electrical circuits,
network theory, power systems, nuclear reactor plants, robotics, aircraft systems, neurological events,
cte. With the STWS approach, the given function is expanded into single term Walsh series in the
normalized interval T € (0, 1), which corresponds to T € (0, 1/k) by defining t = v/k, k being any
integer. In the normalized interval, Eq. 8 becomes

AL Mgy = B—IX(QH*U(T) ¢ B2 a2y,

2
k k

Bon B c
22 Wiy 22— —u(n)
k21171 k2n k2n (10)

Expanding x%2(1), x*9(1), ..., x%(1), x(1) and u{t) by STWS at the ith interval

XO0(T) = Ry, (1) Pyt x%0(1) = Ry (0 ol L x0(1) =R, () P,0),
x(1) = R{1) Wo(1), u(t) = P{) (D) 11

R,,(1) is the block pulse value of the 2nth order rate vector, R, (i) is the block pulse value of the
(2n-1)th order rate vector, ..., R,(i) is the block pulse value of the first order rate vector, R(i) is the
block pulse value of state vector of x(t) respectively and P(i) is the block pulse value of input
vector u(t).
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The following recursive relationship for both block pulse and discrete values are obtained as

-1
B B B
R, (=] a—-——2— | Qi)
2k (2K (2k)
R, (D) = (1/2) R, (D+ x21(i-1), Ry, () = (1/2) Ry, D+ x®DE-1).... .. .
R,(1)=(1/2) Ry(ir+ xWi-1), R(A) = 1/2 R, () x(i-13,
@) = R, (D x®V(-1), x@30) = Ry (0 D10, ,
x0(0) = Ry(0)+ x0G-1), x(D) = Ry(D+ x(i-1) (12)
Where:
O B% lx(zn_l)(i—l) P et B% ix(zn_l)@—n T
k k |2 k |4

1 (2n- - B L -
;X(QH 2)@71)+x(2n 3)(11)}+“-+% 2n-1 X(zn 1)(i71)+

k 2

23172 D L Dy ixionte %P(i) (13)

2 2 k

andi=1,2.3, ... the interval number. The x(i) give the discrete values of the state vector and the R(1)
give the block-pulse function (BPF) values of the state for any length of time. Higher accuracy can be
obtained for increased value of k. This is the main advantage of the present method.
ILLUSTRATIVE EXAMPLES
To compare the results and advantage of the new method and software discussed in this study,
two examples are considered. Finally, the presently computed results are compared with that of first

order and second order state formulations.

Example 1
Consider the example taken from Sivaramakrishnan and Srisailam (1985).

XN+ 6xP M+ 11 xD (0 + 6 x(t) = 12u(t) (14

with x(0) =5, xXV(0) = -6 and x?(0) = 14, excited by an unit step input u(t).
After differentiating the above equation once and defining the state variables as below,

V=% Y0 =x0, v =y =10, U=y O, Oy @ (15)

the second-order state space form gets transferred to

it e 0] o oA o
-6 -6 ygl)(t) 0 -11 y2(t) (16)

vy
with the following initial conditions:
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P(O)}‘Hm o))
0] [14 Yo' (0] |36

Taking z," = z, and z,'* = z,, the first-order state-space form of Eq. 16 may be obtained as

A o 1 0 0]z®
20 |0 0 1 0 ||z,m
220 [0 0 0 1 ||z
2| 0 -6 -11 —6]|z,(D)
with the following initial conditions
7(0) 5
z, ({0 | 6
20y | | 14
z,(0)| |36

u? i)

a7

It is of importance to note that the present algorithm computes the results of Eq. 14, the Eq. 16
is numerically solved by the second-order state space STWS (Thanushkodi ef /., 1988, Palanisamy
and Arunachalam, 1987) and the Eq. 17 has been solved by the first-order state space STWS
(Sivaramakrishnan and Srisailam, 1985). And these computed results are tabulated (Table 1 and 2).
A comparative study reveals that the results computed by the present algorithm tally exactly with that
of Thanushkodi ef al. (1990) and Sivaramakrishnan and Srisailam (1985) with the added advantage of
considerable reduction in the size of the matrix to be inverted. In the present case it is a mere (1x1)
matrix compared to an (2x2) matrix involved in the second-order formulation and a matrix of size (4x4)

in the case of first-order state space formulation.

Table 1: Comparison of solutions using STWS method (Example 1)

z, in the first-order formulation ¥, in the second-order

(Sivaramakrishnan and formulation Value of x

Srisailam, 1985) (Thanushkodi ef af., 1988) (Present method)
Time Block pulse Discrete Block pulse Discrete Block pulse Discrete
(8ec) value value value value value value
0.000 5.00 5.00 5.00
0.125 4.416161 3.832323 4416162 3.832323 4.416162 3.832323
0.375 3.501937 3.171550 3.501937 3.171550 3.501937 3.171550
0.625 2.975986 2.780422 2.975986 2.780422 2.975986 2.780422
0.875 2.659330 2.538239 2.659330 2.538239 2.659330 2.538239
Table 2: Comparison of solutions using STWS method (Example 1)

7,=7," in the first-order v,V in the second-order

formulation (Sivaramakrishnan formulation Value of xV

and Srigailam, 1985) (Thanushkodi et of., 1988) (Present method)
Time Block pulse Discrete Block pulse Discrete Block pulse Discrete
(Sec) value value value value value value
0.000 -6.0 -6.0 -6.0
0.125 -4.670707 -3.341414 -4.670707 -3.341414 -4.670707 -3.341414
0.375 -2.643094 -1.944773 -2.643094 -1.944773 -2.643094 -1.944773
0.625 -1.564512 -1.184251 -1.564512 -1.184251 -1.564512 -1.184251
0.875 -0.968773 -0.753215 -0.968773 -0.753215 -0.968773 -0.753215
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Generalizing the above analysis, it is demonstrated that for a differential equation of (2n-1)th
order with r unknown dependent variables, the originally given matrix to be inverted is of dimensions
(r=r) in the present analysis whereas the size of matrix to be inverted becomes (nrx=nr) in the second-
order state space formmlation and in the case of the first-order state space formulation, its size becomes

(2nr=2nr).

Example 2
Let us consider the fourth order linear ordinary differential equation as

15 x¥(1)-2 x9(1)-80 (1) = 0 (18)
with the initial conditions
x(0) = 1.8354, x0(0) = 0.5, x&(0) = 1, x(0) = 0.5
Let us define the state variables as
V=X, yl(l) = X(l), V, = yl(Z): X(Z), yz(l): yl(ii): XG), y2(2): x4 (19)
With the help of Eq. 19, the second order state space system of Eq. 18 becomes
F owﬁ”(t)} Fo 3 }{yﬁ”(t)}
- (20)
0 1] y¥( 0 04 y{(t)
with the following initial conditions:
0 1.8354 o .
Y1(): aIldYI(O):OS
v.(0)| | 1.0000 ¥y | 0.5
It is of interest to mention that Eq. 20 represents the stiff system.

Taking z, = v,, z, = v\, z, = v, and z, = v,'¥, the first-order state space form of Eq. 20 may be
obtained as

01 0 0)[z%n] [o 40 0 37z
100 oz [0 1 0 0|z
00 1 0l |0 0 0 1|z
00 0 1f|z%t [0 0 0 04z @n

with the following initial conditions:

7 (0)] [1.8354
z,(0) | 05
7O | | 10
z,(0) 0.5

The present algorithm performs the mumerical computation of Eq. 18 as itis where as the Eq. 20
is numerically solved by the second-order state space STWS (Sekar ef af., 2004) and the Eq. 21 has
been solved using the first-order state space STWS adopted by Sivaramakrishnan and Srisailam (1985)
and Ponalagusamy ef af. (2001). The computed results are shown in Table 3 and 4.
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Table 3: Comparison of numerical values of x using STWS (Example 2)
Numerical value of x

Time Present Sekar ef af. Sivaramakrishnan Ponalagusamy ef al.
(sec) algorithm (2004) and Srisailam (1985) (2001)

0.0 1.8353960 1.8353960 1.8353960 1.8353960

0.6 2.0987460 2.0987460 2.0987460 2.0987460

1.2 2.4188192 2.4188192 2.4188192 2.4188192

1.8 2.8257115 2.8257115 2.8257115 2.8257115

24 3.3429737 3.3429737 3.3429737 3.3429737

Table 4: Comparison of numnerical values of x using STWS (Example 2)
Numerical value of x

Time Present Sekar et of. Rivaramakrishnan Ponalagusarmny et af.
(sec) algorithm (2004) and Srisailam (1985) (2001)

0.0 1.8353960 1.8353960 1.8353960 1.8353960
0.125 1.8944808 1.8944808 1.8944808 1.8944808
0.375 1.9971855 1.9971855 1.9971855 1.9971855
0.625 2.1106055 2.1106055 2.1106055 2.1106055
0.875 2.2359540 2.2359540 2.2359540 2.2359540
1.125 2.3744856 2.3744856 2.3744856 2.3744856

It is observed that the results computed by the present algorithm tally exactly with that of
Sivaramakrishnan and Srisailam (1985), Ponalagusamy ez af. (2001) and Sekar ez ef. (2004) with the
advantage of considerable reduction in the computational efforts. The matrix to be inverted in the
present method has just reduced itself to a scalar {1x1), compared to a (2x2) matrix involved with the
second-order state space STWS and an (4x4) matrix in the first-order state space STW'S formulation.

Generalizing the above analysis, it is verified that for a differential equation of 2nth order with
r unknown dependent variables, the originally given matrix to be inverted is of dimensions (r=r) in the
present analysis whereas the size of matrix to be inverted becomes (nr=nr) in the second-order state
space formulation and in the case of the first-order state space fornlation, its size becomes (2nr=2nr).

DISCUSSION

The present numerical algorithm given by Eq. 12 has been applied to several practical problems
(second and third order state space systems representing mechanical vibrating systems, electrical
power systems, dynamic systems, etc.). A comparative study reveals that the results computed by
the present mumerical algorithm are exactly the same as obtained by Sivaramakrishnan and Srisailam
(1985), Thanushkodi ef al. (1988), Palanisamy and Arunachalam (1987) and Sekar ez af. (2004) in their
respective illustrative examples that are solved using the first/second order state space formulation
via STWS (Table 1-4), with the significant feature of considerable reduction in the system matrix
structure and the size of the matrix to be inverted resulting in lesser computing time and
saving in storage space. (Table 5). Tt is of importance to mention here that the present
method does not require the Kronecker product of matrices and there is no need for the operational
matrices of integration. Unlike the approaches adapted by Sivaramakrishnan and Srisailam (1985),
Thanushkodi et af. (1988), Palanisamy and Arunachalam (1987) and Sekar ef al. (2004), the new
version of computational algorithm of Single-Term-Walsh-Series(STWS) solves the given state
space system with any order without converting into its lower order which in turn, implies
that the original size of systermn matrix and the size of matrix to be inverted are not increased and
remained the same. So, the proposed new numerical algorithm is computationally very effective in
lesser computing time as well as storage space.
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Table 5: Comparative Analysis of Present and Existing Numerical Techniques

General case Particular case
Sivarama- Sivarama-
krishnan krishnan

and and

Srisailam  Thanuskodi ef @f.  Murugesan ef @/.  Present Srisailam  Thanushkodi ef ai. Present
Specification (1985) (1990) (2000) study (1985) (1990) study
Order of linear 2nor2n-1 2n or 2n-1 2n or 2n-1 2n or 2n-1 3 3 3
Differential equation
Actual number of T T 1 r 1 1 1
dependent variables
to be determined
Actual number of (r=r) (r=r1) (1x1) (r=r) (1x1) (1x1) (1x1)
size of the matrix
Resultant size of the  (2nx2n) (nr=nr) (nxn) (r=r) (4=4) (2x2) (1x1)
matrix obtained by
respective method
Size of the matrix (2n=2n) (nr=<nr) (n=n) (r=r) (4=4) (2%2) (1x1)
to be inverted
Resultant number 2nr nr n r 4 2 1
of dependent
variables to be

numerically
computed

CONCLUSIONS

A new STWS method in 2nth order state-space formulation for the analysis of the generalized
lingar, non-singular or singular, time varying system governing 2nth order state-space equation has been
introduced. The pivotal characteristic of this method is that the sizes of the system matrices and the
matrix to be inverted are smaller (the original size of the given system matrices and the size of matrices
to be inverted are unaltered) in the present numerical algorithm than those in the existing methods
(first and second-order state-space formulations via STWS) as the value of 2n (the order of state space
system) increases. It is observed from the research works done by Sivaramakrishnan and Srisailam
(1985), Tharmshkodi ez of. (1988), Palamisamy and Arunachalam (1987) and Sekar ef af. (2004) that
their approach does inevitably make the given system of equations more complicated in its structure
and requires the inversion of very large matrices. Hence, the algorithm presently developed reduces
appreciably computational burden and this is applicable to handle large-scale problems. This is simple
and recursive in nature and it is easy to be implemented for a digital computer. Further, the recursive
relations provide block pulse values, discrete values and continuous approximation for any length of
time and there is no restriction on k as in the case with Walsh series approach. It can also be
parallelized by following any of the strategies such as ones presented in Chu ef af. (1993) and Li et al.
(1999) in the case of computing matrix inverse which, in turn, reduces the computational burden.
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