Journal of
Software

Engineering

ISSN 1819-4311

@

Academic
Journals Inc. www.academicjournals.com

Journal of Software Engineering 4 (2): 156-168, 2010
ISSN 1819-4311 / DOI: 10.3923/jse.2008.10.22
© 2010 Academic Journals Inc.

A Bespoked Secure Framework for an Ontology-Based
Data-Extraction System*

I. Indumathi and Dr. G.V. Uma
Department of Computer Science and Engineering, College of Engineering,
Anna University, Chennai 600 025, Tamilnadu, India

Abstract: In this Bespoked Secure Framework for an Ontology-Based Data-Extraction
Systemn study, we report on the implementation of existing generalized framework with
alternate technology. Implementation is done using Natural language processing instead of
heuristic based method. Heuristic methods are based on assumptions. The assumptions are
just unspecified and as a consequence not understood. If for a given secure data extraction
limitation problem, the realization of model-based solutions appears to be too complicated
or too pricey to carry out. Heuristic approaches need to be incorporated with a meticulous
analysis designed at checking the extent to which the approach formalizes rational agency
preference structures and/or data user behaviors. Qur Secure Data Extraction system will
allow new algorithms and ideas to be incorporated into a Data extraction system. Extraction
of information from semi-structured or unstructured documents, such as web pages, is a
usefill yet complex task. Ontologies can achieve a high degree of accuracy and Privacy in
Data extraction system while maintaining resiliency in the face of document changes.
Ontologies do not, however, dimimish the complexity of a Data-extraction system. As
research in the field progress, the need for a modular Data-extraction system that decouples
the associated processes continues to grow.

Key words: Ontology, data extraction, natural language processing, semi-structured or
unstructured documents, web pages

INTRODUCTION

Making sense of vast amount of information available on the World Wide Web has become an
increasingly important and luerative endeavour. The success of web search companies such as Google
demonstrates the vitality of this industry. Yet the web search has much still to deliver. While
traditional search engines can locate and retrieve documents of interest, they lack the capacity to make
sense of the information those documents contain (Alan Wessman ez af., 2005).

Data extraction addresses many of the problems associated with typical web searches based
on standard information retrieval techniques. Data extraction is the activity of locating values of
interest within electronic textual document and mapping those values to a target conceptual schema
(Laender ef af., 2002). The conceptual schema may be as simple slots in a template (a wrapper) used
to locate relevant Data within a web page, or it may be as complex as a large domain ontology that
defines hierarchies of concepts and intricate relationships between those concepts. The conceptual
schema is usually linked to a storage structure such as an XML file or a physical Database model to
permit users to query the extracted data. In this way the meaning of a document is detected, captured
and made available to user queries or independent software programs.

Much of the research in data extraction has aimed at developing more accurate wrappers while
requiring less human intervention in the process (Hammer et @f., 1997, Kushmerick ez al., 1997,

Corresponding Author: J. Indumathi, Department of Computer Science and Engineering, College of Engineering,
Anna University, Chennai-600 025, Tamilnadu, India

*Originally Published in Journal of Sofiware Engineering, 2008
156

J. Software Eng., 4 (2): 156-168, 2010

Ashish and Knoblock, 1997; Crescenzi ef af., 2001; Laender ef af., 2002). The primary drawback of
wrappers, whether they are generated mamually or semi automatically, is that they depend on the
particular syntax of the mark up to detect boundaries between relevant and irrelevant data. The main
implication is that when a site’s mark up changes, the corresponding wrappers often break.

The generalized framework (Alan Wessman et al., 2005) has focused on the use of richer and more
formal conceptual schemas (ontologies) to improve accuracy in Data extraction. This system modifies
the generalized framework with use of NLP in order to improve the performance. Because ontology
describes a subject domain rather than a document, ontology-based data-extraction systems are resilient
to changes in how source documents are formatted and they can handle documents from various
sources without impairing the accuracy of the data extraction.

This systemn will accepts multi-record HTML documents, determines record boundaries within
those documents and extracts the data from cach record. It generates SQL DDL statements for the
model structure and stores the extracted information as DML statements. This facilitates the querying
of the results but also removes certain meta data attached to the data during the extraction process.

OSMX ONTOLOGY CONSTRUCTIONS

For ontology construction our system relies on OSMX ontology editor (Liddle et al., 2000).
Ontology editor is a predominanfly WY SIWYG tool. OSMX is the ontology language which is derived
from the existing OSML (Object oriented Systermn Model Language) (Liddle ef /., 2000) plus XML
schema.

We use the Java Architecture for XML binding (JAXB) to generate java classes and interfaces that
represent OSMX constructs from the OSMX specification. Modifving the OSMX defimition is
generally a straightforward process: we adjust the definition in the XML schema document and then
execute a JAXB program that rebuilds the classes and interfaces automatically.

OSMX’s ORM (Object relationship Model) with its data frame can serve as an Ontology
language. In ORM concepts are represented by object sets, which group values (objects) that have
sirnilar characteristics and connections between concepts are expressed via relationship sets, which
group object tuples (relationships) that share common structure. Generalization-specialization is a
special type of relation that expresses is-a relationships between object sets.

Data frame describe the characteristics of objects, similar to an abstract data type (Embley, 1980).
Data frames are attached to object sets and provide a means to recognize lexical values that correspond
to objects in the ontology (Fig. 1). The following diagram explains the structure of data frames.

ObjectSet

|

*--DataFrame (0 or 1)

|--defaultCanonicalizationMethod (attribute)

|--Internal Representation <TypeSpecification> (exactly 1)
|--ValuePhrase (0 or more)

| |--hint (attribute)

| |--confidenceTag (attribute)

| |--caseSensitive (boolean attribute)

| |--canonicalizationMethod {attribute)

| |--ValueExpression <DataFrameExpression= (0 or 1)

| |--ExceptionExpression <DataFrameExpression> (0 or 1)

| |--LeftContextExpression <DataFrameExpression> (0 or 1)
| |--RightContextExpression <DataFrameExpression> (0 or 1)

157

J. Software Eng., 4 (2): 156-168, 2010

| |--RequiredContextExpression <DataFrameExpression> (0 or 1)
| |[--SubFromExpression <DataFrameExpression> (0 or 1)

| |--SubToExpression <DataFrameExpression> (0 or 1)

| *¥--<Keyword Phrase> (0 or more)

|

|--<KevwordPhrase> (0 or more)

*--Method {zero or more)

|--hint (attribute)

|--name (attribute;, required)

|--language (attribute; default is 'java’)

|--ReturnType <TypeSpecification> (0 or 1)

|--Parameter (0 or more, ordered)

| |--name (attribute; required)

| |--decorator (attribute) <--- e.g., 'OUT", 'BY VAL, 'const, etc.
| |--Type <TypeSpecification> (exactly 1)

| *--<KeywordPhrase> (0 or more)

*--<KeywordPhrase> (0 or more)

TypeSpecification (NOTE: children are mutually exclusive)
|--ObjectSetReference

I

| *--name (attribute; required) <--- ref to an object set
*--DataType

|

|--typeName (attribute; required)

*-unitOfMeasure (attribute)

KeywordPhrase

|--hint (attribute)

|--confidenceTag (attribute)

|--caseSensitive (attribute)

*--KeywordExpression <DataFrameExpression> (exactly 1)
DataFrameExpression

|--color (attribute) <--- only for graphical tool use
|--ExpressionText (exactly 1)

I

| *--<element content> <--- contains the extended regular expression
*--MatchedText (0 or more)

|--document (attribute)

|--location (attribute)

|--startPos (attribute)

|--endPos (attribute)

|--status (attribute)

*--<element content> <--- contains a matched text string

The most basic element of an extraction rule for a data frame is a matching expression. This an
augmented forms of a Perl-5 compatible regular expression. The level of regular expression support is
defined by the java regular expression package java.util.regex. We augment regular expression by
allowing the rule designer to embed macro and lexicon references within the expression itself.

158

J. Software Eng., 4 (2): 156-168, 2010

@ Ontology Editor

Fle Edit Shape Format Tools ‘window Felp
D || < o= A ||z -
k| O 5 @3 & —« & OB >

& caront.xanl

| card company |

; rightturn | backup ;

Fig. 1. Car-advertisements application ontology
SYSTEM ARCHITECTURE OF THE DATA EXTRACTION SYSTEM

This part explains the overall architecture and functionality of the system. A graphical overview
of the systemn is described as in Fig. 2 and 5. The user is expected to initiate the system by giving the
input files names.

The first four stages, document retriever, document recognizer, document parser and content filter
together called as document pre-processing.

Document Retriever

The document retriever is responsible for supplying input document to the system. The current
systern will retrieve the document as shown in Fig. 3 from the local file system. This accepts the URI
as the input and produces a sct of documents.

Document Recognizer

The document recognizer analyzes the input document to determine which available document
parser is best suited to decompose the document. This module is needed when we giving the
different types of file as inputs. The current system accepts the HTML and plaintext sources as
shown in Fig. 4.

Document Parser

The document parser breaks up the documents into sub-documents in order to make extraction
casier. It divides the multi-record document into sub-documents, each constituting an individual record,
allows us to process one record at a time without having to worry about missing a record boundary
and extracting values from an adjacent record as shown in Fig. 4.

159

J. Software Eng., 4 (2): 156-168, 2010

Doremact

A J::r::,“ | | Xarnemt
A N

; Tty

Dozrmizet

I'ermminl el - . oo
I'MI. Fl er
ex. € €

Fig. 2: System architecture of the document preprocessing system

Laeael

TRCOMNI/ 2T

A 4

TR iy T

piirseT

E
S

=it ='W P ol 1w ol b s Froorsmiming Lenousos siiies
= Bryk e b e et made” hesstmein jus sgioo box coenT e
s
s
=i s P eeca | e Mok vy £ asteis Progresmming Langunpe-shd =

= v e D | Mol MATTHE 1Y TTeler Drle™ ST W' B e g i,
e 32, 1 Gl s

ATRETET L B LT HEL HE Sy 0w g

[T A Mt T
Wil 7 SR | e P C il 1Y, o 171 e D VARl i B
o o T e

ﬂof--ful sty wleraied prionasiy an a brasking Bngeags,

rad e e e I am =B
s e, B . Frm sl i grarmm o
S At st ek ok

risnams [Eim60

TTTIBIE B TUR S R TR FHS P s,

TILT a1, By Wik 4
] 4,00 W

T gy b g g e P el s

ming stongidn BusTCEd Eng U O
P el G B B YR TSl E] Sl

[F% AT Faseal # leslin ds skarsgand §
u-u:rz-:.zu.uuums.-m L]

T [SOB-E 404,10 DT25, 4901

et €4 007 |35 4311 01 335,540

Todt (101 ST25.54, 0 0 b2, iz THiE Gapsr QIBCUBEES My DETRONERN O B0IEr ..

ik e

e T - e L T srer | omiszater |

Fig. 4: HTML document parser

160

J. Software Eng., 4 (2): 156-168, 2010

Interface for OSMX

User

A 4

| Original file | Ontology with its

\ 4 data farma from

|D0cument recognizerl ontology editor

| .. Ontology with
Original file value and keyword
L 4 phrases

\ 4
Document parser

(Separate parser Ontology parser
separate file types)

DOM tree

Formatted text

Constant keyword
matching rule, Q-R
constrations and
database schema

Content filter Value extractor

Candidate matches

Value mapper

A 4

Ontology writer

+ Human readable outputl

Fig. 5: System architecture of the data extraction system (part 1)

Ontology B e on System

~
(it Pascal is Mot by Faw F-mgramm-ng Languags
iy Pascal is Not by Favor Brian v gl
[AT&T Bell Laboratories, Murray Hill, New.Jersey 07974 7
[Abstract
[The programming language Pascal has the 1 o in o education. It has als
Pascal was yasa

but it has been more and more often recommended as a langu
Pascal, at least In its standard form, is just plain not suitable for serlous programming. This paper discusses my personal discc
1 asnasls thiapapst s i afiping In ssw evonts - Sepss BtRERRE InaT cetnpi G DRRaRCAIGEL) 8 Sk Ensd ol
Comparing C© and Pascal is rather iike comparing a Leariet to a Piper Cub - one is meant for getting something done whiie the o
It turned out to be harder than | had to reswrite the in Pascal This BoRE |s an atternpt to disail out of the exper
The programs were first written in that dialect of Fascal supported by the Pascal | by the U of Califor
Fancal s w i diac e et banatags & ecantoIblioarantyt 7) i 176 Heme/under the headki of =~ lstussior, anatslsan
types and scope

control flow

environment

cosmetics and within each area more orless in decreasing order of significance.

To state my conclusions atthe outsel: Pascal may be an admirable language for teaching beginners how to program; | have no 1
2. Types and Scopes Pascal is (almosD a strongly yped language. Roughly speaking, thal means that each object in a program

e
apple = integer,
orange = integer;

then any pples and oranges is perfectly legal
Strong tpIng Shows U in & variety o ways. For mslan:e argurments 1o functions and procedures are checked Tor proper type ma:

Integsr may be to hawve an rangs of legal values, and the compiler and run-time SUPPoM ensurs th
Letus move on to Some problems of type and Scope.

2.1.The size of an array Is part of Its type If one declares

wvar arr10 : array (1..10] of integer,
arr20 : array [1.20] of integer;
then arr10 and arrz0 are amays of 10 and 20 integers resner.nvely Suppose we wani 1o write a procedure " sort "o sont an intege
The place where this affects ols . and I thin n general, is that it makes it difficult indeed to crea
The particular data type most often ociod o “array of char’, for in o string is an array of characters. Consider writing a fur

war temp : array [1..10] of char;
ternp = ‘hello’;

ndex{lenp,c);
put ihs assianment io - teme (s lleust becauss hells - and *wmp " are of diffevent Ienahs: oF
< >

Fllename [CiDocumenis and Sefingst: browse | wiew | parse | [cfifier] OntoEditor

Fig. 6: Content filter output

Content Filter

Content filter eliminates all tag information from the HTML documents since these tags do lend
additional meamings. It is convenient for extraction the elimination of tags as shown in Fig. 6.

161

J. Software Eng., 4 (2): 156-168, 2010

OSMX application
ontology

Value and keyword
matching rules

Object sets,
v relationships sets
Formatted and constraints
test Value
extractor Candidate matches

Extracted objects
and relationships

7

/ ,,

Ontology writer

Value mapper

Fig. 7. System architecture of the data extraction system (part 2)

Ontology Parser

Ontology parser produces the set of constant-keyword matching rules, object relationship
constraints and a set of database schema by parsing the input ontology. The above mentioned
processes are only the preliminary process for extraction. The following steps initiate and extract the
information from input documents.

Value Extractor

The responsibility of value extractor as shown in Fig. 7 is to apply the value recognition rules
produced by the ontology parser to the input document and producing the set of candidate matches.
The conflicts among the candidate matches do not resolved in this stage. The one more functionality
of value extractor is to maintain the location information for each candidate values. This provides a
traceable back to the document content and also can supply the usefill data for algorithms that resolve
match conflicts and create mappings from candidate values to elements to the ontology.

Value Mapper

The most important and difficult part of the extraction system is the process that takes the
candidate matches and uses them to build a data instance consistent with the constraints specified by
the ontology. The value mapper module does this job. The generalized framework implements the
value mapper by using the heuristics approach. This system implements the value module by using
the Natural Language Processing. The important tasks of value mapper module to transform the
candidate matches into data instances are (1) resolve conflicting claims that different elements of the
ontology make upon the same matched value, (2) transform lexical values into objects (instances of
concepts defined in the ontology), (3) infer the existence of objects that have no direct lexical
representation in the text and (4) infer relationships between objects. Finally a collection of objects and
relationships between those objects are obtained.

Ontology Writer (Object Relationship Writer)

The ontology writer will converts the data instance into suitable for storage. Also it displays the
result as a human readable HTML format.

162

J. Software Eng., 4 (2): 156-168, 2010

Extracted data in
human readable

Apptli?ation form (i.e., HTML)
ontology Data extraction
system
Formatted

text

Fig. 8: Context diagram

Information Flow
The flow of information as shown in Fig. 8 between the components of the system is given in the
following subsections.

IMPLEMENTATION

The labeling technique described above has been implemented and experiments have been
conducted with web-based document articles selected from several domains. All documents used in
these experiments have HTML-based file format. Samples consisting of 20 documents from four
domains (car-ads, genealogy, computer job ads. obituary) downloaded from various online news
papers. The current framework has been implemented by using java 1.5. To convert ontology as a java
class file the system used JAXB (Java Architecture for XML Binding). The accuracy of result is same
as that of generalized framework.

The Data frames for the application ontology are defined by using OSMX ontology editor. The
ontology parser module is implemented by the use of JAXE (Java Architecture for XML binding)
facility available with java. It parses the input ontology and extracts the constraints defined by the
ontology. The Value extractor implements the function which produces the set of candidate matches
by applying the value recognition rules associated with the extraction ontology to the input document.
It also implements the function which maintains the location information for each candidate values. The
value mapper module finalizes the extraction process. The ontology writer function implements the
function which converts the extraction result into a human readable format. This project is
implemented and tested for the following application ontology: real estate, restaurant, cell phone plan,
digital camera, camp ground and person.

Pertinent Processes
Data Entities

The data entities in the flow diagram are Input file (formatted text),application ontology with its
data frame, human readable output.

Data Frame Definition
The data frame defines the exfraction rules through its value phrase and keyword phrase
constructs. The data frame’s regular expression is compatible with Perl-5 regular expression.

Ontology Parser
This process combines application ontology and its data frames and produce constant keyword
matches rule, objects, relationships and constraints and database schema.

Value Extractor

This process uses OSMX with its data frames as the ontology language. OSMX will be
formed by OSML with XML specification. Locates the recognition rules specified by each

163

J. Software Eng., 4 (2): 156-168, 2010

data frame and applies them to the input text The extractor identifies all substrings in the text
that match the recognition rules and for each substring construct a matched text object.

Value Mapper

This process is most important and difficult part of the extraction system and it takes candidate
value matches and uses them to build a data instance consistent with the constraints specified by the
ontology.

Ontology Writer

This process provides a human readable hierarchical list of objects and relationships in each data
instance stored with the input ontology. The output format is HTML, which suits our present
purpose.

Process Description
Process 1: Data Frame Definition
Input data entities
Application ontology.
Algorithm for process.
I. Start
II. For each object set of ontology define value phrase and keyword phrase {value phrase consists
the following: required context, left context, right context, exception, substitute from/to)
IT1. Repeat step-11 until all the object sets have data frames
IV. Stop
Affected entities
Input application ontology

Process 2: Ontology Parser
Input data entities
Application ontology with its data frames.
Algorithm for process.
I. Start
II. Identify constant keyword matching rules
1. Identify the objects, relationships and constraints
IV. Identify the database schema for storage
V. Stop.
Affected entities
Input application with its data frame

Process 3: Value Extractor
Input data entities

Formatted text and application ontology with its data frames.
Algorithm for process

I. Start

II. Apply the value recogmition rules associates with the extraction ontology to the imput
document, producing a set of candidate matches.

IT1. Write the routine to maintain location information for each candidate matches (this provide
a traceable path back to the document content and also supply the useful data for the algorithms that
resolve match conflicts and create mappings from candidate values to elements of the ontology).

164

J. Software Eng., 4 (2): 156-168, 2010

IV. Stop

Affected entities

Process 4: Value Mapper
Input data entities

Set of candidate matches

Algorithm for process

Generate an object for the object set (but do not add it to the data instance yet).

If object set is lexical:

e Find the best value phrase match for this object set within the current matching context.

e Ifavalue phrase is found in the matching context:

« Store information about the match (such as the matched text and location) with the
object.
+ Add the object to the data instance and return it.

+ Otherwise, discard the generated object and return null.

Determine which object sets to process next.

+ Find all relationship set cormections for this object set, except those already visited for this
object (prevents infinite cycle).

e Determine an order for processing the conmections.

Process the child objects sets.

e Invoke the appropriate heuristic (singleton, functional group, nested group, nonfunctional),
based on the nature of the relationship set and the participation constraint on the connection,
to obtain one or more relationships.

+ Ifrelationships were generated, bind the object to each relationship.

If object is non-lexical:

+ Ifnot bound to any child relationships, discard it.

+ Otherwise add it to the data instance.

Return the generated object if it was not discarded.

Affected entities

Candidate matches.

Process 3: Ontology Writer
Input data entities

Objects and relationships returned by the value mapper.

Algorithm for process

I. Start

II. Convert the objects and relationships into corresponding database schema.
II1. Store the database schema in database

I'V. Display the output as HTML file.

V. End

Affected entities

Data instances

The following Fig. 9 shows the screen shot of the extraction framework for the user interface.

165

J. Software Eng., 4 (2): 156-168, 2010

Fig. 9: User interface

Fig. 10: Output-restaurant domain

166

J. Software Eng., 4 (2): 156-168, 2010

AWINDOWS\system32\cmd.exe

real cheap. gargantuan Mexican appetizers,

Take University Parkway to thiz family—owned westaurant for zensational mole pob
lano. carnitas. pico de gallo and pozole but no alcohol. not even beer. Or head
second location,., a nearby taco shop at 46 W. 1238 North.

hack to the puebhlo for food like mamacita used to make. at prices even impov
ed tourists can afford. made even more attractive by weekend specials.

ze: bb

atching took 2118 ms
Saving ontology...

aving ontology took 148 m=s
Saving result page...

aving result page took 516 ms
Extracting took 16141 ms

Fig. 11: Result statistics of restaurant domain

The developed system was tested with the following domains: Real Estate, Digital Camera,
Restaurant, Cell Phone Plan and genealogy. At the end of the execution the system will produce a
resultant OSMX document which can be used for reasoning purpose in future.

Figure 10 shows the output screen shots of the Restaurant domain whereas Fig. 11 shows the
resulting statistics of Restaurant domain.

CONCLUSION

We have designed and implemented a modified framework for an ontology-based Data-extraction.
The replacement of existing technique by our technmique has toiled our efforts. The generalized
framework is less flexible for module replacement. The modified framework result is also same as that
of generalized framework. This work provides a solid basis for continued research on ontology-based
Data-extraction. In this project, the solution was determined for extraction of text information from
HTML document and plaintext document. The input documents are retrieved from the local system.
The proposed solution will not consider the image, audio and video files. For small scale input the
developed system is more efficient than the search engine. For large scale input the accuracy will be
high but it will take more time than search engine.

FUTURE ENHANCEMENTS

In future, one might write a Document Retriever that invokes the Google APIs to take advantage
of the search engine’s existing capabilities for retrieval from the Internet and may develop the solution
for retrieving the information from acrobat reader and other kinds of documents by using this ontology-
based framework. The current system will process only the text information and accepts the
HTML/plaintext document as its input. In future the current system may be extended to process the
image, audio and video information. The current systemn may be extended to accepts the other types
of documents, such as PDF as its input. In our further research we plan to extend our works and then
implement them.

ACKNOWLEDGMENTS

I would like to acknowledge the overwhelming involvement and incessant hours invested
in me by my gude, advisor, Prof. G.V. Uma. Without her, I would not still be close to being

167

J. Software Eng., 4 (2): 156-168, 2010

done. For my parents, no words can suffice. I would also like to be grateful to Mr. P. Jeyakumar
who saved me asphyxiation due to lack of social life.

REFERENCES

Alan Wessman, S.W. Liddle and D.W. Embley, 2005. A generalized framework for an ontology-based
data-extraction. In: The Proceedings of the International Conference On Information Systems
Technology and its Application, 63: 239-253.

Ashish, N. and C. Knoblock, 1997. Wrapper generation for semi-structured Internet sources.
SIGMOD Rec., 26 (4): 8-15.

Crescenz, V., G. Mecca and P. Merialdo, 2001. RoadRunner: Towards automatic data extraction from
large Web sites. In: Proceedings of the 27th International Conference on Very Large Data Bases,
Rome, Ttaly, pp: 109-118.

Embley, D.W., 1980. Programming with data frames for everyday data items. AFIPS "80 Proceedings,
Anaheim, California, pp: 301-305.

Hammer, J., H. Garcia-Molina, 8. Nestorov, R. Yemneni, M. Breunig and V. Vassalos, 1997. Template-
based wrappers in the Tsimmis system. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data, Tucson, Arizona, pp: 532-535.

Kushmerick, N., D. Weld and R. Doorenbos, 1997. Wrapper induction for information extraction. In:
Proceedings of the Intermational Joint Conference on Artificial Intelligence, Nagova, Japan,
pp: 729-737.

Laender, AHF., B.A Ribeiro-Neto, A.S. da Silva and J.S. Teixeira, 2002. A brief survey of Web data
extraction tools. SIGMOD Rec., 31 (2): 84-93.

Liddle, S.W., D.W. Embley and S.N. Woodficld, 2000. An Active, Object-Orniented, Model-Equivalent
Programming Language. Advances in Object-Oriented Data Modeling, MIT Press, pp: 333-361.

168

	JSE.pdf
	Page 1

